



# Innovation Benchmarking Survey: New Findings on University Industry Relations and a UK Cambridge Policy Perspective

Andy Cosh and Alan Hughes Centre for Business Research Judge Business School University of Cambridge



1st International Conference on Local Innovation Systems 13/12/05 © Andy Cosh, Alan Hughes and Richard Lester



## Acknowledgements



- Research funded by Cambridge MIT Institute (CMI) under the projects
  - 'Innovation Benchmarking' and 'Universities and Local Systems of Innovation'
  - Joint projects between Industrial Performance Center (IPC) at MIT and Centre for Business Research (CBR) at Cambridge





## 📆 UK Innovation: Causes for Concern 🎻



- Low and declining Business R&D by international standards
- Alleged absence of an entrepreneurial culture in universities
- Overemphasis on links with large as opposed to small firms
- Major regional disparity in innovation inputs and high tech activity



1st International Conference on Local Innovation Systems 13/12/05 © Andy Cosh, Alan Hughes and Richard Lester



## Solutions?



- Emphasise Developments in 'High Tech' **Producing Sectors**
- Emphasise Importance of Entrepreneurial Spin Outs from University Science Base
- Emphasise regional initiatives and integration of universities into regional innovation strategies
- Based on 'lessons' from the USA





## **Key Questions**



- What weight should be placed on high-tech producing sectors compared with high tech users e.g. retail or financial services?
- What weight should be placed on spin outs and university commercialization and small firm R&D compared to innovation and productivity performance in existing firms?
- Small Firms, Large Firms, or Systems as the targets of policy?
- Can we identify good models for regional cluster policies based around university industry links?



1st International Conference on Local Innovation Systems 13/12/05 © Andy Cosh, Alan Hughes and Richard Lester

## Complementary Approach to LIS Industry-Case Based Research

- Analysis of Key Sectors for Productivity Growth using experience of USA
- Analyse Significance of Start Ups versus performance change in Existing Firms for productivity growth
- Analyse Diversity of University Industry Links using Unique Large Scale Firm Survey Data for UK and USA





## **US Productivity Growth**



- Analyses by Nobel Laureate Robert Solow of MIT and McKinsey
- · US growth of real GDP per hour
  - 1947-1972 2.9%
  - **1972-1995 1.4%**
  - 1995-2000 2.5%
  - 2000-2003 2.6%
- · A return to trend?
- Turn round concentrated in 8 year period?

(www.cmi.cam.ac.uk/ncn/summit-2001-videos/solow/text.html, Farrell Baily and Rennes 'US Productivity after the Dot Com Bust' McKinsey and Company December 2005)



1st International Conference on Local Innovation Systems 13/12/05 © Andy Cosh, Alan Hughes and Richard Lester



## 1995-2000



- 1995-2000 v.1987-1995
  - 6 of 59 industries account for ALL of the acceleration in productivity growth
  - Net contribution of other 56 was zero
  - Top three
  - wholesaling
  - retailing
  - security and commodity broking





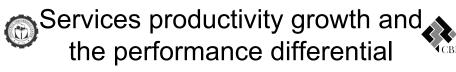
## The Second Three



- Electronic and electric equipment (semiconductors)
- Industrial machinery and equipment (computers)
- Telecomms
- Total contribution was one third of top three



1st International Conference on Local Innovation Systems 13/12/05 © Andy Cosh, Alan Hughes and Richard Lester




## 2000-2003



- 7 sectors account for 85% of ALL of the productivity growth 2000-2003
- Top Four
  - Retailing
  - Finance and Insurance
  - Computer and electronic products
  - Wholesaling
- Next 3
  - Admin and Support Services, Real Estate,
     Miscellaneous Professional and Scientific Services





- Difference in services productivity growth accounts for most of the difference in national productivity performance between the USA the UK and Europe in the past decade
- Massive impact of investment in IT in using sectors
- Creation of new business models of service delivery



1st International Conference on Local Innovation Systems 13/12/05 © Andy Cosh, Alan Hughes and Richard Lester



## Policy Implications for Local Innovation Systems



- Focus on High Tech Producing Sectors too restricted
- 'Catching up' in services complex, requires major organisational change at firm level, closer links between services high tech producing sectors and the science base





### Entrepreneurship, New Entry and **Productivity Growth**



- Productivity Growth
  - Productivity growth within firms
  - Reallocation of output between high and low productivity firms and impact of entry and exit
- Components vary across countries and industries



1st International Conference on Local Innovation Systems 13/12/05 © Andy Cosh, Alan Hughes and Richard Lester



### Labour Productivity Growth Components in EU and OECD



- The dominant component in lab prod. growth is withinfirms growth (e.g. >55-95% in eighties/nineties)
- Net effect of entry and exit accounts for 20%-40% of lab prod. growth
- Net effect is dominated by exit of low labour productivity firms
- Only 30-50% new entrants survive for 5 years
- US new entry component is large and negative and survival rate is lower BUT survivors grow faster

Source OECD The Sources of Economic Growth in the OECD Paris 2003





## New Entry 'entrepreneurial' Effects



- Entry effects bigger
  - Longer time periods (learning and output growth)
  - Information and communication technology sectors (rapid technical change and opportunities)
- It is not new entry per se but subsequent survival and growth that matters
- Very small proportion grow substantially



1st International Conference on Local Innovation Systems 13/12/05 © Andy Cosh, Alan Hughes and Richard Lester



## Local Innovation System Policy **Implications**



- Sector specific policies to allow for different competitive dynamics
- Address barriers to growth not just start up
- Look at small and large firms as part of a system that must be integrated to work effectively
- · Design policies to make the 'system' work



## Using New Survey Data on multi-faceted role of universities

#### **Educating People**

Training skilled undergraduates, graduates &

#### Providing public space

- Forming/accessing networks and stimulating social interaction
- Influencing the direction of search processes among users and suppliers of technology and fundamental researchers
  - -Meetings and conferences
  - -Hosting standard-setting forums
  - -Entrepreneurship centers
  - -Alumni networks
  - -Personnel exchanges (internships, faculty exchanges, etc.)
  - -Visiting committees
  - -Curriculum development committees

#### Increasing the stock of 'codified' useful knowledge

- · Publications
- Patents
- Prototypes

#### Problem-solving

- · Contract research
- · Cooperative research with industry
- · Technology licensing
- · Faculty consulting
- · Providing access to specialized instrumentation and equipment
- · Incubation services



1st International Conference on Local Innovation Systems 13/12/05 © Andy Cosh, Alan Hughes and Richard Lester



## 🕲 CBR/IPC Target Sample Sizes 🚸



- 4000 companies drawn equally from UK and USA
- 60% from manufacturing and 40% from business services
- 75% companies with 10-499 employees and 25% large companies
- 25% from hi-tech sectors and 75% from conventional
- Have very recently achieved a sample of 3500 companies, 2000 from the UK and 1500 from USA
- · Preliminary findings at this stage.





## CBR/IPC Survey Questions



- **General Characteristics** 
  - When and how formed, who is running the company and with what business objectives.
- Innovation and New Technology
  - Innovation input and output measures, sources of knowledge, collaboration, innovation expenditures, barriers to innovation, the role of universities.
- Principal Products and Competition
  - Competition and competitive advantage, business constraints, customer base, geographic orientation.
- Finance and Capital Expenditure
  - Accounting information, capex and funding sources.



1st International Conference on Local Innovation Systems 13/12/05 © Andy Cosh, Alan Hughes and Richard Lester

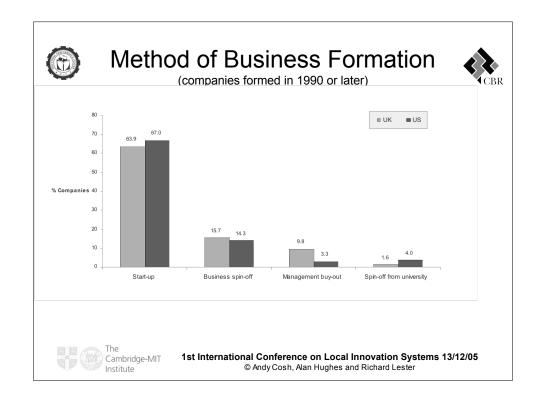


## Matched Sample of SMEs



- Matched pairs of companies drawn equally from UK and USA samples – 1900 companies in total each with fewer than 500 employees
- Matched by size and sector and by age of the business
- Focus today is on the answers to the questions relating to business-university links.






## **Business Formation**



- Over time wholly new business start-ups becoming proportionately less significant in both UK and US as new types of business formation develop.
- Wholly new start-ups still represent about two-thirds of new business formation in each country.
- Management buy-outs are more common in the UK.
- Business spin-offs do not differ in their relative importance between the two countries.
- University spin-offs are more than twice as frequent in the US, but still represent a small fraction of business births.





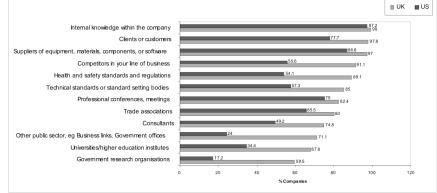


## Sources of Knowledge

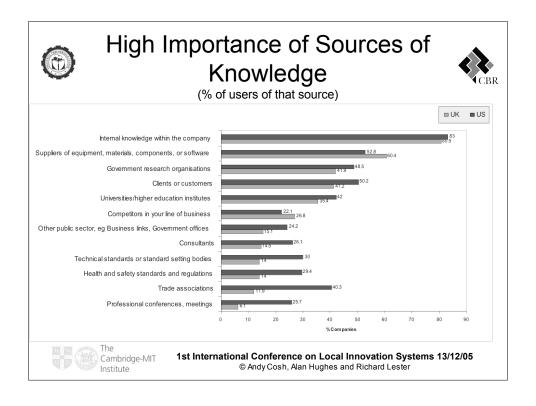


- Companies who had introduced any form of innovation within the previous 3 years were asked about their sources of knowledge or information.
- A higher proportion of UK companies claimed to have used all sources than did the US companies.
- In particular about two-thirds of UK companies, but only one-third of US companies used universities/HEIs.
- On the other hand US users of information regarded the information as more important in most cases, especially the public sector sources.
- About 10% of companies in both countries regarded universities/HEIs as important sources.




1st International Conference on Local Innovation Systems 13/12/05 © Andy Cosh, Alan Hughes and Richard Lester




## Use of Sources of Knowledge

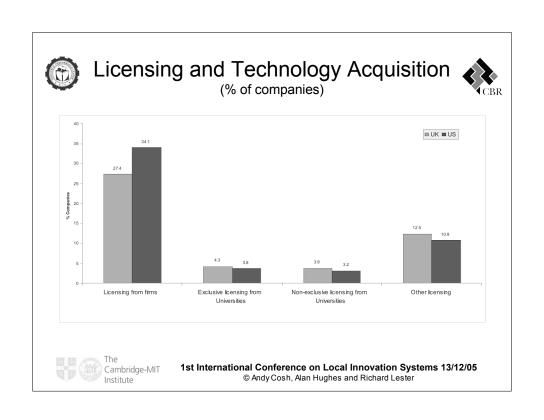


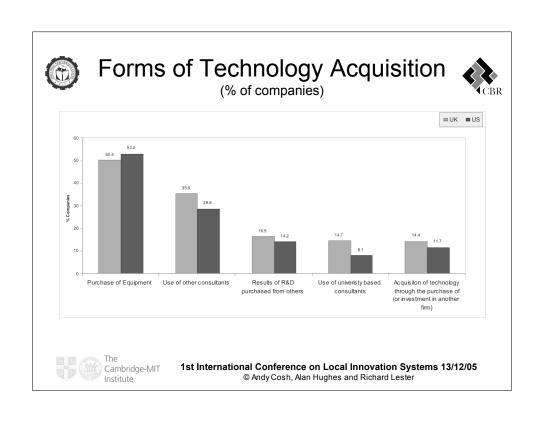
(% of companies)











## **Technology Acquisition**

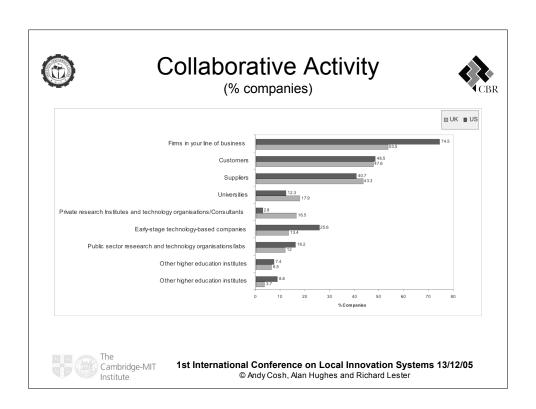


- Licensing from other firms is more prevalent amongst the US companies, but other licensing activity does not differ much.
- About 6% of companies in each country engage in licensing activities with universities, with the number of licences held ranging from one to sixty.
- UK companies appear to be more likely to use university based consultants to help them acquire new technologies than is the case in the US sample.
- No evidence from this preliminary analysis of a lack of engagement by the UK university sector.










## **Collaborative Activity**



- Companies in each country are equally likely to collaborate with another firm or organisation.
- A significantly higher proportion of the UK sample collaborate with universities.
- US companies more likely to collaborate with earlystage technology-based companies and with private research institutes and consultants.
- About half of our sample companies in each country collaborate with customers and with suppliers.

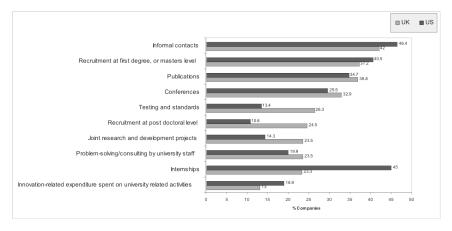




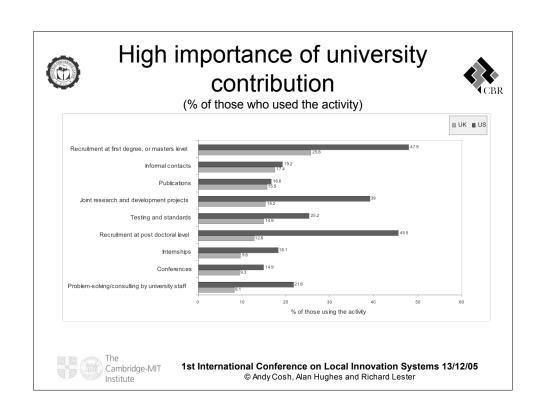


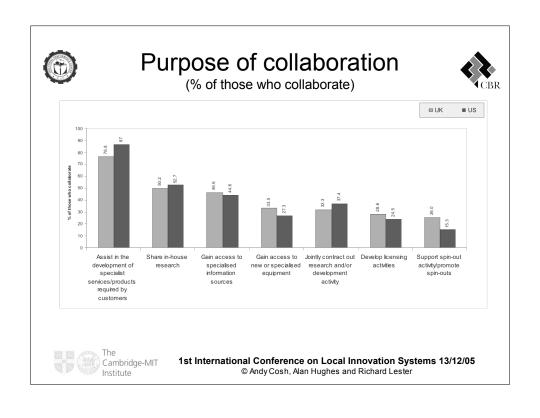
## The Contribution of Universities 🕀




- Companies are involved with universities across a range of activities.
- Recruitment of staff at post-doctoral level is more prevalent amongst the UK sample.
- A higher proportion of US companies make more use of internships.
- A higher proportion of US companies spend some of their innovation expenditure on university-related activities.
- A higher proportion of UK companies on the other hand are involved in joint R&D projects with universities.
- US companies value the contribution of universities more highly, particularly in relation to recruitment.

1st International Conference on Local Innovation Systems 13/12/05 Cambridge-MIT © Andy Cosh, Alan Hughes and Richard Lester





#### Contribution of Universities

(% of companies involved)











## **Reasons for Collaboration**



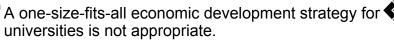
- Each of the reasons for collaboration was selected by between a quarter and three-quarters of those who collaborated in each country.
- The rankings within each country was very similar and the top three reasons were the same, but the US exhibits higher proportions in general.
- A higher proportion of those who collaborated with universities/HEIs selected each of the reasons, except for the joint purchase of materials or inputs.
- Collaboration with universities is multi-faceted with the development of specialised products/services and sharing in-house research most important.



1st International Conference on Local Innovation Systems 13/12/05 © Andy Cosh, Alan Hughes and Richard Lester



## Implications for LIS policy




- Keep University role in context
  - Importance of other sources of technology
- Multi-dimensional nature of University contributions
- Relative importance of 'conventional' university outputs
  - Graduates, publications, consultancy
- Relative quantitative unimportance of spin offs from university



#### **Overall Conclusions**







- All universities are not the same
- High tech use as important as high tech production
- Pay attention to services
- University economic development strategies should also be aligned with the particular development/innovation pathways of the industries in the region.
  - These change over time, differ across sectors
  - Hi tech spin-off activity is one part of a wider set of possible interactions
- It's a long game

