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a b s t r a c t

In this paper we introduce a new design principle, and complementary geometric entities, that form the
basis for a new approach to the synthesis of multi-degree of freedom, purely parallel precision flexure
systems. This approach – Freedom and Constraint Topology (FACT) – is unique in that it is based upon sets
of geometric entities that contain quantitative information about a flexure system’s characteristics. A first
set contains information about a flexure system’s degrees of freedom (its freedom topology) and a second
set contains information about the flexure system’s topology (its constraint topology). These sets may
be used to visualize the quantitative relationships between all possible flexure designs and all possible
motions for a given design problem. We introduce a new principle – complementary topologies – that
enables the unique mapping of freedom and constraint spaces. This mapping makes it possible to visualize
and determine the general shape(s) that a viable parallel flexure system concept must have in order to
permit specified motions. The shapes contain all of the relevant quantitative information that is needed to
rapidly sketch early embodiments of complex parallel flexure system concepts. These shapes may then be
used to rapidly synthesize a multiplicity of flexure system concepts that have (a) independent rotational
and/or linear motions, (b) coupled linear and rotational motions, and (c) redundant constraints that

permit the desired motions while improving stiffness, load capacity and thermal stability. This enables
early-stage flexure system design via “paper and pencil sketches” without undue complications that arise
when one focuses upon detailed mathematical treatments that are better-suited for optimization rather
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. Introduction

The intent of this paper is to introduce the principles behind
new method – Freedom and Constraint Topology (FACT) – that
ay be used to diagnose and synthesize multi-degree of freedom

multi-DOF) flexure system concepts. Flexure systems consist of
combination of rigid and flexural elements. These elements are

rranged and interconnected in a way that their compliant direc-
ions permit specified motions and their stiff directions prevent

otions in all other directions. Flexure systems have been used
s precision machine elements for over a century [1] due to their
xcellent resolution characteristics, their low-cost characteristics,
nd the ease with which they may be fabricated.

Flexure systems continue to be important to conventional pre-

ision applications, for instance they are commonly used within
ptical manipulation stages, precision motion stages and as gen-
ral purpose flexure bearings. More recently, flexure systems
ave become attractive for use in motion stages for nanoman-
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ufacturing equipment, instruments that are used in nano-scale
research/manufacturing, and micro- and nano-manipulators. These
instruments and devices typically require the capability to move in
four to six axes with nanometer-level resolution [2–11]. This paper
provides a means to synthesize flexure systems for these types of
applications.

There are many ubiquitous one-, two- or three-axis flexure sys-
tems [12] that may be combined in series to solve some types of
multi-DOF motion problems. Parallel flexure systems are usually
preferred to serial systems because they have better dynamic char-
acteristics and they do not suffer from stacked axis errors that are
inherent in serial flexure systems.

The generation of multi-DOF parallel flexure system concepts
is difficult because there are typically several flexural components
that provide constraints in several directions while allowing
motions in many other directions. It is necessary, and difficult,
for designers to keep track of (a) the relative, three-dimensional

orientations of the flexural constraints, (b) the orientation of the
permitted motions, and (c) the three-dimensional relationships
between each constraint and the permissible motions. Even if
an expert designer is capable of the preceding, the existing body
of published precision flexure system knowledge provides little

http://www.sciencedirect.com/science/journal/01416359
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nformation or guidance as to how they should deal with two
mportant problems that are inherent to parallel flexure systems:

(a) The problem of coupled rotations–translations and,
b) The problem of identifying when and where redundant

constraints may be added to a flexure system. Redundant con-
straints are often needed to endow a flexure system with
suitable stiffness, load capacity and thermal stability charac-
teristics.

In general, parallel flexure systems, regardless of the number
f degrees of freedom (DOFs), are often designed via iteration and
any designers are fortunate if they are able to synthesize one or

wo new concepts that possess only the specified motions.
Fig. 1A provides a contrast of the conventional flexure design

ethod, constraint-based design (CBD), and FACT. In CBD, a
esigner must use his visualization skills, pattern recognition and
BD’s Rule of Complementary Patterns to guide a visual itera-
ion process until a viable flexure system concept is identified.
dditional concepts are generated via more iteration. In contrast,
ACT uses sets of three-dimensional geometric entities, for exam-
le planes and spheres, to embody quantitative information about a
exure system’s shape and its DOFs [13]. These types of geometric
ntities, for example those shown in Fig. 1Bii, are capable of dis-
laying the general form of a flexure system design. All possible
oncepts are represented within the entities therefore a designer
ill know the general form of a flexure design for a desired set of
OFs.

In the FACT method, a first set of entities contains information
bout the flexure system’s DOFs (its freedom topology) and a second
et contains information about the flexure system’s geometry (its
onstraint topology). The sets of shapes are made useful via a prin-
iple – the principle of complementary topologies – that provides
unique mapping of the first set (DOFs) to the second set (geome-

ry). This is illustrated via the example that is shown in Fig. 1B. If a
esigner wanted to generate concepts for a flexure system with

ne rotation DOF, they would first specify the geometric entity
freedom topology) that represents this rotation. The designer then
dentifies which freedom space this topology belongs – the rotation
ine in Fig. 1Bi. The principle of complementary topologies would
hen be used to find the geometric entities (constraint space) – the

ig. 1. Illustration of (A) the contrast between constraint-based design and FACT and
B) example geometric entities that represent the permissible motion – Ri – and the
ppropriate geometric entities that contain the constraints – Ci – that are used to
enerate several concepts for a flexure system that permits the desired motion. Note,
olor coding will be used in this paper to distinguish motions and flexure geometry.
or example, the red and blue in this figure indicate a rotation and flexure constraints
espectively. Further details regarding color coding will be in a later section. (For
nterpretation of the references to color in this figure legend, the reader is referred
o the web version of the article.)
Engineering 34 (2010) 259–270

intersecting planes in Fig. 1B ii – that represents concepts for flex-
ure systems that permit only the specified DOF. The designer then
selects constraints that lie within the constraint space to form var-
ious different concepts, for example the three concepts shown in
Fig. 1Biii contain flexural constraints that lie within the planes of
the constraint space. This is a simplified example that illustrates
the basic approach. Sections of Part I of this paper, and Part II of this
paper, will provide examples of increasing complexity.

1.1. Overview of flexure system design history and sources for
principles and best practices

It is a common misunderstanding that flexure systems could not
be invented until the later 20th century. The engineering of flexure
systems requires at a minimum, an understanding of principles that
have existed for some time:

i. Hooke’s linear stress–strain relationship from 1678 [14],
ii. Bernoulli and Euler’s kinematic and elastomechanic beam

behavior from 1744 [15], and
iii. Maxwell’s rules that govern the relationship between con-

straints and DOFs c.a. 1890 [16].

This knowledge enables the engineering of precision flexure sys-
tems and compliant mechanisms. Given this knowledge, Clay and
Roy [17], Jones [18] and others were able to generate, model and
implement new flexure systems and early compliant mechanisms
throughout the early 20th century. These flexure systems became
ubiquitous precision machine elements and so there was a need
to catalogue the concepts, principles and best practices that were
used to engineer them. This was accomplished by Smith [12] c.a.
2000.

Blanding created a formal base of exact constraint principles for
use in the design of flexures [19], c.a. 1999 and Hale augmented
these principles [20] for precision flexure systems. The contribu-
tions of Maxwell, Blanding and Hale constitute the core of what is
called constraint-based design. The fundamental premise of CBD is
that all motions of a rigid body are determined by the position and
orientation of the constraints, i.e. the topology of constraints, which
act upon the body. In CBD, a designer arranges flexural and rigid ele-
ments into a geometric layout that endows a device with the ability
to permit and forbid motions in specified directions. Constraint-
based design principles are central to precision engineering as the
layout of a device’s constraints governs the device’s DOFs, stiffness,
repeatability, mode shapes, etc. Constraint-based design has been
practiced by using a combination of visualization techniques, expe-
rience and rules of thumb. It is currently the primary synthesis
method used to engineer precision flexure systems.

1.2. Scope

This paper focuses on improving the synthesis of precision flex-
ure systems with a specific emphasis on the creation of parallel
flexure system concepts to meet kinematic requirements. We limit
the scope of this paper to include small-motion kinematics and lin-
ear elastic material properties. Parasitic errors that are associated
with large motions are not addressed. These assumptions are appro-
priate for the early-stage synthesis of precision flexure systems. The
content of this paper applies to systems wherein the guided com-
ponent may be considered as a rigid body; therefore the number of
DOFs is limited to six DOFs.
There are two types of flexure systems, they are systems wherein
(a) chains or serial conjugated flexures link the mobile element to
ground, i.e. serial flexure systems, and (b) all ground-to-stage links
consist of a single flexural element, i.e. parallel flexure systems. The
former requires the later to address the parallel combinations of the
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Fig. 3. Example that illustrates the Rule of Complementary Patterns between Rs
and Cs for a rigid stage that is constrained with five non-redundant constraints. The
J.B. Hopkins, M.L. Culpepper / Pre

hained flexures and it also requires a means to deal with the serial
ature within the chains. The solution of the later is a necessary
rst step; therefore this paper is focused upon parallel solutions
herein serial chains do not exist. The methods of this paper may

e extended to address some practical serial flexure systems [21],
ut this requires the introduction of considerable material and so
his topic will be the subject of a future paper.

It should also be noted that this approach may be used for rigid
echanisms that rely on sliding/rolling joints. The utility of these

evices within precision applications is limited given the inherent
roblems with the accuracy and repeatability of the non-flexural

oints. The utility to other fields, e.g. robotics, is presently limited to
mall-motion kinematics, although it should be possible to extend
he work to large-motion kinematics.

. Background knowledge that is used in FACT

.1. Maxwell’s principles of constraint

A rigid body has six DOFs and any non-redundant constraint
pon the body removes a DOF. A constraint is idealized as provid-

ng resistance to motion along its line of action only. This may be
xpressed as:

= 6 − C (1)

here C is the number of non-redundant constraints and R is the
umber of DOFs. Non-redundant constraints are mathematically
quivalent to constraints that possess lines of action, i.e. vectors,
hich are mathematically independent. Maxwell augmented this

quation with observations that enable one to understand some of
he DOFs that are permitted given the lines of action of a system of
onstraints [16].

.2. Projective geometry

It will be useful for us to visualize geometric entities that possess
mix of finite dimensions and dimensions that approach infinity.

he field of projective geometry [22] addresses these types of geo-
etric entities. The first principle of import is that a line may be

erceived as a circle with a radius of curvature that approaches
nfinity. The relevance of this principle is demonstrated in Fig. 2.
or small motions, translations may be emulated by rotations about
circle whose radius approaches infinity. The circle is shown as a

hoop” in Fig. 2. The rotation of the stage could occur about points

n this hoop such that the rotation yields a motion that emulates
translation in a direction that is perpendicular to the plane of

he hoop. This principle is important because CBD and FACT treat
ll translations as though they are the result of a rotation about a
oop.

ig. 2. Illustration showing how a hoop (red) represents a translation – Ti – shown as
black arrow. The lines of action of the flexure system’s constraints (blue) intersect

he hoop as the lines extend toward infinity. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of the article.)
ends of the constraints that are not attached to the rigid stage are considered to
be grounded. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of the article.)

The second principle from this field is that parallel lines may be
considered to share an intersection as the lines approach infinity.
This principle is used in CBD and FACT to identify the intersections
between geometric entities that represent (i) constraints and (ii)
DOFs.

2.3. The Rule of Complementary Patterns

Blanding [19] viewed constraints and DOFs via constraint lines
and freedom lines, respectively. A constraint line is the line of action
of an idealized constraint. DOFs are viewed as rotations about a
freedom line. The hoop principle from the previous section is used
to describe translations in terms of rotations. Blanding’s Rule of
Complementary Patterns [19] states that every freedom line inter-
sects every constraint line. This is powerful because it enables a
designer to visualize the relative relationships between a flexure
system’s constraints and the DOFs that these constraints permit.
The Rule of Complementary Patterns has been used to design many
mechanical devices, precision flexure systems and precision fix-
tures [19,20].

The principle is demonstrated via the flexure system in Fig. 3.
The flexure system consists of a rigid stage and five independent
constraints, C1–C5. The constraint lines in Fig. 3, and throughout
the rest of the paper, are shown in blue. Eq. (1) predicts that the
stage should move with one DOF and the Rule of Complementary
Patterns may be used to find this DOF. The only line that intersects
all of the constraint lines is the red freedom line, R1, in Fig. 3. This

freedom line, and every other freedom line throughout this paper,
is shown in red. From projective geometry, we know that parallel
lines intersect at infinity and so C1–C3 intersect the freedom line
as the line approaches infinity. Constraints C4 and C5 intersect the
freedom line at the centroid of the triangular stage. This is the only



262 J.B. Hopkins, M.L. Culpepper / Precision Engineering 34 (2010) 259–270

at are

l
p

P
t
a
p

3

3

i
s
t
t
t
a
t
l
s
o

f
i

• C: P-plane – All co-planar, parallel lines of a given orientation
• D: A-plane – All lines on a given plane
• E: Sphere – All lines that intersect at a common point
Fig. 4. Projective geometric entities th

ine that intersects all constraint lines and so it represents the only
ermissible DOF—a rotation about the freedom line.

The example in Fig. 2 illustrates how the Rule of Complementary
atterns applies to hoops and constraints. The lines of action of the
hree constraints intersect the hoop. As such, the hoop represents
permissible DOF and the associated translation, T, is one of the

ermitted DOFs.

. Fundamentals of FACT

.1. Freedom and constraint sets

It is difficult, even for the most experienced designer, to visual-
ze how the constraint and freedom lines within a complex flexure
ystem relate to each other. Visualization is made easier through
he use of geometric entities – freedom sets and constraint sets –
hat represent a collection of freedom and constraint lines, respec-
ively. Fig. 4 shows 12 shapes that are commonly used as freedom
nd constraint sets. The entities in Fig. 5A–H are of the most import
o precision flexure system design. The entities in Fig. 5I–L corre-
ate to flexure systems whose import to practical precision flexure

ystems have yet to be identified. They are provided in the interest
f completeness.

Although the entities in Fig. 4 are readily described via equations
rom Euclidean geometry, the form they take is best described for
ntroductory purposes via logical expressions:
used as freedom and constraint sets.

• A: Line – A line of a given orientation
• B: Pencil – All co-planar lines that intersect at a common point
Fig. 5. (A) Example of a flexure system wherein the constraints are skew with respect
to the permissible screw motion, S1. The result is a coupled, i.e. screw, DOF (green)
and (B) the geometric parameters that govern the degree of coupling between trans-
lation and rotation. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of the article.)
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constraint sets in FACT. The Principle of Complementary Topologies
was created to provide a mapping between freedom and constraint
topologies that exist within freedom and constraint spaces. The
principle states ‘a freedom space and a constraint space contain
complementary freedom and constraint topologies when all lines
J.B. Hopkins, M.L. Culpepper / Pre

F: Box – A box of infinite extent that contains all parallel lines of
a given orientation
G: Hoop – A circle that has a radius that approaches infinity
H: Hoop surface – All hoops with normal vectors that are orthog-
onal to a given axis
I: Circular hyperboloid – A ruling of lines that exist within the
surface of a circular hyperboloid
J: Elliptical hyperboloid – A ruling of lines that exist within the
surface of an elliptical hyperboloid
K: Cylindroid – All lines that exist within the surface of a cylin-
droid
L: Hyperbolic paraboloid – All lines that exist within the surface
of a hyperbolic paraboloid

These entities may be used by designers to visualize and under-
tand the characteristics of a flexure system. More detail on the
hapes of these geometric entities, the equations used to describe
hem, and their evolution in the context of FACT are provided by
opkins [13]. Subsequent sections will provide an overview of how

hese sets relate to flexure systems and how they are used.

.2. Treatment of coupled DOFs and constraints via screw theory

To this point we have only covered freedom sets that contain
otational freedom lines. It is possible for a freedom set to con-
ain screw lines that represent coupled rotations and translations.
ig. 5A shows a flexure system that possesses this type of coupled
OF – a coupled rotation and translation – along a vertical axis

hown as a green line. A downward displacement of the stage is
ccompanied by a proportional rotation of the stage. In cases such
s this, the constraint lines (blue) do not intersect the line associ-
ted with the rotation or the translation. CBD principles are unable
o diagnose or synthesize flexure systems with this type of coupling.

Screw theory may be used to create geometric entities that con-
ain information about coupled DOFs, i.e. screws [23–25]. Each
ector is in essence a line that corresponds to a motion or load.
thers, including Bottema and Roth [26], Hunt [27], Merlet [28]
nd McCarthy [29,30] have extended this work to include the use of
Grassman Geometries,” which are geometric shapes that represent
ndependent lines. When used in this context, the shapes in Fig. 4
re Grassman Geometries. These shapes may be found within a
umber of kinematics texts as descriptors of either an existing
echanism’s kinematic or a mechanism’s constraint characteris-

ics.
In FACT, the shapes are used for a different purpose and in

different way. Their purpose is to enable easy visualization of
he possible flexure constraints that permit a given set of DOFs
ithout loss of the quantitative link between motion and con-

traints. The way the shapes are used differs from screw theory
nd equation-based approaches. Screw theory and equation-based
pproaches are best-suited to analysis of existing concepts and
ptimization of existing designs. The shapes within FACT are
rimarily used for rapid early-stage concept synthesis via visu-
lization/sketches, thereby preventing undue complications from
crew theory’s mathematic complexity that tends to camouflage
ractical design issues/characteristics and thereby form a barrier
o a designer’s ability to understand the essence of how/why the
oncept works. It is critical to understanding the practical issues
nd how/why a precision flexure system works prior to investing
he time/resources to use screw theory, or an equation, or other

imulations for detailed analysis/optimization.

The following equation provides the relationship between con-
traints and screws (i.e. coupled rotations–translations) [13,30]:

cos( i) = ri sin( i) (2)
Fig. 6. Geometric parameters used to relate a screw and constraint line. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the
web version of the article.)

In Eq. (2), r is the shortest distance between the constraint line
and the screw,  is the skew angle between the screw and the
constraint line, and p is the pitch, that is the translation per unit
rotation. These parameters are defined in Fig. 6. Eq. (2) may be
used to generate appropriate freedom sets that have the form of
the geometric entities in Section 3.1. Three-dimensional geomet-
ric entities have been used with screw theory in the past to (a)
illustrate the linear combinations of Plueker vectors [27] and (b)
identify singularities in rigid, parallel mechanisms [29,30]. In FACT,
the entities are used to visualize all types of permissible motions
(rotations, translations and screws), non-redundant constraints and
redundant constraints.

Some freedom sets may only contain screws while others may
contain a combination of screws and rotational freedom lines. In
this paper, the color green and/or an inscribed “S” are used to rep-
resent the line of action of a screw line along which the screw’s
translation occurs, and about which the screw’s rotation occurs.

3.3. Freedom and constraint spaces

The superposition of several freedom or constraint sets – called
a freedom or constraint space – is usually needed to capture the
entirety of a flexure system’s freedom or constraint characteristics.
For instance, the constraint space (blue) in Fig. 7A is a combination
of a sphere with an A-plane. The freedom space (red) in Fig. 7B is the
combination of two pencils. The next section describes how spaces
may be mapped to each other, thereby providing a link between a
flexure system’s DOFs and its constraints.

3.4. The principle of complementary topologies

The Rule of Complementary Patterns only covers lines, it does
not explicitly cover all of the shapes that represent freedom sets and
Fig. 7. Examples of freedom and constraint spaces. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of the
article.)
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ig. 8. The unique relationship between freedom and constraint spaces as shown
uring the diagnosis (constraints to freedoms) and synthesis (freedoms to con-
traints) cycles. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of the article.)

n the constraint space are complementary to all lines in the free-
om space.’ Here, complementary adheres to the classical definition

rom mechanism kinematics. Although the definition is typically
efined via mathematics, it is more appropriate for our purposes
o phrase this in logical terms as a given layout of constraints and

given motion is complementary if the constraints permit the
otions.

Appendix A contains several sets of complementary freedom
nd constraint spaces that were mapped to each other via the
rinciple of Complementary Topologies. There are two important
orollaries that may be deduced from this principle:

(i) The freedom and constraint spaces are uniquely mapped to each
other,

ii) Any constraint line that is selected from the constraint space
will be complementary to the rotational freedom lines and
screw lines according to Eq. (2).

orollary 1. The first corollary means that a designer may use the
atalogue of matching freedom-constraint spaces in Appendix A to
mmediately select the appropriate constraint spaces (design type) that

ay be used to synthesize concepts which possess a desired freedom
pace (DOF). The reverse may also be done. That is, a designer may
iagnose the DOFs that a flexure permits by finding the constraint space
hat the flexure fits within, and then looking up the matching freedom
pace.

The synthesis and diagnosis cycles for a simple flexure system
re illustrated in Fig. 8. The sequence of steps within the figure
hould be read in a counter clockwise direction. We first describe
he diagnosis of the permitted DOFs for the flexure that is shown
t the 12 o’clock position. The flexure is broken down into its con-
traint lines and then all possible freedom sets that contain lines
hich intersect these constraint lines are added to form the flex-

re system’s freedom space. In this case, only a hoop or the lines
ontained within an A-plane will obey Eq. (2) in that they intersect
ach of the constraint lines, so they are combined to form the free-
om space of the flexure. The motions that correspond to the hoop
nd the A-plane, a translation and two independent rotations, are
hown at the 6 o’clock position.
The synthesis of this flexure system concept is achieved using
he steps shown on the right of Fig. 8. If the desired DOFs are two
otations and a translation that is orthogonal to the plane that con-
ains the lines, the appropriate freedom space is selected from the
atalogue in Appendix A. Eq. (1) is used to determine the minimum
Engineering 34 (2010) 259–270

and necessary number of constraints that must be selected from
the appropriate constraint space. There are many combinations of
three co-planar lines that may be selected from the constraint space
plane. We are interested in combinations that do not intersect at the
same point.

After the minimum number of constraints has been selected via
Eq. (1), additional constraints may be selected from within the con-
straint space because each additional constraint is guaranteed to
permit the desired DOF. This would be done for instance if it was
necessary to improve the load capacity, symmetry, thermal stabil-
ity and/or the stiffness of the flexure system in some, or all, of
the constrained directions. Another consequence of adding addi-
tional constraints is that the stiffness in the free directions will
also increase. More information on these constraints, referred to
as redundant constraints, is provided in Part II [31] of this paper.

There are many ways to select combinations of non-redundant
and redundant constraints, so many viable topologies of constraint
lines may be generated. Each topology is a different concept and
so the constraint space may be used to synthesize several concepts
that permit the desired DOFs. One of them could be the flexure that
is shown at the 12 o’clock position.

Corollary 2. The second corollary provides a necessary relationship
between the constraint lines and the lines within the freedom space –
rotational freedom lines and screw lines. The essence of this relation-
ship, as embodied in Eq. (2), is that:

(1) Rotational freedom lines and constraint lines must intersect in
order to be complementary.

(2) Screw lines and constraint lines do not need to intersect in order
to be complementary; they only need to satisfy Eq. (2).

It is important to note that the freedom space of a parallel flexure
system is the intersection, not the union, of the freedom spaces of
each individual flexible constraint within the system.

4. Examples that show how spaces correlate to flexure
system concepts

It is important to realize that FACT is not a means to enable
designers with little experience to become expert flexure design-
ers. FACT enables designers that understand principles and best
practices (content reviewed in Section 1.1) to more easily gener-
ate new flexure system concepts. For example, one must know the
different types of flexure elements (e.g. blades, wires, hinges, etc.),
understand their constraint characteristics (stiff directions, com-
pliant directions), how they are emulated by constraint lines (e.g.
three constraint lines emulate a blade flexure) and how to ascertain
redundancy when many flexure elements are combined to create a
system.

4.1. A flexure system with three independent permissible
rotations (Case 3, Type 4)

Here we examine a situation wherein a flexure system is
required to permit three independent rotations of an optic about its
focal point. These permissible freedoms correlate to Case 3, Type
4 in Appendix A. This freedom space contains all freedom lines
that intersect at a common point as shown in Fig. 9A. The comple-
mentary constraint space, shown in Fig. 9B, contains all lines that
intersect every rotation line. There are no permissible screws. Eq.

(1) tells us to select three non-redundant lines from the constraint
space in order to form a concept constraint topology that permits
three DOFs. The combination of the three constraint lines shown in
Fig. 9C permits three independent rotations. The three independent
rotation lines in Fig. 9C are the device’s freedom topology. Fig. 9D
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ig. 9. (A) The freedom space for three independent rotations and (B) the compleme
mbodiment of the concept is shown in (D). (For interpretation of the references to

hows a possible constraint topology embodied in a flexure system
esign.

For this flexure system, any three rotations about the focal point
ay occur simultaneously and independently. The rotation about

pecific axes may be obtained by using three actuators that are
laced at prescribed locations and orientations. The constraints for
his system shown in Fig. 9D may be modeled as wrenches [23,30]
nd described per Eq. (3) where Lwi is a vector that points from the
rigin to a location along its corresponding constraint line and fi is
vector that points along its corresponding constraint line’s axis.

W] =

⎡
⎢⎢⎢⎢⎣

f1 Lw1 × f1
f2 Lw2 × f2
...

...

fn Lwn × fn

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎣

−1 0
√

3 0 −
√

3 0

0 −1
√

3
√

3 0 0

1 0
√

3 0
√

3 0

⎤
⎥⎦ (3)

Standard mathematical techniques may be used to show that the
rench vectors that correspond to the constraints are mathemati-
ally independent. The expression of constraint lines as wrenches
nables designers to convert graphical flexure concepts and formu-
ate engineering models for detailed design and optimization. This
rocess of optimization may also be performed in conjunction with
EA techniques.

ig. 10. (A) The freedom space for a coupled DOF and (B) the constraint space that yield
imultaneous rotation and translation via (D) isometric and (E) side views. (For interpreta
ersion of the article.)
constraint space that yields (C) a viable concept topology of constraints. A possible
in this figure legend, the reader is referred to the web version of the article.)

4.2. A flexure system with one permissible screw (Case 5, Type 2)

Here we examine a situation wherein a stage must permit only
a coupled rotation and translation. This permissible freedom corre-
lates to Case 5, Type 2 (1 coupled DOF) in Appendix A. This freedom
topology is the same as the freedom space in this case. It contains
a single screw as shown in Fig. 10A. The complementary constraint
space is shown in Fig. 10B. This space is comprised of five con-
straint lines that satisfy Eq. (2) with respect to the desired screw
axis. Constraint 5 shows that an intersecting constraint would need
to intersect at 90◦ in order to satisfy Eq. (2).

Fig. 10C shows a flexure system that was created from the free-
dom topology in Fig. 10A. Constraints C1–C4 intersect and are per-
pendicular to the line of the freedom topology and thus these con-
straints permit every collinear screw with every pitch value along
that line. Constraint C5 supports a screw possessing only one finite
pitch value according to Eq. (2). The only screw that is permissible
is one that is complementary to all constraints, and therefore the
screw permitted by C5 is the only DOF. The coupled motions, ��z
and�z, of this flexure system design are shown in Fig. 10 D and E.
5. Moving beyond early-stage synthesis

This paper helps designers get over the first hurdle, that is to
generate a conceptual representation of the design. This generation

s (C) a viable topology of constraints. Images from FEA post-processing show the
tion of the references to color in this figure legend, the reader is referred to the web
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Fig. 11. The only type for Case 1. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)
66 J.B. Hopkins, M.L. Culpepper / Pre

hase is the front-end of the engineering process and its out-
ome (concepts) are readily ported into conventional refinement
tage—modeling/simulation/optimization methods for subsequent
tages. At this point, it is best if mathematical models take over from
isualization because they more easily identify the specific/detailed
utputs (dimensions, angles, etc.). The refinement stage involves
he assignment of relevant dimensions (beam lengths, widths, ori-
ntation angles, etc.) and material properties. This representation
ay then be ported to a simulation or calculation. For exam-

le, given the concept, dimensions and material properties, one
ould generate several ways to simulate behavior: (1) beam equa-
ions and stiffness matrices, (2) screw theory representation of
he constraints/stage, (3) pseudo-rigid body models, (4) FEA sim-
lations, etc. The engineering process then moves onto the next
tage—fabrication.

. Summary

In this paper we have introduced a method, supporting prin-
iples and geometric entities that may be used to visualize the
inematics of parallel flexure systems. A catalogue of matching
ntities was made available for use in representing the freedom
haracteristics (freedom spaces) and the constraint characteristics
constraint space) of parallel flexure systems. The Principle of Com-
lementary Topologies was introduced and then used to provide a
nique mapping between the freedom and constraint spaces. The
eans to treat coupled DOFs and redundant constraints were pro-

ided. At present, we are working on extending the capabilities so
hat other types of geometric shapes may be used to represent the
lastomechanics, dynamics (mode shapes and normalized natural
requencies), parasitic errors, and best actuator layout/connection
oints for parallel flexure systems. At present, we are working on
odifying the approach so that it captures large motion kinematics

nd serial systems.
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ppendix A. Sets of matching freedom and constraint
paces

This appendix provides graphical and textual descriptions of
6 types that represent matched sets of freedom and constraint
paces for parallel flexure systems. These types are divided among
ix cases, where the case number represents the number of non-
edundant constraints within the system and the type number
epresents a particular arrangement of those constraints. The free-
om and constraint spaces are denoted as FSij and CSij. Where “i”
epresents the case and “j” represents the type.

Any flexure from Case “C” that consists of “C” non-redundant
onstraints, maps to a freedom space that contains 6-C DOFs, i.e.
ndependent motions.

Types that are used in conventional flexure systems are marked
ith “�” and types with promise to provide new motions are
arked with “©”. Types that are marked with a “⊗” have yet to

e linked to any practical application; however they are provided

ere in the interest of completeness. In some types, the screw sets
re too complex to display in a useful graphical form and therefore
hey are denoted by an “S” that is inscribed within a green circle.

In Figs. 11–16, the constraint spaces are shown to the left of
he thick arrows and consist of blue constraint lines. The freedom
Fig. 12. Types of flexure system arrangements for Case 2. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
the article.)

spaces are shown to the right of the thick arrows. The spaces to
the immediate right of the thick arrows consist of red pure rota-
tional freedom lines and the spaces to the right of the addition signs
consist of green screw lines unless otherwise indicated in the figure.

A.1. Case 1: Flexure systems with one constraint

In this case, every flexure system contains one non-redundant
constraint and five DOFs.

A.1.1. Type 1
CS11: A single constraint line.
FS11: Any line, on every plane, that contains the constraint line

is a permissible rotation. Any direction that is perpendicular to the
constraint line is a permissible translation. Any line that satisfies
Eq. (2) is a permissible screw.

A.2. Case 2: Flexure systems with two non-redundant constraints

In this case, every flexure system contains two non-redundant
constraints and four DOFs.

A.2.1. Type 1
CS21: A pencil of constraint lines.
FS21: Every line within a sphere that intersects at the center of
the constraint pencil is a permissible rotation. Any line that lies
on the plane of the constraint pencil is a permissible rotation. A
permissible translation points in the direction normal to the plane
of the constraint pencil. Lines that are orthogonal to the constraint
lines are permissible screws.
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ig. 13. Types of flexure system arrangements for Case 3. (For interpretation of the
rticle.)

.2.2. Type 2
CS22: A P-plane of constraint lines.
FS22: Every line within a box that (a) is parallel to the constraint

ines or (b) lies on the plane of the constraint lines is a permissible
otation. Every line that is perpendicular to any constraint line is

permissible translation. Lines that exist within planes that are
arallel to the plane of constraint lines are permissible screws.

.2.3. Type 3
CS23: Two skew constraint lines.
FS23: Every line within any pencil that (a) is intersected at its

enter point by one of the constraint lines and (b) lies on a com-
on plane with the other constraint line is a permissible rotation.
permissible translation exists in a direction that is normal to the

arallel planes of the skew constraint lines. Permissible screws also
xist.

.3. Case 3: Flexure systems with three non-redundant
onstraints
In this case, every flexure system contains three non-redundant
onstraints and three DOFs.

.3.1. Type 1
CS31: An A-plane of constraint lines.
nces to color in this figure legend, the reader is referred to the web version of the

FS31: Every line that lies on the plane of constraints is a permis-
sible rotation. A permissible translation exists in a direction that is
normal to this plane.

A.3.2. Type 2
CS32: A pencil of constraint lines and a P-plane of constraint

lines that intersect. The lines within the P-plane are parallel to this
intersection line and this intersection line pierces the center of the
pencil.

FS32: Every line within a pencil that lies on the plane of parallel
constraint lines is a permissible rotation. Every line that is (a) par-
allel to the constraint lines on the P-plane and (b) lies on the plane
of the pencil of constraint lines is a permissible rotation. A permis-
sible translation exists in a direction that is normal to the plane of
the pencil of constraints. Permissible screws also exist.

A.3.3. Type 3
CS33: Two pencils of constraint lines that exist within intersect-

ing planes. The intersection line of the planes pierces the center of
each pencil.
FS33: Every line within two pencils that exist within the same
planes as the pencils of constraint lines is a permissible rotation.
The pencils of freedom lines share a common center point with a
corresponding pencil of constraint lines. The plane that contains
the pencil of freedom lines is orthogonal to the plane that contains
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ig. 14. Types of flexure system arrangements for Case 4. (For interpretation of the
rticle.)

corresponding pencil of constraint lines. Permissible screws also
xist.

.3.4. Type 4
CS34: A sphere of constraint lines that represents all lines that

ntersect a common point.
FS34: Every line within a sphere that intersects the sphere of

onstraint lines at its center point is a permissible rotation.

.3.5. Type 5
CS35: A box that contains every constraint line that is parallel to

specific direction.
FS35: Every line that is parallel to the constraint lines is a per-

issible rotation. Every line that is perpendicular to a constraint
ine points in the direction of a permissible translation.
.3.6. Type 6
CS36: Two P-planes of constraint lines. The parallel constraint

ines on one plane are skew with respect to the parallel constraint
ines on the other plane.
ences to color in this figure legend, the reader is referred to the web version of the

FS36: Every line that (a) lies on one of the planes and (b) is parallel
to the constraint lines on the other plane is a permissible rotation.
Other sets of parallel lines that exist within planes that are paral-
lel to the two planes of constraint lines are permissible screws. A
permissible translation points in the direction perpendicular to the
two planes.

A.3.7. Type 7
CS37: One of two rulings of lines that exist on the surface of a

hyperbolic paraboloid consists of constraint lines.
FS37: The other ruling of lines that exist on the surface of the

same hyperbolic paraboloid consists of pure rotations. The direction
that is orthogonal to every constraint line is a translation. Screws
also exist.

A.3.8. Type 8

CS38: One of two rulings of lines that exist on the surface of a

circular hyperboloid consists of constraint lines.
FS38: The other ruling of lines that exist on the surface of the

same circular hyperboloid consists of pure rotations. Screws also
exist.
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Fig. 15. Types of flexure system arrangements for Case 5. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
the article.)
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ig. 16. The only type for Case 6. (For interpretation of the references to color in this
gure legend, the reader is referred to the web version of the article.)

.3.9. Type 9
CS39: One of two rulings of lines that exist on the surface of an

lliptical hyperboloid consists of constraint lines.
FS39: The other ruling of lines that exist on the surface of the

ame elliptical hyperboloid consists of pure rotations. Screws also
xist.

.4. Case 4: Flexure systems with four non-redundant constraints

In this case, every flexure system contains four non-redundant
onstraints and two DOFs.

.4.1. Type 1
CS41: Every line within a sphere that intersects a common point

s a constraint line. Every line that lies on a plane that contains this
oint is also a constraint line.

FS41: Every line within a pencil that (a) lies on the plane of con-
traints and (b) intersects the constraint sphere at its center point
s a permissible rotation.

.4.2. Type 2
CS42: A box representing every constraint line that is parallel to

specific direction. Every line that lies on a plane that is parallel to,
r coincident with, the parallel constraint lines is also a constraint
ine.
FS42: Every line that is (a) parallel to the parallel constraint lines

nd (b) lies on the constraint plane is a permissible rotation. A per-
issible translation exists in a direction that is normal to the plane

f constraints.
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A.4.3. Type 3
CS43: Every line within any pencil that (a) is intersected at its

center point by a permissible pure rotation line and (b) lies on a
common plane with another permissible rotation line that is skew
to the first permissible rotation line is a constraint line.

FS43: Two skew lines within a cylindroid are permissible rota-
tions and every other line within the cylindroid is a permissible
screw.

A.4.4. Type 4
CS44: Every line within a pencil that is (a) perpendicular to a

permissible rotation line and (b) intersected at its center point by
the permissible rotation line, is a constraint line.

FS44: A permissible rotation line and permissible screw lines that
are coincident. A permissible translation exists in a direction that
is collinear with the rotation line and the screw lines.

A.4.5. Type 5
CS45: Every line within a pencil that is (a) not perpendicular to

a permissible rotation line and (b) intersected at its center point
by a permissible rotation line, is a constraint line. The pencils exist
within parallel planes.

FS45: A permissible rotation line that is (a) parallel to and (b) lies
on a plane of parallel permissible screws. A permissible translation
points in a direction that is normal to the planes that contain the
constraint pencils.

A.4.6. Type 6
CS46: A set of P-planes where each plane is parallel and contains

constraint lines. The directions of the parallel constraint lines on
each plane are different and are determined by Eq. (2).

FS46: A P-plane of permissible screws that all have the same
pitch values exists. This plane of permissible screws is coincident
with the plane of parallel constraints that are orthogonal to the
permissible screws. A permissible translation is normal to the plane
of permissible screws.

A.4.7. Type 7
CS47: Every line within certain pencils that rotate as they trans-

late along a permissible rotation line is a constraint line. Every line
on a plane that is parallel to that permissible rotation line is also
a constraint line. The rate that the pencils rotate as they translate
may be determined using Eq. (2) and the pitch value of a permis-
sible screw that is orthogonal to, and intersects, the permissible
rotation.

FS47: A cylindroid of permissible screws with a principal gener-
ator that is a permissible rotation.

A.4.8. Type 8
CS48: Every line from one of the two rulings of lines on the

surface of an infinite number of nested circular hyperboloids is a
constraint line.

FS48: A pencil of permissible screws with the same pitch value.

A.4.9. Type 9
CS49: Every line from one of the two rulings of lines on the

surface of an infinite number of nested elliptical hyperboloids is
a constraint line.

FS49: A cylindroid of permissible screws.
A.5. Case 5: Flexure systems with five non-redundant constraints

In this case, every flexure system contains five non-redundant
constraints and one DOF.
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.5.1. Type 1
CS51: Every line that lies on any plane that intersects a single

ermissible rotation line is a constraint line.
FS51: A single permissible rotation line.

.5.2. Type 2
CS52: Every line that is (a) tangent to the surface of a cylinder

hat possesses an axis that is a permissible screw and (b) satisfies
q. (2), is a constraint line.

FS52: A single permissible screw line.

.5.3. Type 3
CS53: Any line that lies within any plane that belongs to a set of

arallel A-planes is a constraint line.
FS53: A single permissible translation in a direction that is nor-

al to the parallel planes of constraint lines.

.6. Case 6: Flexure systems with six non-redundant constraints

This case has no DOFs, i.e. the six constraints exactly constrain
he rigid body. This case is listed here in the interest of complete-
ess.

.6.1. Type 1
CS61: Any line is a constraint line.
FS61: No lines exist as there are no permissible motions.
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