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Abstract— Modern clinical databases include time series of
vital signs, which are often recorded continuously during a
hospital stay. Over several days, these recordings may yield
many thousands of samples. In this work, we explore the
feasibility of characterizing the “state of health” of a patient
using the physiological dynamics inferred from these time
series. The ultimate objective is to assist clinicians in allocating
resources to high-risk patients. We hypothesize that “similar”
patients exhibit similar dynamics and the properties and dura-
tion of these states are indicative of health and disease. We use
Bayesian nonparametric machine learning methods to discover
shared dynamics in patients’ blood pressure (BP) time series.
Each such “dynamic” captures a distinct pattern of evolution of
BP and is possibly recurrent within the same time series and
shared across multiple patients. Next, we examine the utility
of this low-dimensional representation of BP time series for
predicting mortality in patients. Our results are based on an
intensive care unit (ICU) cohort of 480 patients (with 16%
mortality) and indicate that the dynamics of time series of vital
signs can be an independent useful predictor of outcome in
ICU.

I. INTRODUCTION

Intensive care units (ICUs) are among the most important

components of the health care system. With the ubiquity

of inexpensive high-capacity storage and recording devices,

it is becoming possible to continuously gather patient vital

signs, such as heart rate and blood pressure [1]. Despite

this continuous feed of data, the commonly used acuity

scores, such as APACHE and SAPS, are based on snap-shot

observations of the patient [2], [3], [4]. However, physiologic

systems generate complex dynamics in their output signals

that reflect the state of the underlying control systems [6],

[7], [8], [9]. Discovering and understanding these dynamical

behaviors are of both fundamental and clinical importance

[5]. The objective of the current investigation is to consider

an approach to the analysis of ICU bed-side monitoring data

that is driven by dynamical considerations. In particular, we

seek to determine whether the dynamic evolution of blood

pressure (BP) contains usefully-predictive information for

survival and mortality, beyond that contained in the SAPS-I

[2] score alone.
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Time series of BP can exhibit oscillations on the order

of seconds (e.g., due to the baroreflex control mechanism,

variations in sympathovagal balance, etc.) to hours (e.g., as

a consequence of fever, blood loss, myocardial infarction,

etc.). While clinicians often use snap-shot measurements of

BP to diagnose abnormally high or low values (typically

in comparison to population-level averages), tracking the

patient-specific fluctuations in BP may provide extra prog-

nostic value. Moreover, one may reasonably assume that

the dynamic patterns in BP are driven by responses of the

underlying control systems to external (e.g., drugs) and in-

ternal (e.g., disease) perturbations. It would therefore follow

that patients who are subjected to similar perturbations will

exhibit similar dynamics.

In this work, we utilize a Bayesian nonparametric tech-

nique [10] to discover shared dynamical patterns within a

patient cohort. An inherent assumption of the technique is

that individual patients can take on a variable number of

dynamical patterns, some of which are specific to the patient

and some of which are shared across the population.

II. METHODOLOGY

We assume that at the population level patients share

a number of dynamical behaviors (or modes). We learn

these shared temporal structures in the BP time series of

480 ICU patients using a Bayesian nonparametric learning

approach. The proportion of time an individual spends within

each dynamic mode depends on his/her underlying “state of

health”, and thus is predictive of the eventual mortality and

survival outcome.

A. Patient Selection and Data Preparation

The MIMIC II waveform database (version 2) [1], avail-

able via PhysioNet [11], [12], includes approximately 4,000

sets of high resolution physiological waveforms with associ-

ated minute-by-minute vital sign trends. This study includes

adult patients from the MIMIC II waveform database (ver-

sion 2) with clinical information, and with at least 8 hours

of continuous minute-by-minute invasive BP trends during

the first 24 hours of their ICU stays. Patients with more

than 15% of missing or invalid (i.e., outside physiologically

plausible bounds of 40 to 250 mmHg for systolic pressures)

BP samples were excluded. For the rest of the subjects, linear

interpolation was used to fill in the missing values.

Invasive BP measurements were extracted for 480 adult

patients (meeting the above criteria) from the first 24 hours

of their ICU stays. The data contain approximately 9,700

hours of minute-by-minute systolic BP measurements (20.2
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hours per patient on average). 16% of patients in this cohort

died before hospital discharge.

B. Bayesian nonparametric multiple time series modeling

Our approach to discovery of shared dynamics among

patients is based on the beta process autoregressive HMM

(BP-AR-HMM) technique of Fox et al. [10]. Briefly, the

technique assumes that there exists a library of possible

dynamic behaviors (i.e., a set of AR coefficients and the

associated noise covariance) among a set of related time

series, and each time series can take on a subset of these

behaviors. The beta process provides a systematic Bayesian

framework for encouraging dynamics to be shared across the

patient cohort.

We modeled each BP time series as a switching AR(6)

process. We use the same notations as in [10] to de-

scribe our parameter settings. Following [10], we used a

Gamma(1,1) hyperprior on γ, which specifies the concen-

tration parameter for the symmetric Dirichlet prior on each

time series’ Markov switching dynamics; the κ hyperpa-

rameter determines the preference for self-transition and it

was given a Gamma(100,1) prior. The hyperparameter α,

which specifies the distribution over the total number of

modes, was given a Gamma(0.1,1) prior. For Markov chain

Monte Carlo (MCMC) inference with Metropolis–Hastings

(following [10]), the gamma proposals used σ2

γ
=1 and σ2

κ
=

50. We ran five different initializations of MCMC for 1000

iterations, and evaluated each model using the output from

the 1000th iteration.

C. Evaluation Methods and Statistical Analysis

For each patient, we constructed a feature vector based on

the top ten most common (most number of samples) dynamic

modes discovered by the BP-AR-HMM. Specifically, the

proportion of time a patient spent in each of the top ten

dynamic modes (“mode proportions” from now on) was

used to construct a feature vector for predicting a patient’s

underlying “state of health”.

Univariate and multivariate logistical regressions were

performed to find correlations between mode proportions

and hospital mortality. For multivariate analysis, SAPS-I and

nine co-morbidity variables (presence of congestive heart

failure, cardiac arrhythmia, valvular disease, liver disease,

lymphoma, metastatic cancer, obesity, weight loss, and fluid

electrolyte) were added as potential confounding factors. For

the final multivariate logistic regression model, a forward

search algorithm was performed to find the optimal model

in which all contained variables were statistically significant

predictors of mortality (i.e., with a p value less the 0.05).

One patient whose co-morbidity variables could not be

determined was excluded from the multivariate analysis.

For all logistic regression analysis, odds ratios for the

mode proportion variables were per 10% increase in mode

proportions. The overall area under the receiver operating

characteristic curve (AUC) of the univariate/multivariate

model, and the Hosmer-Lemeshow p value (HL p value) were

reported to assess the model fit.

Hospital mortality prediction performance was evaluated

as the average AUC from 10 different random initializations

of 10-fold cross validations using mode proportions as well

as SAPS-I as inputs to multivariate logistic regression. We

report the sensitivity, specificity, positive predictive value

(PPV), and negative predictive value (NPV) corresponding to

the point on the receiver operating characteristic (ROC) curve

that had the minimum distance to the maximum sensitivity

and specificity.

III. RESULTS

We ran the BP-AR-HMM 5 times with different initial-

izations for 1000 iterations as described in the Methodology

section. The average hospital mortality prediction perfor-

mance (10-fold cross-validated AUC averaged across 10

different random test/training set configurations) from these

five different runs of BP-AR-HMM ranged from 0.63 (±

0.01) to 0.68 (± 0.02) using mode proportions alone. In

the following, we report the performance from the model

that generated the median performance (AUC 0.65 ± 0.01)

using mode proportions alone. The total number of modes

generated by this model was 22.

A. Univariate Analysis

Table I summarizes the results of univariate analysis using

each of the mode proportion as a predictor variable for

hospital mortality; univariate analysis using SAPS-I was

presented as a comparison. Within our patient cohort, the

SAPS-I score yielded an AUC of 0.66. Notably, one of the

modes (mode 2) single handedly performed equally as well

as the SAPS-I score. Moreover, five of the modes had a

significant predictive power (p < 0.05), two of which had

a greater than one odds ratio and therefore were associated

with an increased chance of mortality (”unhealthy modes”).

The remaining three had a smaller than one odds ratio and

thus were associated with survival (”healthy modes”).

Mode P-Val Odds Ratio (95% CI) AUC

SAPS-1 0.0000 1.15 (1.09 1.22) 0.66

2 0.0000 1.45 (1.25 1.69) 0.66

9 0.0001 1.41 (1.19 1.68) 0.64

4 0.0031 0.63 (0.47 0.86) 0.61

10 0.0066 0.43 (0.23 0.79) 0.60

6 0.0411 0.66 (0.44 0.98) 0.59

3 0.0781 0.78 (0.59 1.03) 0.56

7 0.1019 0.74 (0.52 1.06) 0.59

1 0.1792 0.88 (0.73 1.06) 0.54

8 0.4650 1.14 (0.80 1.63) 0.51

5 0.9372 1.01 (0.74 1.38) 0.50

TABLE I

UNIVARIATE ANALYSIS.

B. Multivariate Analysis

We first performed multivariate analysis on the SAPS-I

score and the co-morbidities described in section II C, which

yielded an AUC of 0.75 (HL Pvalue = 0.18). Next, we built

a separate multivariate logistic regression model for each of

5940



the top ten dynamic modes adjusted for SAPS-I and co-

morbidities; for each mode, we report the adjusted p value,

odds ratios (OR, with 95% confidence interval). The results

presented in Table II indicate that even after adjustment

for SAPS-I score and co-morbidities, three of the modes

(modes 2, 10, and 9) were significant predictors of patients’

outcome. In particular, increased proportions of modes 2 and

9 were associated with higher hospital mortality. Increased

proportion of mode 10 was associated with a decreased risk

of hospital mortality.

Mode P-Val Odds Ratio (95% CI) AUC HL P-val

2 0.0002 1.38 (1.16 1.65) 0.78 0.88

10 0.0021 0.34 (0.17 0.68) 0.77 0.82

9 0.0163 1.28 (1.05 1.56) 0.76 0.40

4 0.0625 0.74 (0.53 1.02) 0.76 0.27

3 0.1551 0.80 (0.59 1.09) 0.75 0.37

6 0.2332 0.77 (0.50 1.18) 0.75 0.23

7 0.3001 0.81 (0.54 1.21) 0.75 0.03

8 0.4425 1.17 (0.79 1.74) 0.74 0.07

5 0.7199 0.94 (0.66 1.33) 0.74 0.16

1 0.7407 0.96 (0.78 1.20) 0.75 0.08

TABLE II

MULTIVARIATE ANALYSIS. EACH ROW IS A SEPARATE MULTIVARIATE

MODEL.

P-Val Odds Ratio (95% CI)

SAPS-I 0.0000 1.17 (1.10 1.24)
Mode 2 0.0004 1.35 (1.14 1.60)

Lymphoma 0.0006 12.86 (3.00 55.11)
Mode 10 0.0040 0.37 (0.19 0.73)

TABLE III

FINAL MULTIVARIATE MODEL. AUC=0.769, HL PVAL=0.76.

Table III summarizes the variables selected by the forward

search technique for inclusion in our final multivariate logis-

tic regression model. Two mode proportion variables were

included in the final model, as were SAPS-I and the presence

of lymphoma. The AUC of the final multivariate model was

0.769 (with Hosmer-Lemeshow p value of 0.76, indicating a

good model fit).

Application of ten-fold cross-validation demonstrated that

the performance of the mode proportions is similar to that of

SAPS-I, and furthermore combining features from the two

predictors results in an improved prediction power (see Table

IV). Notably, the combined predictor have higher specificity

and PPV (i.e., have a lower false alarm rate) than SAPS-I.

SAPS-I Mode Prop Mode Prop + SAPS-I

Sensitivity 0.64 (± 0.04 ) 0.59 (± 0.05 ) 0.63 (± 0.02)

Specificity 0.57 (± 0.04 ) 0.70 (± 0.06 ) 0.76 (± 0.03 )

PPV 0.22 (± 0.01 ) 0.28 (± 0.02) 0.34 (± 0.02 )

NPV 0.89 (± 0.01 ) 0.90 (± 0.01 ) 0.91 (± 0.00)

AUC 0.65 (± 0.00) 0.65 (± 0.01) 0.73 (± 0.01)

TABLE IV

PREDICTION PERFORMANCE FOR HOSPITAL MORTALITY.

C. Identifying High-Risk Patient Subgroups Using Mode

Proportions

We applied hierarchical clustering to categorize patients

according to the proportion of time they spent within each of

the top ten modes. As shown in Fig. 1, six distinct subgroups

were discovered. Table V describes mortality risk for each

subgroup with respect to the overall population.

We sorted the patients based on the proportions of time

they spent in the top “healthiest” (mode 4) and “unhealthiest”

(mode 2) dynamics (based on univariate analysis). Figures 2

and 3 show example BP time series and mode assignments

(color-coded) for three patients with the highest proportions

of “unhealthy” and “healthy” modes respectively. One patient

(patient 871) with high proportions of the unhealthy mode in

Fig. 2 expired at the end of the hospital stay. Interestingly,

it appears that the “healthy” mode (e.g., in green) exhibits

higher variability than the “unhealthy” mode (e.g., in blue).

modes
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Fig. 1. Hierarchical clustering based on mode proportions. The horizontal
axis represents the top 10 modes, and the vertical axis includes the 6
discovered subgroups. The color intensity at the intersection of a group
and a mode is indicative of the proportion of time patients spent within the
given mode: Light Red (very often), Dark Red (often), Black (sometime),
Dark Green (rarely), Light Green (almost never).

Group N Mortality

Group A 74 15%
Group B 15 7%
Group C 75 9%
Group D 148 7%
Group E1 116 27%
Group E2 52 35%

TABLE V

HOSPITAL MORTALITY OF SUBGROUPS DEFINED BASED ON

HIERARCHICAL CLUSTERING ON INFERRED MODE PROPORTIONS.

IV. DISCUSSION AND CONCLUSIONS

The goal of current work was to determine whether the

dynamics of time series when combined with traditional

indices of patient acuity scores can provide a more accurate

assessment of patient survival/mortality (or more generally
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Fig. 2. Example BP time series (sample color coded by their mode
assignment) from three patients with high proportions of “unhealthy” modes.
Patient 871 expired at the end of the hospital stay. Legend for selected
modes: Mode 1 (Purple), Mode 2 (Blue), Mode 4 (Green), Mode 5 (Red),
Mode 6 (Light Green), Mode 9 (Magenta), Mode 10 (Cyan).
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Fig. 3. Example BP time series (sample color coded by their mode
assignment) from patients with high proportions of “healthy” modes. See
Fig. 2 for color legends.

patient health state). We described a framework for extracting

dynamics from time series of BP that learns sharing of

dynamical behavior across a patient cohort. Using multi-

variate logistic regression and forward search techniques we

demonstrated that dynamics of time series (mode propor-

tions) may have independent prognostic value, beyond that

of SAPS-I score and other co-morbidity. In particular, some

of the dynamical modes are associated with improved patient

survival and therefore provide complementary information

to the SAPS-I severity score. Notably, combining SAPS-I

with the mode proportions resulted in significantly improved

prediction performance, primarily driven by an enhanced

specificity of prognosis.

Our future work will involve assessing the utility of the

discovered dynamical behaviors after including all available

clinical data (lab tests, medication records, nursing notes,

etc). Moreover, recent works by Celi et al. [13] have indi-

cated that customization of mortality prediction techniques

to specific patient populations (e.g., those with acute kidney

injury) may result in significant improvement in prognostic

performance. Although in this work we looked at a single

vital sign, the utilized framework allows for modeling of

multivariate time series, which may prove more informative

in certain patient populations. For instance, patients with car-

diovascular related complications may better be represented

by the dynamics of the interaction of their heart rate and BP.

Although here we framed the problem in terms of a binary

survival/mortality outcome, our ultimate goal is to construct

an index of patient health state. To this end, it will be

interesting to track a patient’s progress during each passing

hour of ICU stay.
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