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Abstract—Hospital intensive care units (ICUs) care for severely
ill patients, many of whom require some form of organ support.
Clinicians in ICUs are often challenged with integrating large
volumes of continuously recorded physiological and clinical data
in order to diagnose and treat patients. In this work, we focus
on developing interpretable models for predicting unexpected
respiratory decompensation requiring intubation in ICU patients.
Predicting need for intubation could have important implications
for the patient and medical staff and potentially enable timely
interventions for improved patient outcome. Using data from
adult ICU patients from the Medical Information Mart for
Intensive Care (MIMIC)-III database, we developed gradient
boosting models for predicting intubation onset. In a cohort
of 12,470 patients, of whom 1,067 were intubated (8.55%), we
achieved an area under the receiver operating characteristic
curve (AUROC) of 0.89, with 95% confidence interval (CI) 0.87
- 0.91, when predicting intubation 3 hours ahead of time, a
significant increase (p<0.001) over the AUROC achieved using
several baselines, including logistic regression (0.81, 95% CI
0.78 - 0.84) and neural networks (0.80, 95% CI 0.77 - 0.83]).
Finally, we conducted feature importance analysis using gradient
boosting and derived useful insights in understanding the relative
importance of clinical vs. biological variables in predicting
impending respiratory decompensation in ICUs.

I. INTRODUCTION

Modern intensive care units (ICUs) provide continuous
monitoring of critically-ill patients, collecting large volumes
of clinical and physiological data, including vital-signs (heart
rate and blood pressure), and laboratory measurements (such
as chemistry, hematology, and arterial blood gases, etc).
Clinicians in the ICUs face the challenges of interpreting
large volumes of data for timely diagnosis and treatment of
patients, many of whom require organ support such as dialysis,
vasopressors, and mechanical ventilation (MV).

MYV requires intubation, which is the insertion of a tube
inside the trachea of a patient to support or replace respiration.
In an ICU setting, patients are mechanically ventilated for a
number of conditions such as pneumonia, pulmonary edema,
chest trauma, or reduced consciousness. MV maintains ade-
quate oxygenation, reduces the work of breathing, and could
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protect diaphragmatic muscle fibers from the initial inflamma-
tory insult [1]. Predicting the need for MV could potentially
improve patient prognostication and, at an organizational level,
allow better level of staffing since intubated patients in general
require a 1:1 nurse to patient ratio.

Assessing the need for intubation currently relies on the
expertise of medical staff, who interpret measurements from
a wide range of variables, including both clinical (e.g. vital
signs, urine output, and co-morbidities) and biological mea-
surements (i.e. requiring blood samples). Clinical variables can
be directly obtained by observing patients (e.g. vital signs).
Biological measurements, on the other hand, are obtained via
lab tests that require patient blood samples. Additionally, the
results take time to develop, limiting the speed with which
decisions based on biological measurements can be made;
yet in many areas, they are essential in patient diagnoses
and treatment. While clinicians use both clinical and biolog-
ical variables in their medical decision process, studies that
compare the relative importance of these variables have been
sparse.

In this work, we use machine learning techniques to predict
urgent need for intubation in intensive care units’ patients.
We aim to develop predictive models which are accurate, in-
terpretable, and robust in the presence of sparse data samples.
We trained gradient boosting models to predict MV onsets,
and used the average reduction in Gini impurity across all
trees to calculate feature importance in a multivariable setting.
We compared the predictive performance of our approach with
several baseline algorithms, including logistic regression, and
neural networks using data from 12,470 adult patients from
the Medical Information Mart for Intensive Care (MIMIC)-
III database [2]. We conducted feature importance analysis to
understand the relative importance of clinical vs. biological
variables in predicting impending respiratory decompensation
at different time points prior to the event onset.

II. RELATED WORK

Several recent works demonstrated the effectiveness of
using electronic health records for diagnosis and outcome



prediction [3], [4], [5], [6]. For example. Che et al., Lipton et
al., and Razavian et al. predicted patient mortality, diagnoses,
and disease onset respectively [4], [5], [6]. Prior work by
Moss et al. used multivariable logistic regression to identify
observable physiological signatures of respiratory failure that
lead to unplanned intubation [7]. Suresh et al. used neural
networks, specifically LSTM based models, to predict five dif-
ferent intervention tasks, including the onset of MV [8]. They
approximated the relative importance of individual features by
successively holding out individual features and evaluating the
impact on the performance of their model [8].

In contrast, our study used gradient boosting to develop
models for predicting unexpected intubation onset, and used
the average reduction in Gini impurity across all trees to cal-
culate feature importance. In addition, our choice of gradient
boosting models has the added advantage of being robust
against missing data.

Several previous studies on intubation prediction have been
conducted. Some of these studies focus specifically on pro-
longed intubation in rather specific populations. Sharma et al.
focused on predicting which patients would require intubation
exceeding 48 hours after having cardiac surgery [9]. Figueroa-
casas et al. identified three different regression models for
predicting within the first two days whether a patient would
require prolonged intubation [10]. A final study conducted by
Walgaard et al. focused on identifying which factors were most
predictive of prolonged MV in patients with Guillain-Barre
syndrome [11].

In addition, there are a number of studies that aim to
leverage machine learning techniques to help predict the
outcome of weaning a patient off of MV. Mueller et al. used
neural networks, support vector machines, Bayesian classifiers,
decision trees, and logistic regression to find the classifier best
suited for predicting the outcome of weaning an infant off MV
[12]. Kuo et al. used a similar neural network approach to
predict successful extubation, the removal of the inserted tube,
in medical ICU patients who were mechanically intubated
[13]. Prasad et al. built on that research and used reinforcement
learning to come up with a strategy for weaning patients off
of MV in the ICU [14].

In comparison, our paper focuses on a more general ICU
population. Instead of focusing on prolonged intubation, our
models predict whether a patient will need intubation regard-
less of the length of the treatment. Furthermore, preexisting
models used fixed window sizes to predict intubation events
[7], [8], whereas our research used varying data windows to
create different predictive models. This allowed us to explore
the effects of data window length on prediction accuracy and
feature importance.

III. METHODS

A. Dataset Development and Description

Data for this study was extracted from the Medical In-
formation Mart for Intensive Care (MIMIC)-III database [2].
MIMIC-III is a large, publicly available database containing
data for over 40,000 patients admitted to ICUs at the Beth

Israel Deaconess Medical Center (BIDMC) in Boston, MA,
USA. MIMIC-III contains high resolution data including time-
stamped vital signs, laboratory values, treatment indicators,
and billing codes.

1) Cohort: We used data from adult patients from MIMIC
Il in this study (age greater than 16 at admission). Next,
for patients with multiple hospital or ICU stays, we only
considered the first ICU stay for the first hospital stay. We
excluded patients admitted under surgical service because
surgical patients are frequently intubated due to anesthesia
rather than respiratory failure. Patients who were intubated on
admission were excluded, as were patients who were intubated
or discharged from the ICU within 27 hours from admission.
Finally, we removed patients who requested a withdrawal of
care within the first 27 hours as these patients will not be
intubated despite respiratory decompensation.

2) Data extraction: For each patient in our cohort, we
extracted data from a window of size W hours, located L
hours before a given event time. Specifically, we extracted
a number of features, (see Table I), from the data window
[te — W — L,t. — L], where t, represents the event time. For
intubated patients, the event time was the time of intubation.
For non-intubated patients, the event time was a random time
after the 27th hour during their ICU stay. For non-intubated
patients with a code status change (e.g. changed to do not
resuscitate or do not intubate), we ensured that the event
time was before the code status change. For all patients,
we evaluated and extracted features from data windows with
window sizes of W € {8,12, 16, 20,24} hours and lead times
of L € {3,6,9,12,15} hours.

Among these features were (i) vital signs, (ii) blood gas
measurements, and (iii) laboratory measurements. Additional
features included the total urine output over the data window
and the presence of two comorbidities (congestive heart failure
and pulmonary circulation disorders). In Table I, blood gas
measurements and laboratory measurements, which require the
use of a laboratory, are labeled as biological. The remaining
variables, including vital signs, and comorbidities are labeled
as clinical features as they are readily available and can be
easily measured by nurses and clinicians at the bedside.

B. Model Development and Evaluation

We built four types of models for predicting MV onsets: (1)
a linear model using logistic regression, (2) a neural network
model, using a simple two layer feed forward network with
ReLU activations, (3) a joint denoising autoencoder [15] and
neural network model (NN/DAE), and (4) gradient boosting.

Gradient boosting was implemented using the xgboost pack-
age v0.60, while logistic regression was implemented using
the scikit-learn package v0.18 [16], [17]. After grid searching
(using the training data) through [100, 200, 300, 400, 500]
trees, learning rate of [0.1, 0.2, 0.3] and a max depth of [3,
4, 5, 6], the following hyperparameters were used for gradient
boosting: 100 trees, learning rate of 0.1, and a max depth of
4.



TABLE I
LIST OF ALL THE FEATURES EXTRACTED FOR EACH PATIENT.
Variables

Feature type Feature extracted

Vital signs (clinical) First, Last Age, Gender, Heart rate, Systolic/Diastolic/Mean blood pressure, Respiratory rate,
Temperature, Peripheral Oxygen Saturation, Glasgow Coma Scale

Partial pressure of oxygen, Partial pressure of carbon dioxide, pH, Base excess,
Bicarbonate, Total carbon dioxide concentration, Hematocrit, Hemoglobin, Carboxy-
hemoglobin, Methemoglobin, Chloride, Calcium, Temperature, Potassium, Sodium,
Lactate, Anion gap, Albumin, Immature band forms, Bicarbonate, Bilirubin, Creatinine,
Chloride, Glucose, Hematocrit, Hemoglobin, Platelet, Potassium, Partial thromboplastin
time, International Normalized Ratio, Prothrombin time, Blood urea nitrogen, White

blood cell count

Blood gas, lab measurements (biological) | Last

Additional (clinical)
Comorbidities (clinical)

Sum
Yes/No

TABLE II
COHORT CHARACTERISTICS (MEDIAN AND IQR SHOWN).
No MV MV
Patient count 11403 1067
Age 65 (51, 78) 67 (55, 77)
Male 6255 (54.85%) 636 (59.61%)
Resp rate (breath/min) 19 (16, 22) 22 (17, 27)
WBC (103 /mm?) 9 (6.6, 12.1) 10.6 (7.8, 14.9)
Arterial pO2 (mmHg) 82.5 (63, 108) 109 (73, 296.25)
GCS 15 (15, 15) 15 (14, 15)
Heart Rate (bpm) 81 (70, 94) 90 (76, 105)
SpO2 (%) 97 (95, 98) 96 (94, 98)
Temperature (°C) 36.7 (36.3, 37.0) 36.7 (36.2, 37.2)
Platelet count (10°/L) 196 (142, 262) 183 (121.5, 264)
Creatinine (mg/dL) 1(0.7, 1.5) 1.1 (0.7, 1.7)
BUN (mg/dL) 19 (12, 33) 24 (16, 40)
Glucose (mg/dL) 114 (96, 141) 130 (108, 162.25)
Urine output (mL) 1755 (1090, 2680) | 1413.5 (834.5, 2178.5)

The NN/DAE model used a denoising autoencoder (DAE)
to learn a low-dimensional, non-linear embedding of the ob-
servations; this low-dimensional representation was then used
as input to a feed-forward neural net for outcome prediction.
The DAE consists of a two-layer architecture for encoding and
decoding respectively; ReLU activation was used for the first
layer, and a sigmoid activation was used for a 16-dimensional
middle-layer, with added Gaussian noise. In the NN/DAE
model, output from the 16-dimensional middle layer of the
DAE was fed into a feed-forward neural network, with a ReLU
layer, followed by a dropout and sigmoid layer for prediction.
Grid search was performed through [64, 128] hidden units for
the ReLU layers, and a dropout of [0.2, 0.4, 0.5]. A learning
rate of 0.001 was used.

All neural network based models were optimized using the
Adam optimizer [18]. The NN model was optimized over 200
epochs. After grid searching through [128, 256, 512] hidden
units per layer and a learning rate of [0.0001, 0.0002, 0.0003],
the following hyperparameters were used for the final neural
net model: 128 hidden units per layer and a learning rate of
0.0001. For logistic regression and neural nets, we imputed
missing data using the population average of the training set.
For gradient boosting, the algorithm automatically assigned
contributions to missing data within trees in order to improve
model fit.

We split the dataset into training (70%) and test sets

Urine output
Presence of congestive heart failure, Presence of pulmonary circulation disorders

(30%), holding out the test set to use only for the final
evaluation. We used 10-fold cross-validation on the training
set to train our models, and performed grid search for the best
hyperparameters for both gradient boosting and neural network
based models. For all our models, performance was evaluated
using the area under the receiver operator characteristic curve
(AUROC). Confidence intervals and comparisons for area
under the receiver operating curves (AUCs) for the test set
were based on the method described in [19]. Two-sided p
values less than 0.05 were considered statistically significant.
In tests that involve multiple comparisons, test of statistical
significance was based on p values after correcting for multiple
comparisons using FDR (false discovery rate) [20].

We used the average reduction in Gini impurity across all
trees from gradient boosting models as a measure of rela-
tive feature importance of clinical vs. biological variables in
predicting impending respiratory decompensation. To uncover
how the importance of an individual feature varied alongside
the lead size, we created a ranking of the top 10 features for
gradient boosting models with W = 24 as L varied from 3 to
15 hours.

IV. RESULTS
A. Dataset Description

Application of exclusion criteria resulted in 12,470 patients,
of whom 1,067 were intubated after the first day. Table II
compares patients with and without ventilation, and displays
for both groups the population median and interquartile range
(IQR) of several variables. For both groups, the data was drawn
from a window of 24 hours, (W = 24). For the MV group,
the data window was 3 hours prior to the onset (L = 3). For
biological variables, only the last measurement in the data
window was considered. The median age of patients was 65,
and 6,891 were male (55.3%). When comparing patients with
and without intubation, intubated patients had higher median
respiratory rate, white blood cell count, heart rate, and blood
urea nitrogen in addition to a lower platelet count and urine
output.

B. Performance as a Function of Lead Time and Observation
Window Size

Table III compares prediction performance of gradient
boosting with several baseline models at different window



TABLE III
(ALL FEATURES) PERFORMANCE AS DETERMINED BY AUROC (AND 95%CI) FOR VARYING WINDOW SIZES (W) AND LEAD TIMES (L). THE P-VALUES
FOR COMPARISONS BETWEEN THE LOGISTIC REGRESSION AND THE GRADIENT BOOSTING MODELS ARE ALSO LISTED. SIGNIFICANTLY DIFFERENT
LOGISTIC REGRESSION AND GRADIENT BOOSTING MODELS ARE MARKED WITH A *.

Data set H Neural Net Neural Net/Autoencoder  Logistic Regression  Gradient Boosting p-value
W=24,L=3 0.77 (0.74, 0.80) 0.77 (0.74, 0.80) 0.81* (0.79, 0.84) 0.87* (0.84, 0.90)  <0.0001
W=8L=3 0.80 (0.77, 0.83) 0.78 (0.75, 0.81) 0.81%* (0.78, 0.84) 0.89* (0.87, 0.91)  <0.0001
W =24, L =15 0.67 (0.64, 0.71) 0.70 (0.66, 0.73) 0.72 (0.69, 0.75) 0.74 (0.71, 0.78) 0.0919
W =8 L=15 0.65 (0.62, 0.69) 0.69 (0.66, 0.72) 0.71 (0.67, 0.74) 0.72 (0.68, 0.75) 0.3911
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Fig. 1. (All features) Performance of the models as the lead time varied from 3 to 15 hours. Models that are starred (*) are significantly different than the
gradient boosting models using the same window size and lead time. Data window size was fixed at 24 hours (Panel a) and 8 hours (Panel b) respectively.

TABLE IV
(ALL FEATURES) PERFORMANCE OF GRADIENT BOOSTING MODELS
MEASURED BY SENSITIVITY AND SPECIFICITY FOR VARYING WINDOW
SIZES (W) AND LEAD TIMES (L).

Data set || Sensitivity  Specificity
W =24,L =3 0.782 0.794
W=8 L=3 0.791 0.809
W =24, L=15 0.707 0.694
W =8 L=15 0.723 0.604

sizes and lead times in terms of their AUROCs and 95%
CIs. The sensitivity and specificity of the gradient boosting
models are presented in Table IV. Gradient boosting had the
highest AUROC of 0.89 (0.87, 0.91) when W =8 and L = 3
hours, significantly outperforming logistic regression when the
lead time was 3 hours. When the lead time was increased
to 15 hours (i.e. prediction was performed further away
from the event), the performance for all models decreased
and there were no statistically significant differences between
gradient boosting and logistic regression. Gradient boosting
outperformed neural networks based approaches (p-values <
0.0001) in all window and lead time settings presented in Table
III.

Figure la and b compared the predictive performance of
gradient boosting, logistic regression and neural networks
models as a function of the lead time. Figures 1a and 1b plot
the performance of the models when the window size was fixed
at 24 and 8 hours respectively as the lead time varied from
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Fig. 2. (All features) Performance of gradient boosting and logistic regression
models as the window size varied from 8 hours to 24 hours. The lead time
was fixed to 3 hours. AUROCS that are starred indicate significant differences
with the gradient boosting model using the same window size.

3 to 15 hours (i.e. as the prediction was performed further
from the time of the intubation event). Performance of all
three models decreased as the lead time increased. In Figure
la and 1b, logistic regression and neural network models that
were significantly different than gradient boosting models after
adjusting for FDR were marked with a *.

Figure 2 plots the performance of models when using a
fixed lead time of 3 hours, while the observation window
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Fig. 3. ROC curves of gradient boosting when using all the features, when using only clinical features, and when using only biological features. The plotted
points are the respective points closest to having a true positive rate of 1 and a false negative rate of 0. Two different data windows were considered: W = 24,

L = 3 (Panel a), W = 24, L = 15 (Panel b).
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Fig. 4. Performance of gradient boosting when using all the features vs. when using clinical or biological only features. AUROCS that are starred are
significantly different than the gradient boosting model with all the features. Two different data windows were considered: window size was fixed at 24 hours

(Panel a) and lead time was fixed at 3 hours (Panel b).

TABLE V
PERFORMANCE OF GRADIENT BOOSTING MODELS AS DETERMINED BY
AUROC (AND 95%CI) FOR VARYING WINDOW SIZES (W) AND LEAD
TIMES (L) USING CLINICAL ONLY VS. BIOLOGICAL ONLY
MEASUREMENTS. P-VALUES ARE FROM COMPARING THE TWO MODELS.

Data set || Clinical Only Biological Only p-value
W=24,L =3 0.72 (0.69, 0.76)  0.83 (0.81, 0.86)  <0.0001
W =8, L=3 0.77 (0.74, 0.80)  0.82 (0.79, 0.84) 0.0205
W =24, L =15 || 0.69 (0.66, 0.73)  0.69 (0.66, 0.72)  0.8785
W =8 L=15 0.70 (0.67, 0.73)  0.63 (0.60, 0.67) <0.01

size varied from 8 to 24 hours. For both logistic regression
and gradient boosting, the models did not have significantly
different performance across all window sizes (individual
comparisons, p > 0.05).

C. Comparing Importance of Clinical vs. Biological Variables

We compared the performance of models using biological
vs. clinical features to approximate how much of the overall
gradient boosting model’s performance could be attributed to
each of these subsets individually. Figure 3a and 3b compare
the ROC curves for gradient boosting models which consider
all the features vs. clinical or biological figures only. Per-
formance of the gradient boosting models when considering
either clinical or biological only features for W = 24 or 8
hours and L = 3 or 15 hours are shown in Table V. For the
clinical only models, the AUROCs dropped drastically, from
0.77 to 0.70, when the lead time was varied from 3 to 15 hours
(W = 8). However, when we increased the window size to
24 hours, as Figure 4a shows, the AUROC stayed relatively
constant as we vary the lead time.

However, for the biological only models, the AUROCSs



dropped drastically when varying lead times from 3 to 15
hours for both a fixed window size of 8 hours, from 0.82
to 0.63, and a fixed window size of 24 hours, from 0.83 to
0.69. When comparing the clinical only models to the biolog-
ical only models, the clinical only models outperformed the
biological only models when the lead time is large (L = 15),
despite under-performing when the lead time is small (L = 3).

In Figure 4b, we note that when we fixed the lead time to
3 hours, the performance gap between biological vs. clinical
only models increased as the data window increased. This is
potentially because as we increased the data window of clinical
only models, the first measurements become less representa-
tive of the patients’ state prior to intubation, thus bringing
down the performance. For the biological only models, as
the data windows increased, the performance also increased,
potentially due to the fact that more measurements were
included in the analysis with a large observation window size.

Unlike the models that considered other subsets of features,
the gradient boosting models that only used clinical features
did not have changes in performance when lead times change.
The flat slope of the gradient boosting AUROC curve for
clinical only gradient boosting models as lead time changes
in Figure 4a implies that patient state using clinical variables
is a fairly consistent way to determine whether a patient will
need intubation.

D. Feature Importance Analysis
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Fig. 5. (All features) Top 15 most important features in the gradient boosting
model with a window size of 24 and a lead time of 3 as ranked by the average
reduction in Gini impurity across all trees for a given feature.

Figure 5 shows the most important features from gradient
boosting models created using all the features. Interestingly,
five of the top seven most important features are clinical ones.
This is surprising because results from the previous section
indicated that the biological only models outperformed the
clinical only models for all window sizes with a fixed lead time
of 3 hours. The superior performance from the biological only
models might be due to the fact that there were more biological
features than clinical ones. As a result, although the biolog-
ical features overall achieved higher predictive performance,
analysis on relative importance of individual features revealed

that several clinical features played a more important role in
predicting respiratory decompensation.

We present the most important features of the clinical and
biological only models in Figure 6a and 6b respectively (W =
24 hours, L = 3). Note that many of the top features were
non-respiratory features, such as urine output, age, heart rate,
temperature, white blood count, platelet count.

A ranking of the most important features across different
lead times but a fixed window size of 24 hours for gradient
boosting models using all the features is shown in Figure
7. The top 10 features were chosen independently for each
model, and the resultant union of these features (16 in total)
is presented. Some features such as last respiratory rate, and
urine output became more important as we moved closer to
the intubation event. Some features, such as last platelet count
and first heart rate became less important the closer we were
to the intubation event. Finally, some features such as age and
last bilirubin had a relatively consistent importance as lead
times decreased (i.e. closer to intubation). While we observed
interesting trends in feature importance, we caution against
drawing hard conclusions based on the relative change, as
feature importance from different gradient boosting models
may not be directly comparable.

V. DISCUSSION & CONCLUSIONS

In this paper, we show that it is possible to develop
an automated early warning system to alert clinicians of
patients with impending respiratory failure, while providing
interpretable results to elucidate the importance of individual
features prior to the events. We demonstrated that gradient
boosting predictive models can be the basis of such a system
as it achieved a reasonable predictive performance while
maintaining interpretability.

While we have demonstrated that gradient boosting per-
formed better than several baseline models, including logistic
regression and neural networks, when a simple missing data
imputation technique was used for these baselines, we note
that several recent techniques have been proposed to explicitly
encode features from missing data to improve prediction per-
formance [4], [21]. We leave comparisons with more advanced
imputation or missing-data feature engineering techniques for
future work.

We showed that the task of predicting MV onsets becomes
drastically more difficult the farther away a patient is from the
intubation event and that clinical and non-respiratory features
are important during prediction. This has important implica-
tions to enable timely interventions, for patient prognostica-
tion and staffing needs. When observing the most important
features for the gradient boosting model that considers all
features, we noted a large prevalence of clinical features.
This is an encouraging insight because clinical features are
readily available at the bedside. In particular, being able to
more heavily weight clinical features enables a more timely
intubation decision-making process as clinical features are
more readily available at the bedside. When examining the
specific clinical and biological features that make up the most
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Fig. 6. Top 15 most important features in the gradient boosting model with a window size of 24 and a lead time of 3 as ranked by the average reduction in
Gini impurity across all trees for a given feature. Only clinical features were considered in Panel a and only biological features were considered in Panel b.
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Fig. 7. (All features) Change in the top 10 most important features for gradient boosting models with a constant window size (W = 24) over different lead
times (L = {3,6,9,12,15}). Blue feature labels are clinical and red feature labels are biological. Feature importance is determined by average reduction in

Gini impurity across all trees for a given feature.

important features lists, we note that many of the top features
are non-respiratory. This is shown explicitly by Figures 6a
and 6b, which show the most important features of a gradient
boosting model that considers only clinical features and one
that considers only biological features respectively. For exam-
ple, Figure 6a shows that urine output is more important and
mean blood pressure and heart rate are almost as important
as respiratory rate when predicting the need for intubation.
This may reflect situations such as renal failure or cardiac
failure leading to fluid accumulation and pulmonary edema, a
condition that may require MV.

We note the following limitations to our models and
methodology. There is the issue of 1) missing information
about the true clinical states. There are many indications
for intubation and MV, some of which are not or poorly

translated in the numerical data, or not easily retrievable (for
example present only in the clinicians’ notes): airway obstruc-
tion, severe agitation or delirium, pain control, complication
requiring surgery, etc. Another issue is 2) causality leakage,
which is especially possible if the lead time is short. For
example, if a patient is sedated to be intubated, the GCS
will drop a few minutes before the intubation. Predicting the
need for intubation based on recent GCS could represent a
case of causality leakage. Finally, there is the issue of 3)
selected windows being based off of intubation time - which
is acausal as it assumes we know when a patient is intubated
- nevertheless it allows us to infer about factors related to
intubation. Therefore, practical applications of the models
described in this paper in a clinical setting would require a
new framework for evaluation. These are just some factors that



can negatively affect the performance and generalizability of
our models.

Finally, while early onset of MV could be beneficial, MV
can be a double-edged sword with potential serious adverse
effects such as hemodynamic impairment, ventilation induced
injury and ventilator acquired pneumonia. To date, there is no
clinical or experimental data defining neither optimal timing
nor best criteria for initiation of MV. As there is no scientific
rationale, there is a great variability in actual practice which
is mainly based on clinicians convictions and experience. A
recent 2016 global survey conducted by de Montmollin et al.
[22] reported a lack of consensus in initiation strategies for
MYV. For some conditions such as respiratory failure, there was
a general consensus that patients should be intubated, but for
other conditions such as cardiovascular failure, no overwhelm-
ing consensus was reached. Ebihara et al. showed that MV has
the positive benefit of protecting against diaphragm damage
in septic patients [1]. However, in the context of critical care
patients, Vassilakopoulos et al. conducted research supporting
the contrary statement that MV can actually induce diaphragm
damage [23]. Thus, an important area of future research is to
determine the optimal initiation strategies for MV.
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