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11 Bayesian nonparametric learning of
switching dynamics in cohort
physiological time series: application
in critical care patient monitoring
L. H. Lehman, M. J. Johnson, S. Nemati, R. P. Adams and R. G. Mark

11.1 Introduction

The time series of vital signs, such as heart rate (HR) and blood pressure (BP), can
exhibit complex dynamic behaviors as a result of internally and externally induced
changes in the state of the underlying control systems (Peng et al. 1995; Ivanov et al.
1999; Costa et al. 2002). For instance, time series of BP can exhibit oscillations on
the order of seconds (e.g., due to the variations in sympathovagal balance), to minutes
(e.g., as a consequence of fever, blood loss, or behavioral factors), to hours (e.g., due to
humoral variations, sleep-wake cycle, or circadian effects) (Mancia 2012; Parati et al.
2013). A question of interest is whether “similar” dynamical patterns can be automat-
ically identified across a heterogeneous patient cohort, and be used for prognosis of
patients’ health and progress.

In this work, we present a Bayesian nonparametric switching Markov processes
framework with conditionally linear dynamics to learn phenotypic dynamic behaviors
from vital sign time series of a patient cohort, and use the learned dynamics to
characterize the changing physiological states of patients for critical-care bed-side
monitoring (Lehman et al. 2012, 2013, 2014a; Nemati 2012). We assume that although
the underlying dynamical system may be nonlinear and nonstationary and the stochastic
noise components can be non-Gaussian, the dynamics can be approximated by a
collection of linear dynamical systems (Nemati 2012; Nemati et al. 2012). Each such
linear “dynamic” (or mode) is a time-dependent rule that describes how the future state
of the system evolves from its current state, centered around a given system equilibrium
point. Therefore, an ideal algorithm would be able to identify time series segments that
follow a “similar” dynamic, and would switch to a different mode upon a change in the
state of the underlying system.

We explore several variants of the Bayesian nonparametric approach to discovery of
shared dynamics among patients via switching Markov processes: hierarchical Dirich-
let process (HDP) autoregressive hidden Markov model (HDP-AR-HMM) (Teh et al.
2006; Fox et al. 2008), an explicit-duration HDP-based hidden semi-Markov model
(HDP-AR-HSMM) (Johnson & Willsky 2013a), and the beta process autoregressive
HMM (BP-AR-HMM) (Fox 2009; Fox et al. 2009, 2014). Given a collection of time
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258 Bayesian nonparametric learning of switching dynamics

series from a cohort, these techniques allow for simultaneous learning of the underlying
dynamic modes, and segmentation of the time series in terms of the most likely dynamic
describing the time series evolution at any given point in time. The Bayesian nonpara-
metric framework provides a mechanism to infer the number of dynamical modes from
the data. Each such dynamical mode is possibly recurrent within the same time series
and shared across multiple patients. The proposed framework allows for defining a
notion of “similarity” among physiological time series based on their underlying shared
dynamics. Therefore, one may consider two subjects to be similar if their underlying
vital signs time series exhibit similar dynamics in response to external (e.g., tilting of
body) or internal perturbations (e.g., onset of blood infection).

The rest of the chapter is organized as follows. We first present an overview of
Markov switching processes and their Bayesian nonparametric variants. We review the
sticky HDP-AR-HMM, HDP-AR-HSMM and BP-AR-HMM models, and describe the
inference algorithms for these models. We validate the proposed techniques using HR
and BP time series from a human laboratory study of subjects undergoing a tilt-table
test, where the timing of the occurrence of the different dynamics and the sharing of the
dynamics across multiple time series or subjects were known a priori. We present per-
formance of these techniques in discriminating between two different postural positions
in the tilt data set.

We test the prognostic value of the discovered vital sign dynamic behaviors. We apply
a variant of the HDP-AR-HSMM approach to the HR and BP dynamics of an intensive
care unit (ICU) cohort from the MIMIC II database (Saeed et al. 2011) during the first
24 hours of their ICU stays, and test whether cardiovascular dynamics during the first
24 hours of ICU admission are predictive of survival and mortality after adjusting for
existing acuity scores.

11.2 Bayesian nonparametric switching Markov modeling of cohort
time series

11.2.1 Overview of Bayesian nonparametric learning of switching Markov processes

Markov switching processes, such as the HMM, the switching vector autoregressive
process (SVAR), and the switching linear dynamical system (SLDS), characterize com-
plex dynamical phenomena as repeated returns to a set of simpler models (Fox 2009;
Fox et al. 2010; Nemati 2012; Johnson 2014). In this chapter, we consider several
Bayesian nonparametric variants of the SVAR to model physiological time series via
Markov transitions among an unbounded collection of simpler linear dynamical sys-
tems. Two types of stochastic processes, the beta process and the HDP, are used as a
priors on SVAR models to allow new states to be generated as more observations are
made, thus allowing the data to drive the complexity of the learned model. In particular,
our approach to discovery of shared dynamics among patients is based on variants of
the HDP-AR-HMM, HDP-AR-HSMM (Teh et al. 2006; Johnson & Willsky 2013a;
Johnson 2014; Fox et al. 2008; Fox 2009) and the BP-AR-HMM (Fox et al. 2009,
2014).
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11.2 Bayesian nonparametric switching 259

11.2.1.1 The AR-HMM
The AR-HMM, or switching vector AR (SVAR) process, models dynamics as switching
among a set of simpler linear dynamical modes or behaviors. We assume that there
exists a library of possible dynamic behaviors, with the k-th behavior parameterized by
θk = {Ak,�k} (i.e., a set of AR coefficients and the associated noise covariance).

Let y(i)t represent the observation vector of the i-th time series at time t, and z(i)t the
state of the corresponding Markov chain at time t. Let πk be the state-specific transition
distribution for mode k. Due to the Markovian structure on the state sequence, z(i)t ∼
π

z(i)t−1
, for all t > 1. An order r switching VAR process, denoted by VAR(r), is defined

as follows:

z(i)t ∼ π
z(i)t−1

, (11.1)

y(i)t =
r∑

l=1

A
z(i)t
l y(i)t−l + e(i)t (z(i)t ) � A

z(i)t
ỹ(i)t + e(i)t (z(i)t ), (11.2)

where mode-specific process noise e(i)t (z(i)t ) ∼ N (0,�(Zt)), Ak = [Ak
1...Ak

r ] define the

set of lag matrices, and ỹ(i)t = [y(i)�t−1 ...y(i)
�

t−r ]�.

11.2.1.2 The MNIW prior for the VAR dynamic parameters
The Matrix-Normal-Inverse-Wishart (MNIW) prior is the natural conjugate prior on the
shared dynamic parameters θk = {Ak,�k}. We write

Ak,�k ∼ MNIW(S0, ν0, M0, K0),

where λ = (S0, ν0, M0, K0) are hyperparameters. The MNIW prior consists of two parts:
an inverse Wishart prior on �k and a matrix normal prior on Ak (conditional on �k):

�k | S0, ν0 ∼ InvWishart(S0, ν0), (11.3)

Ak |�k, M0, K0 ∼ MN(Ak; M0,�k, K0), (11.4)

where ν0 is the degrees of freedom, S0 is the scale matrix, M0 is the prior mean dynamic
matrix for Ak, �k describes the column covariance of Ak, and K0 describes the row
covariance of Ak. Thus, M0 is the prior mean value for Ak (i.e., the expected value
E[Ak] = M0), and �k and K0 together control the covariance of Ak.

11.2.1.3 The HDP prior for the HMM
HMMs are often used to model sequential or temporal data, where each time step is
associated with a state, and observations are independent given the states. Classical
approaches to the HMM assume a fixed, prespecified number of Markov modes. HDPs
have been used as a prior to model HMMs with unbounded numbers of hidden states,
and they provide a way in which the number of modes present in any finite amount of
data can be inferred (Teh et al. 2006).

In the HDP-HMM, a stick-breaking distribution is first sampled to generate an infinite
sequence of average transition probabilities β. For each state k, a sequence of outgoing
transition probabilities πk is generated by independently sampling a Dirichlet process
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260 Bayesian nonparametric learning of switching dynamics

(DP) with β as its base probability distribution. With this hierarchical construction, the
resulting set of transition distributions tend to favor transitioning to the same popular
states. However, because the model includes an infinite number of states, new states can
be visited as more observations are made and thus the model complexity can adapt to
the complexity of the dataset.

We denote this hierarchical prior by writing

β ∼ GEM(γ ), (11.5)

πk ∼ DP(α,β), (11.6)

where GEM denotes the stick-breaking process (Sethuraman 1994), and γ and α are
concentration parameters that control the allocation of probability mass in β and the
diversity among the πk, respectively. For the HDP-HMM, this process generates the
rows of the infinite transition matrix, where each state-specific transition distribution πk

is the row corresponding to state k. In the HDP-AR-HMM, each HMM state, or mode,
is associated with a linear dynamical process in order to capture more complex temporal
dependencies in the observed data sequence.

11.2.1.4 The sticky HDP-AR-HMM and HDP-AR-HSMM
Prior work has shown that HDP-AR-HMM inadequately captures temporal state per-
sistence (Fox 2009). The sticky HDP-AR-HMM augments the HDP-AR-HMM with an
extra parameter κ that biases the process towards self-transitions to capture temporal
state persistence (Fox et al. 2008; Fox 2009). The sticky variant of HDP-AR-HMM
model (see Figure 11.1) is defined as the generative process

β ∼ GEM(γ ) (11.7)

πk ∼ DP

(
α + κ ,

αβ + κδk

α + κ

)
(11.8)

z(i)t ∼ π
z(i)t−1

(11.9)

y(i)t =
r∑

l=1

A
z(i)t
l y(i)t−l + e(i)t (z(i)t ) (11.10)

where αβ + κδk indicates that an amount κ is added to the k-th component of αβ,
increasing the expected probability of self-transition by an amount proportional to κ .

An alternative way to control self-transition probabilities is to use the explicit-
duration HDP hidden semi-Markov model (HDP-HSMM) (Johnson & Willsky 2013a;
Johnson 2014). The HDP-HSMM allows for explicit modeling of state-specific
duration distributions and thus provides a more general approach to encouraging
state persistence.The model augments a standard HMM with a random state duration; it
is semi-Markov, as the transition to the next state depends not only on the current state,
but also on how long the observations have stayed in that state. Although the duration
distributions can be chosen to take any form, here we choose geometric duration
distributions so as to create a model similar to the sticky HDP-AR-HMM. Specifically,
we model observations via conditionally linear dynamics as in HDP-AR-HMM, but
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11.2 Bayesian nonparametric switching 261

∞

∞

πk

θk

α

βγ

z1 z2 z3 z4 zT

yTy4y2y1 y3

λ

κ

(a)

z
(i)
4

B0

ωk fi

z
(i)
1 z

(i)
2 z

(i)
3 z

(i)
Ti

θk

y
(i)
1 y

(i)
2 y

(i)
3 y

(i)
Ti

κ α

y
(i)
4

π(i)

N

∞

∞

(b)

Figure 11.1 Graphical models for (a) sticky HDP-AR-HMM and (b) BP-AR-HMM.

explicitly models the state duration with geometric state duration distributions. The
model emulates a standard HMM (since the duration has a geometric distribution),
while providing a Bayesian prior to model self-transition probability that directly
controls the duration distribution. We place a Beta(α0,β0) prior on each state’s
geometric duration parameter (i.e., self-transition probability) and thus control state
persistence in a more interpretable way.

11.2.1.5 The BP-AR-HMM
In the BP-AR-HMM, the beta process implements a feature-based Bayesian nonpara-
metric approach to discover the dynamic behaviors shared by a collection of related time
series (Fox 2009; Fox et al. 2009, 2014). It explicitly models the dynamic behaviors
using feature vectors and determine both shared and unique dynamic behaviors in a
collection of time series. Briefly, the BP-AR-HMM technique assumes that there exists
a library of possible dynamic behaviors, where the k-th behavior is parameterized by
θk = {Ak,�k} (i.e., a set of AR coefficients and the associated noise covariance), and
each time series i can take on a subset of these behaviors. A binary feature vector
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262 Bayesian nonparametric learning of switching dynamics

fi = [fi1, fi2, ...] is used to denote the subset of behaviors exhibited by time series i,
where fik = 1 indicates that time series i exhibits the k-th behavior.

The beta process has been used to construct latent feature models with an unknown
number of latent features (Ghahramani et al. 2006). Draws from beta processes are
random discrete measures; each atom corresponds to a feature, with the mass cor-
responding to the probability that the feature is present for an object (Ghahramani
et al. 2006; Fox et al. 2009). Let B be a random measure drawn from the beta process
(parameterized by a base measure B0), then B |B0 ∼ BP(1, B0) is defined by its masses
ωk, and locations θk (see Figure 11.1). The BP-AR-HMM model (Fox 2009; Fox et al.
2009, 2014) is defined as follows:

B ∼ BP(1, B0), (11.11)

Xi ∼ BeP(B), i = 1, . . . , N, (11.12)

π
(i)
k | fi ∼ Dir([α, . . . ,α + δ(k, j)κ , . . . ,α] � fi), (11.13)

z(i)t ∼ π
(i)
zi
t−1

, (11.14)

y(i)t =
r∑

l=1

A
zi
t

l y(i)t−l + e(i)t (zi
t), (11.15)

where Xi is a Bernoulli process (denoted by BeP(B)) realization that determines the sub-
set of features allocated to the i’th time series. π(i)

k represents the time-series-specific,
feature-constrained distribution from dynamic mode k for time series i, restricting the
time series i to transition among behaviors available in its feature vector fi. A Dirichlet
prior, parameterized by α and κ , is placed on the Markovian state switching probabilities
π

(i)
k . Conditioned on fi, π

(i)
k ∼ Dir([. . . α + δ(k, j)κ , . . .] � fi), where Dir(·) denotes

the Dirichlet distribution, � denotes the element-wise vector product, and the Kronecker
delta function defined by δ(k, j) is 0 when k �= j and 1 otherwise.

11.2.2 Inference algorithms and implementations

The goal of inference is to represent the posterior p(θ ,π , z1:T | y1:T), which is intractable
to compute exactly. In particular, we need a representation that enables us to estimate
posterior expectations of the form

E [f (θ ,π , z1:T , y1:T) | y1:T ] =
∫ ∑

z1:T

f (θ ,π , z1:T , y1:T)p(θ ,π , z1:T | y1:T)dθdπ , (11.16)

for some function f . In this chapter, we use Markov chain Monte Carlo (MCMC)
algorithms for approximate inference.

In MCMC inference, we construct an iterative process that generates samples from
the posterior asymptotically in the sense that the process forms an ergodic Markov chain
on the state space (θ ,π , z1:T) and the stationary distribution of that Markov chain is the
posterior distribution p(θ ,π , z1:T | y1:T). By running the chain and collecting a set of
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11.2 Bayesian nonparametric switching 263

samples S from the chain’s trajectory, we can approximate the posterior expectation of
f by

E [f (θ ,π , z1:T , y1:T)| y1:T ] ≈ 1

|S|
∑

(θ̂ ,π̂ ,ẑ1:T )∈S
f (θ̂ , π̂ , ẑ1:T , y1:T). (11.17)

The approximation error, or sample variance, in equation (11.17) is determined by the
number of samples collected (i.e., for how many iterations the MCMC algorithm is
run) and by the mixing rate of the Markov chain. However, the mixing rate of the
chain is typically unknown and difficult to estimate. See Robert & Casella (2004) and
Gelman et al. (2013) for more information on approximate inference using MCMC, and
Bishop (2006), Wainwright & Jordan (2008) and Murphy (2012) for more information
on approximate inference and alternative algorithms.

For the remainder of this section we describe MCMC algorithms for the models
discussed in this chapter. These algorithms share the same general structure across all
of the models: they alternate between block resampling of the hidden state sequences
and resampling the model parameters. The hidden state sequences are resampled using
message passing and the parameters are resampled using conjugate priors. First, we
detail these steps for a Gibbs sampler for the sticky HDP-AR-HMM model. Next, we
overview the differences in the MCMC sampling algorithms for the HDP-AR-HSMM
and the BP-AR-HMM. Finally, we discuss the computational complexity and scalability
of these algorithms.

11.2.2.1 A Gibbs sampler for the sticky HDP-AR-HMM
Algorithms for approximate inference in Bayesian nonparametric models based on the
HDP need to handle draws from the HDP, which are infinite and cannot be instantiated
completely (Teh et al. 2006; Fox et al. 2008; Van Gael et al. 2008). One approach com-
mon in MCMC algorithms is to use the convenient properties of the HDP to marginalize
the HDP draws, eliminating π and β from the sampler’s state (Teh et al. 2006; Fox et al.
2008). However, in the HDP-AR-HMM, once π and β are collapsed the state sequence
z1:T loses its Markov chain structure and is Markov only with respect to the complete
graph. As a result, in collapsed samplers each zt must be drawn sequentially, resulting
in very slow mixing times because the states are likely to be highly correlated. Thus it is
preferable to instantiate some finite approximation to β and π so that the Markov struc-
ture among the hidden states can be exploited by dynamic programming algorithms.

Another approach to inference in HDP models is known as the weak limit approxi-
mation (Fox et al. 2008; Fox 2009; Johnson & Willsky 2013a; Johnson 2014), in which
the infinite model is approximated by a finite one. That is, choosing some finite approx-
imation parameter K we model β and π using finite Dirichlet distributions of size K

β ∼ Dir(γ /K, . . . , γ /K), (11.18)

πk ∼ Dir(αβ1, . . . ,αβj + κδkj, . . . ,αβK). (11.19)

In this setting, K is an algorithm parameter rather than a model parameter, and
one can achieve any desired approximation quality for large enough values of K
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264 Bayesian nonparametric learning of switching dynamics

(Ishwaran & Zarepour 2002). Furthermore, this finite representation of the transition
matrix allows the state sequence z1:T to be resampled as a block. Thus the weak
limit approximation provides a natural way to trade off computational efficiency and
posterior approximation, which naturally corresponds to trading off the variance error
and bias error in the finite-sample estimate equation (11.17).

Using a weak limit approximation, we can construct a Gibbs sampler for the HDP-
AR-HMM that cycles through updating components of the model in turn. That is, we
iterate the process of resampling

z1:T |π , θ , y1:T , θ | z1:T , y1:T and β,π | z1:T . (11.20)

For simplicity, throughout this section we suppress notation for conditioning on hyper-
parameters and the superscript notation for multiple observation sequences.

11.2.2.2 Sampling z1:T |π , θ , y1:T

Given the observation parameters θ and the transition parameters π , the hidden state
sequence z1:T is Markov with respect to a chain graph. Therefore even though the
density p(z1:T |π , θ , y1:T) is supported on KT values, it can be sampled in time O(TN2)

with dynamic programming. In particular, we exploit HMM message passing algorithms
to marginalize in one direction along the chain and then sample in the other.

The standard HMM backward message passing recursions are

Bt(k) = p(yt+1:T | θ ,π , zt = k) (11.21)

=
K∑

j=1

p(zt+1 = j | zt = k,π)p(yt+1 | zt+1 = j, θ)Bt+1(j), (11.22)

for t = 1, 2, . . . , T − 1 and k = 1, 2, . . . , K, where BT(k) = 1 and where yt+1:T =
(yt+1, yt+2, . . . , yT). Using these messages, we can write the conditional distribution of
the first state z1, marginalizing over all the future states z2:T , as

p(z1 = k |π , θ , y1:T) ∝ p(z1 = k |π)p(y1 | z1 = k, θ)B1(k), (11.23)

which can be sampled efficiently. Given a sampled value z̄1, we can write the conditional
distribution of the second state z2 as

p(z2 = k |π , θ , y1:T , z1 = z̄1) ∝ p(z2 = k | z1 = z̄1,π)p(y2 | z2 = k, θ)B2(k). (11.24)

Therefore after passing HMM messages backward we can recursively sample forwards
to construct a joint sample of the entire state sequence.

11.2.2.3 Sampling θ | z1:T , y1:T

To resample the observation parameters θ conditioned on a fixed sample of the
state sequence z1:T and the observations y1:T , i.e., to sample from p(θ | z1:T , y1:T) ∝
p(y | θ , ỹ)p(θ | λ), we exploit conjugacy (Bernardo & Smith 2009) between the AR
likelihood p(y | ỹ, θ) and the MNIW prior p(θ | λ). Recall that θ = {(Ak,�k)}.
Expanding the MNIW parameters as λ = (S0, ν0, M0, K0), we write the prior on the
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11.2 Bayesian nonparametric switching 265

k-th observation parameter as p(Ak,�k | S0, ν0, M0, K0). Because of conjugacy between
the prior and the likelihood, the posterior also follows the MNIW distribution, we have

p(Ak,�k | z1:T , y1:T , S0, ν0, M0, K0) = p(Ak,�k | Sn, νn, Mn, Kn), (11.25)

where (Sn, νn, Mn, Kn) are posterior hyperparameters that are functions of the elements
of y1:T assigned to state k as well as the preceding lagged observations:

Sn = S0 + Syy� + (M0K−1
0 M�

0 − MnK−1
n M�

n ), (11.26)

Mn = (M0K−1
0 + Syỹ�)Kn, (11.27)

Kn = (K−1
0 + Sỹỹ�)

−1, (11.28)

νn = ν0 + n, (11.29)

where

Syy� =
∑

t:zt=k

yty
�
t Sỹỹ� =

∑
t:zt=k

ỹtỹ
�
t , (11.30)

Syỹ� =
∑

t:zt=k

ytỹ
�
t n = #{t : zt = k}. (11.31)

That is, the posterior distribution has the same form as the prior distribution but with
new hyperparameters that include statistics of the data.

Therefore resampling θ | z1:T , y1:T includes three steps: collecting statistics from
the data assigned to each state, forming each state’s posterior hyperparameters, and
updating each state’s observation parameter by simulating a draw from the appropriate
MNIW. To simulate (A,�) ∼ MNIW(Sn, νn, Mn, Kn) we sample

� ∼ InvWishart(Sn, νn), (11.32)

A = Mn +�
1
2 GK

− 1
2

n where Gij
iid∼ N (0, 1). (11.33)

11.2.2.4 Sampling β,π | z1:T

To resample the transition parameters β and π , which are draws from the weak limit
approximation to the (sticky) HDP, we employ an auxiliary variable sampling scheme
(Teh et al. 2006; Fox et al. 2008). This auxiliary variable scheme simplifies the update
to β.

We resample β,π | z1:T by first sampling auxiliary variables m |β, z1:T . We then sam-
ple β,π | z1:T , m by first sampling from the marginal β |m and then the conditional
π |β, z1:T . The dependence among the variables with the introduction of the auxiliary
variables m is shown in Figure 11.2.

We write the transition counts in the sampled state sequence z1:T as

nkj = #{t : zt = k, zt+1 = j, t = 1, 2, . . . , T}. (11.34)

Suppressing conditioning notation for simplicity, the auxiliary variables m = {mkj :
k, j = 1, 2, . . . , K} are sampled via
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266 Bayesian nonparametric learning of switching dynamics
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Figure 11.2 A simplified graphical model to show the auxiliary variables m used in sampling
β,π | z1:T .

mkj =
nkj∑
l=1

bkjl where bkjl
iid∼ Bern

(
αβj

αβj + κ

αβj + κδkj

αβj + l + κδkj

)
, (11.35)

where Bern(p) denotes a Bernoulli random variable that takes value 1 with probability
p and takes value 0 otherwise. Note that the update for the HDP-HMM without a sticky
bias corresponds to setting κ = 0 in these updates. See Teh et al. (2006) and Fox (2009)
for details.

Given the auxiliary variables, the update to β is a Dirichlet-multinomial conjugate
one, where

β |m ∼ Dir(γ /K + m·1, γ /K + m·2, . . . , γ /K + m·K), (11.36)

where m·j =∑K
k=1 mkj for j = 1, 2, . . . , K. The update to π |β, z1:T is similar, with

πk |β, z1:T ∼ Dir(αβ1 + nk1, . . . ,αβj + nkj + κδkj, . . . ,αβK + nkK). (11.37)

It is also possible to treat the concentration parameters α and γ as well as the sticky
bias parameter κ as random variables which are included in the sampling inference. For
details on resampling α, γ , and κ , see Teh et al. (2006) and Fox (2009).

11.2.2.5 MCMC for the HDP-AR-HSMM and BP-AR-HMM
MCMC algorithms for the HDP-AR-HSMM and BP-AR-HMM based on the weak limit
approximation are broadly similar to that of the HDP-AR-HMM and so we do not detail
them here. Instead, we highlight some key differences and provide references.

The HDP-HSMM admits a similar Gibbs sampling strategy to that of the (sticky)
HDP-HMM (Johnson & Willsky 2013b). Because HDP-HSMM allows arbitrary state-
specific duration distributions, in its corresponding Gibbs sampling algorithm the
parameters of those duration distributions are resampled in a step analogous to that
for the observation parameters. One can choose duration models so that the update
is efficient, including duration distributions with conjugate priors. One significant
difference from the (sticky) HDP-HMM Gibbs sampler is that resampling the state
sequence is much more expensive for general duration distributions. However, with
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geometric duration distributions there is essentially no additional computational cost to
the HDP-HSMM Gibbs sampling algorithm.

In the BP-AR-HMM, because the dynamical modes are shared as features among
a set of observation sequences according to a beta process, the MCMC updates are
more complex than those of the Gibbs samplers for the (sticky) HDP-HMM and HDP-
HSMM. In particular, the algorithm must sample over which modes are expressed in
which sequences. One method (Fox et al. 2014) uses a Metropolis birth–death proposal
over the modes used in each observation sequence.

11.2.2.6 Computational complexity and scalability
The computational complexity of inference with MCMC algorithms ultimately depends
on the mixing rate of the constructed Markov chain, and this mixing rate is difficult
to analyze or estimate for complex models such as those considered in this chapter.
However, while it is hard to evaluate how many iterations of the sampler are necessary
for good performance, it is straightforward to analyze the computational costs of each
iteration of the sampler. Here we briefly review how the computational complexity of
the sampler iterations scale with the length of an observation sequence T and the size of
the weak limit approximation K.

The computational cost of an iteration of these samplers is typically dominated by
the cost of block resampling the state sequence; that is, of sampling z1:T | θ ,π , y1:T .
The cost of computing the HMM backward messages scales as O(TK2), since the
algorithm computes a matrix-vector product requiring K2 basic operations for each of
the T time indices in a sequence. Given the backward messages, the cost of forward
sampling scales as O(TK), since at each of the T time indices a finite distribution with
support of size K must be normalized and sampled. The quadratic dependence on K
is important when selecting a weak limit approximation level, since an approximation
with twice as many states may require as much as four times the computation time per
iteration.

It is common to fit such models to many observation sequences. With N observa-
tion sequences of average length T , the computational cost of each sampler iteration
typically requires O(NTK2) basic operations. Since the observation sequences are con-
ditionally independent given the model parameters, it is straightforward to parallelize
such computations. However, in these MCMC algorithms it is still necessary to “touch”
the full dataset at each iteration, a requirement that can make such algorithms difficult to
scale to very large datasets. It is a subject of ongoing research to scale MCMC (Angelino
et al. 2014; Bardenet et al. 2014; Korattikara et al. 2014; Maclaurin & Adams 2014;
Nishihara et al. 2014) and other Bayesian inference algorithms (Hoffman et al. 2013;
Johnson & Willsky 2014) to very large datasets.

11.3 Materials and methods

This section describes the utilized datasets, as well as the parameter settings of the
Bayesian nonparametric techniques for discovery of shared dynamics among patients.
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11.3.1 Data sets

11.3.1.1 Tilt-table experiment
Time series of HR and MAP were acquired from ten healthy subjects undergoing a
tilt-table experiment. The mean age was 28.7±1.2 years. The details of the protocol
are described in previous publications (Heldt et al. 2003; Heldt 2004). Briefly, sub-
jects were placed in a supine position. Tilting was performed from horizontal position
to vertical position and back to supine. Since we were interested in the dynamics of
interaction between HR and MAP in the frequency range pertinent to sympathetic
and parasympathetic regulation, time series of HR and MAP were high-pass filtered
to remove the steady-state baseline and any oscillation in the time series slower than
100 beats/cycle. This filtering was done using a seventh order Butterworth digital filter
with cutoff frequency of 0.01 cycles/beat. All time series were further normalized to
have a standard deviation of one.

11.3.1.2 MIMIC II data set
The MIMIC II waveform database (version 2) (Saeed et al. 2011) included approxi-
mately 4000 sets of high resolution physiological waveforms with associated minute-
by-minute vital sign trends. This study included only the adult patients with clinical
information, and with at least 8 hours of continuous minute-by-minute invasive BP
trends during the first 24 hours of their ICU stays. Patients with more than 15% of
missing or invalid (i.e., outside physiologically plausible bounds of 20 to 200 mmHg for
mean pressures) BP samples were excluded. In order to compare with SAPS-I score, we
restricted our analysis to patients with SAPS-I scores during the first 24 hours of their
ICU stays, yielding a total of 453 patients. The median SAPS-I score for this cohort
is 16 (interquartile range [13, 18]). 16% of patients in this cohort died before hospital
discharge. The data set contained approximately 9700 hours of minute-by-minute mean
arterial blood pressure measurements (20.2 hours per patient on average). Gaussian
noise was used to fill in the missing or invalid values. The median age of this cohort
was 69 with an inter-quartile range of (57, 79). About 59% of the patients were male.
Approximately 15% (67 out of 453) of patients in this cohort died in the hospital; 28-day
mortality of this cohort was approximately 19% (85 out of 453).

11.3.2 Bayesian nonparametric model settings

For the tilt data sets, we modeled the beat-by-beat HR/BP time series as a switching
AR(5) process to model most of the parasympathetic responses and at least some of the
sympathetic effects, without introducing an unduly complex model. Minute-by-minute
BP time series from MIMIC II were modeled as a switching AR(3) process to capture a
real oscillation and a possible trend per mode.

11.3.2.1 MNIW prior settings
An inverse-Wishart prior InvWishart(S0, n0) was placed on �k, and a matrix-normal
prior MN(Ak; M0,�k, K0) on Ak, given �k. The MNIW prior was given M0 = 0, the

Downloaded from Cambridge Books Online by IP 18.42.1.107 on Wed Feb 17 23:21:35 GMT 2016.
http://dx.doi.org/10.1017/CBO9781139941433.012

Cambridge Books Online © Cambridge University Press, 2016



11.3 Materials and methods 269

matrix normal hyperparameter K0 = 10 × Id, ν0 = d + 2, where d was the dimension
of the observations. The mean covariance matrix was set from data. For the tilt data set,
the scale matrix S0 was set to 0.5 times the empirical covariance of the observations.
For the MIMIC II blood pressure data, the scale matrix S0 was set to the empirical
covariance of the observations to allow for more variability in the observed behaviors.
For the MIMIC II heart rate data, we set the scale matrix S0 to 0.75 times the empirical
covariance of the observations.

11.3.2.2 Sticky HDP-AR-HMM settings
We sampled over hyperparameters to infer the number of states and degree of self-
transition bias from the data. The sampling updates for the hyperparameters of the sticky
HDP-AR-HMM were described in (Fox 2009). To simplify the inference procedure, we
introduced an additional hyperparameter ρ as in (Fox 2009):

α = (1 − ρ)(α + κ), (11.38)

κ = ρ(α + κ). (11.39)

Instead of sampling over α and κ directly, we sampled over α+ κ and ρ using a gamma
and beta distribution respectively.

For the tilt data set, we used a Gamma(1, 1) hyperprior on γ , which specifies the
concentration parameter for the base distribution β. We used a Beta(100, 1) hyperprior
on ρ, and Gamma(1, 1) hyperprior on α + κ . We report the classification performance
using the model output after 10 000 MCMC iterations.

11.3.2.3 HDP-AR-HSMM settings
We model the state duration as a geometric distribution parameterized by a success
(transition) probability of pz. We place a Beta(α0,β0) prior on the transition prob-
ability pz. Thus, the ratio β0/α0 controls the average duration in state Z. For the tilt
data set, the inverse mean parameter of the geometric duration distribution was given
a beta prior (α0 = 1, β0 = 300). We report the classification performance using the
model output after 10 000 MCMC iterations. For the MIMIC II data set, the inverse
mean parameter of the geometric duration distribution was given a beta prior (α0 = 1,
β0 = 60). We report the performance using the model output after 3000 MCMC
iterations. The HDP priors γ and α were set to 1. The MNIW prior setting was specified
as before.

11.3.2.4 BP-AR-HMM settings
For the tilt data set, the hyperparameter α, which specifies the distribution over the
total number of modes, was given a Gamma(1, 1) prior. We used a Gamma(1, 1)
hyperprior on γ , which specifies the concentration parameter for the symmetric
Dirichlet prior on each time series’ Markov switching dynamics. The κ hyperparameter
determines the preference for self-transition and it was given a Gamma(100, 1) prior.
We report the classification performance using the model output after 10 000 MCMC
iterations.
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11.3.3 Evaluation methods and statistical analysis

We define mode proportion MP(i)
k as the proportion of time the i-th patient spends within

the k-th mode. Given the latent mode assignment zt, we have

MP(i)
k = 1

T(i)

T(i)∑
t=1

δ(z(i)t , k), (11.40)

where δ(z(i)t , k) indicates the Kronecker delta and is one if (z(i)t = k), and zero otherwise.
For classification and prediction purposes, we characterize each time series with its
corresponding mode proportion (a 1 × K feature-vector), and use a logistic regression
classifier to make predictions about the outcome variables of interest.

11.3.3.1 Time series classification and patient risk stratification
For the tilt-table experiment, we used the mode proportions within each segment (e.g.,
supine vs. non-supine) as inputs to a logistic regression classifier, and report the classi-
fication performance in discriminating between two different postural positions (supine
vs. non-supine) in the tilt data set.

To assess the predictive power of the dynamic modes, we performed a ten-fold cross-
validation study. Ten models were learned on the training set of each of the folds,
followed by mapping the corresponding mode proportions to outcomes (e.g., hospital
mortality) using logistic regression. Next, mode assignments of time series in the test set
of each fold was inferred based on the modes learned from the corresponding training
set, and the regression weights from the training fold was used to predict outcomes. We
compare the mortality prediction performance of the dynamic modes with the existing
acuity metrics.

11.3.3.2 MIMIC association analysis
We used univariate and multivariate logistic regressions to examine the associations
between dynamic mode proportions and hospital mortality. We built a separate multi-
variate logistic regression model for each of the discovered dynamic modes, with the
mode proportion as the primary predictive variable, and APACHE-IV as a covariate.
For each mode, we reported its p value, odds ratio (OR, with 95% confidence interval),
and adjusted OR (after including the covariate). The Hosmer–Lemeshow p values (HL
p values) were reported to assess the model fit. The odds ratios were per 10% increase
in the mode proportion. Two-sided p values less than 0.05 were considered statistically
significant. The analysis was performed to quantify the mortality risk associated with
each dynamic mode; modes with significant (p < 0.05) associations with mortality were
established as either low-risk (OR < 1), or high-risk (OR > 1) dynamics depending
on their odds ratios. Dynamic modes without statistically significant associations with
mortality were neutral modes. Test of statistical significance was based on p-values
after correcting for the false discovery rate (FDR) using the technique described in
(Benjamini & Hochberg 1995).
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11.4 Results

11.4.1 Tilt-table experiment

Figure 11.3 shows the segmentation results for two subjects using HDP-AR-HSMM.
Note that the two subjects share the same inferred non-supine dynamics (mode 1) and
supine dynamics (mode 2); the algorithm consistently assigns the mode 1 to the non-
supine position for both subjects. Application of logistic regression with ten-fold cross-
validation yielded a median AUC of 1.00 with an interquartile range of (0.93, 1.00). The
sticky HDP-AR-HMM and BP-AR-HMM yielded similar median and IQR performance
of 1.00 (0.88, 1.00) and 1.00 (0.90, 1.00) respectively.

11.4.2 MIMIC II: performance in estimating mortality risks of patients

The median number of dynamic modes discovered (over ten folds) using the HDP-AR-
HMM approach were 16 and 18 respectively for the HR and BP time series (modes
with less than 1% of the overall samples were not considered), with the top ten dynamic
modes capturing over 80% of the overall measurements in the entire data set. Table 11.1
evaluates the prognostic power of HR and BP dynamic features (HRdyn and BPdyn)
learned from the HDP-AR-HSMM approach. We used mode proportions of the top ten
dynamic modes as features for mortality prediction. SAPS-I and APACHE-IV were
used as the baselines. Median AUCs (from ten-fold cross-validation) and the interquar-
tile range are shown. Note that the BP dynamics out-performed the HR dynamic features
in mortality prediction. Subsequent analysis focuses on the predictive power of the BP

(a) Tilt subject 1 (b) Tilt subject 6

Figure 11.3 Tilt-table study: segmentation from HDP-AR-HSMM. Two examples out of the ten
recordings of HR and mean arterial blood pressure (MAP) from the tilt-table experiment are
shown. Parts (a) and (b) show a 7-minute recording of RR intervals and MAP while the subjects
transition to/from supine to a non-supine position after a fast tilt procedure. The two solid square
markers denote the onset of the fast tilt procedures with the dotted horizontal lines indicating the
duration while the subjects remain in a non-supine position. Actual HR/BP values are in light
gray and filtered values are in black. Note that the two subjects shared the same inferred
non-supine dynamics (mode 2). The supine position for both subjects are captured by mode 1.
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272 Bayesian nonparametric learning of switching dynamics

Table 11.1 Mortality prediction performance of dynamic mode
proportions inferred from vital signs from the first 24 hours in the ICU.

Hospital mortality 28-day mortality
(AUC) (AUC)

SAPS-I 0.65 (0.59, 0.71) 0.64 (0.56,0.70)
HRdyn 0.60 (0.55, 0.70) 0.66 (0.54, 0.72)
BPdyn 0.65 (0.59, 0.74) 0.62 (0.59, 0.72)
HRdyn+SAPS-I 0.68 (0.63, 0.74) 0.66 (0.62, 0.76)
BPdyn+SAPS-I 0.77 (0.60, 0.79) 0.73 (0.63, 0.79)
APACHE-IV 0.82 (0.77, 0.85) 0.83 (0.74, 0.86)
HRdyn+APACHE-IV 0.82 (0.80, 0.89) 0.83 (0.77, 0.85)
BPdyn+APACHE-IV 0.84 (0.74, 0.88) 0.82 (0.80, 0.85)

dynamics in comparison to the baseline. For each baseline, we show the performance
from the baseline alone, and the combined approach (combining BP dynamics and the
baseline).

Application of 10-fold cross-validation demonstrated that dynamic features from
blood pressure alone achieved a median AUC 0.65 comparable to the performance
from the SAPS-I (which required 13 different lab tests). In comparison, using standard
deviation of mean arterial blood pressure resulted in a median AUC (IQR) of 0.55 (0.43,
0.63).

Combining dynamic blood pressure features with SAPS-I resulted in an improved
prediction power both in hospital mortality prediction and 28-day mortality prediction.
These results indicate that the dynamic features from vital signs contain complementary
information to the SAPS-I scores. State-of-the-art risk score APACHE-IV achieved bet-
ter prediction performance than the BP dynamic features alone. Adding BP dynamics to
APACHE-IV improved the median hospital mortality prediction performance slightly,
but the performance gain was not statistically significant.

The performance reported in Table 11.1 (using the HDP-AR-HSMM approach with
geometric state duration distribution) is consistent with our prior results using BP-AR-
HMM (Lehman et al. 2012) and SVAR (Lehman et al. 2014a). The baseline SAPS-I and
APACHE-IV performance for the same patient cohort was previously reported (Lehman
et al. 2014a).

11.4.3 MIMIC II association analysis

Table 11.2 presents logistical regression analysis to test the associations between the
proportion of time patients spent in each of the top ten most common BP dynamics and
hospital mortality. Figure 11.4 shows examples of low-risk and high-risk dynamical
modes learned using the HDP-AR-HSMM technique (see Table 11.2 for the odds ratio
(OR) associated with each mode).

Dynamic modes were numbered based on their prevalence across the entire cohort
(i.e. mode 1 is the most common dynamic mode). Our results indicate that five of the
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Table 11.2 Associations of blood pressure dynamic modes and hospital mortality.
(OR = odds ratio; HLp = Hosmer–Lemeshow p value.)

Mode p-value OR (95%CI) Adjusted p Adjusted OR (95%CI) HL p

6 0.0000 1.81 (1.43, 2.28) 0.0004 1.59 (1.23, 2.06) 0.31
7 0.0005 2.01 (1.36, 2.97) 0.0198 1.71 (1.09, 2.67) 0.50
8 0.0058 1.30 (1.08, 1.56) 0.6827 1.05 (0.84, 1.30) 0.38
3 0.0034 0.63 (0.46, 0.86) 0.0271 0.71 (0.52, 0.96) 0.97
4 0.0039 0.53 (0.35, 0.82 0.1828 0.74 (0.47, 1.15) 0.09
1 0.0084 0.71 (0.55, 0.92) 0.0815 0.78 (0.60, 1.03) 0.50

10 0.0962 0.41 (0.14, 1.17) 0.0226 0.24 (0.07, 0.82) 0.13
9 0.1098 1.47 (0.92, 2.35) 0.8635 1.05 (0.58, 1.91) 0.39
5 0.1711 0.82 (0.62, 1.09) 0.7152 0.95 (0.71, 1.27) 0.07
2 0.7575 1.03 (0.86, 1.22) 0.4038 1.09 (0.89, 1.32) 0.69

(a) High-risk (b) Low-risk

(c) Neutral

Figure 11.4 Discovered dynamic modes of mean arterial blood pressure of 453 patients during the
first 24 hours in the ICU. Figure shows the top ten most common dynamic modes, simulated
using the AR coefficients from each dynamic mode. (a) High-risk dynamic modes (from left to
right): 6, 7 and 8. (b) Low-risk dynamic modes: 3 and 4. (c) Neutral dynamic modes: 1, 10, 9, 5
and 2. All modes were simulated and plotted with the same time duration (90 minutes) and
amplitude scale.

modes (modes 6, 7, 8, 3 and 4) had significant associations with hospital mortality after
FDR correction.

Three dynamic modes (modes 6, 7 and 8) were “high-risk” modes (p < 0.0001,
p < 0.001, and p < 0.01) in which increased proportions of time in these modes
were associated with higher hospital mortality with odds ratios 1.81 (1.43, 2.28),
2.01 (1.36, 2.97) and 1.30 (1.08, 1.56), respectively. Dynamic modes 3 and 4 were
“low-risk” modes in which increasing proportions of time in these modes were
significantly (p < 0.01) associated with a decreased risk of hospital mortality, with
odds ratios less than one.

For the multivariate analysis (Table 11.2), each row is a separate multivariate model,
in which the mode proportion for a given target mode is the primary predictive variable,
and APACHE-IV is added as a control variable in the multivariate model. Results
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from multivariate logistic regression indicate that two of the modes (modes 6 and 7)
remain significant predictors of patients’ outcome even after adjustment for APACHE-
IV scores, indicating that the proportion of time patients spent in these two dynamic
modes during the first 24 hours in the ICU are independent risk predictors of hospital
mortality.

11.4.4 Example blood pressure dynamics of survivors vs. non-survivors

As examples, BP time series from four patients are presented in Figure 11.5.
Figure 11.5(a) shows two of the patients (within the same test set) with a high proportion
of time in high-risk dynamics (modes 6, 7, and 8); both patients died in the hospital.
Figure 11.5(b) shows two patients with the top two highest proportions of time in the
low-risk dynamics during the second half of their first day in the ICU; both patients
survived the hospital stay. All four patients were from the same test set, with mode
assignment inferred based on dynamic modes learned from the corresponding training
set.

11.4.4.1 Evolution of cardiovascular dynamics of survivor vs. non-survivor
We also provide illustrative examples of the evolving blood pressure dynamics of the
survivors and the non-survivors’ during the first 24 hours in the ICU. Figure 11.6 shows
blood pressure time series for two patients with different trajectories in the evolution
of their blood pressure dynamics during the first day in the ICU. Both patients were
from the medical ICU. Figure 11.6 (a) shows a patient with increasing high-risk mode
proportions during the 24 hours in the ICU; patient died two days after admission to
the ICU. Figure 11.6 (b) shows a patient with decreasing trend in the high-risk mode
proportions during the first day in the ICU. Note that as time progresses, the patient in
(a) spends more time in the “high-risk” dynamic modes. In contrast, the patient in (b)
shows a decreasing trend in high-risk mode proportion and transitions to lower-risk and
neutral dynamic modes over the course of the first 24 hours in the ICU. The high-risk
mode proportion (shown on the right-hand side y-axis) was computed as sum of the
mixture weights for high-risk modes 6, 7 and 8 in a six-hour sliding window, updated
on an hourly basis.

These illustrative examples support results from our prior investigation which demon-
strated that, at the population level, patients who did not survive the hospital stay exhib-
ited different evolution in their vital sign dynamics than those who survived (Lehman
et al. 2013). In particular, as time progressed, the non-survivors tend to have increasing
trends in the proportion of time in the high-risk modes.

11.5 Discussion and conclusion

We presented a Bayesian nonparametric switching Markov processes framework to
systematically learn and identify dynamic behaviors from multivariate vital sign time
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Figure 11.5 Example mean arterial blood pressure (MAP) of four patients sampled during the
first 24 hours in the ICU. Blood pressure measurements plotted in original units (before
de-trending). All four patients were from the same test set, with dynamic modes and their
associated mortality risks learned from the corresponding training set. (a) Patients with high
proportions of high-risk modes (6, 7 and 8) during their first day in the ICU. Both patients died
in the hospital. Patients were from the medical ICU (i) and the coronary care ICU (ii)
respectively. (b) Patients with the highest proportions of low-risk modes (3 and 4) during their
first day ICU stays. Patients were from the cardiac surgery recovery unit (i) and the surgical ICU
(ii). Both patients survived the hospital stay.
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Figure 11.6 High-risk mode proportions and mean arterial blood pressure (MAP) of two patients
during their first 24 hours in the ICU. Blood pressure measurements plotted in original units
(before de-trending). The high-risk mode proportion was computed as sums of the mixture
weights for high-risk modes 6, 7 and 8 in a six-hour sliding window updated on a hourly basis,
and were plotted as dashed gray lines with scale indicated by y-axes on the right-hand side of
each graph. (a) Mean arterial blood pressure (MAP) of a patient with increasing trend in
high-risk dynamics over the first 24 hours in the ICU. Right-hand axis shows mode proportions
in high-risk modes. Patient (from the medical ICU) died two days after admission to the ICU.
Note the increasing trend in high-risk mode proportion as the patient transitions from low-risk
and neutral dynamics to high-risk dynamics. (b) Mean arterial blood pressure (MAP) of a patient
with decreasing trend in high-risk dynamics over the first 24 hours in the ICU. Right-hand axis
shows mode proportion in high-risk modes. Note the decreasing trend in high-risk mode
proportion as the patient transitions from high-risk dynamics to low-risk and neutral dynamics.
Patient was from the medical ICU and survived the hospital stay.
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series within a patient cohort. We explored several variants of Bayesian nonparametric
approaches to model changes in dynamics of physiological time series as switching
between a set of linear dynamical systems. We showed that the proposed framework is
able to automatically capture changes in the dynamics of HR and BP due to external
perturbations (i.e., positional changes in the tilt-table experiment). In evaluating the
prognostic value of the dynamic modes, we focused on the predictive power of the
discovered dynamic modes and their associations with hospital mortality.

Commonly used acuity scores for patient prognosis, such as APACHE and SAPS
(Le Gall et al. 1984, 1993; Knaus et al. 1991; Zimmerman et al. 2006), are based on
snap-shot values of these vital signs, typically the worst values during a 24 hour period.
A growing body of literature points to the clinical utility of vital signs time series
dynamics to inform prognosis (Saria et al. 2010; Moorman et al. 2011; Lehman et al.
2012, 2014a; Wiens et al. 2012; Mayaud et al. 2013), and to provide early predictors
of potentially life-threatening conditions in the ICU (Blount et al. 2010; Lehman et al.
2013).

In this work, we showed that the proportion of time each patient spent within the
different dynamic modes is a significant predictor of hospital mortality risks. It is inter-
esting to note that the BP time series dynamics alone achieved similar performance to
that of the SAPS-I score which uses age, Glasgow coma score, and the most extreme
values of 13 lab variables. Furthermore, our results indicate that the blood pressure
dynamics may contain complimentary information to existing acuity metrics, which
assess the health of multiple organ systems based on a variety of physiological and lab
variables. Specifically, combining the dynamics of BP time series and SAPS-I provided
a more accurate assessment of patient survival or mortality in the hospital than using
SAPS-I alone.

Association analysis using the minute-by-minute MIMIC-II BP time series revealed
that the high-risk modes often correspond to less variable dynamical patterns. Interest-
ingly, such low-frequency variability, observed at the minute-to-minute scale, is asso-
ciated with an enhanced chance of survival, corresponding well to existing HR/BP
variability literature using beat-by-beat vital sign time series (Riordan et al. 2009; Moor-
man et al. 2011; Parati et al. 2013). The working hypothesis of our ongoing research is
that the observed dynamical patterns are due to patients’ underlying physiology, patient-
specific response to clinical interventions, and measurement artifacts.

Since the proposed framework is built on the dynamical systems framework (which
includes the class of VAR models), the discovered modes can be used to reveal the
oscillations that are present within the individual time series, and therefore can be used
to extract useful indices of HR and BP variability (assuming beat-to-beat time series).
Moreover, in the multivariate case one may use the learned dynamics to derive the
directional transfer functions of the system (e.g., baroreflex control of HR and BP)
(Nemati et al. 2011).

This approach provides an improvement over time series similarity measures based
on trend-detection (Avent & Charlton 1990), wavelet-based symbolic representations
(Saeed & Mark 2006), or Gaussian mixture modeling (Lehman et al. 2008) due to
its compact representation and sharing of the model parameters within and across
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time series. Prior work using a factorial SLDS for patient monitoring focused on
detection of events associated with artifactual measurements and pathological states
(Quinn et al. 2009). Our work, in contrast, jointly models multiple time series across
a large patient cohort to identify phenotypic dynamical patterns for patient outcome
prediction.

We used the HDP-AR-HSMM with geometric duration distributions to test the prog-
nostic values of the common dynamic modes. This approach provides a more direct and
interpretable Bayesian prior in controlling the self-transition bias than the sticky model,
without incurring additional computational cost to the Gibbs sampling algorithm. In
contrast to the sticky HDP-AR-HMM approach, in which the global self-transition bias
is shared among all states (Johnson & Willsky 2013a), the HSMM framework has
the additional advantage of being able to model state-specific duration distributions.
Although we focus on the geometric duration distribution in this chapter and did not
fully exploit the learned state-specific duration information, the models presented in
(Johnson & Willsky 2013a; Johnson 2014) provide a more expressive and powerful
framework to model non-Markovian state durations in general. Future work involves
learning highly interpretable dynamic behaviors from vital sign time series to capture
non-geometric state durations.

The beta process framework, explicitly models the dynamic behaviors to determine
both the shared and unique dynamic behaviors from a collection of time series (Fox et al.
2014; Fox 2009). Through this feature-based representation, BP-AR-HMM permits
time series specific transition behaviors. The HDP prior, on the other hand, assumes
that all time series share the same dynamic modes and transition between them in the
same manner (Fox 2009). As the focus of this current investigation is on the prognostic
value of the common (instead of rare) dynamic behaviors, the proposed variant of the
HDP-AR-HSMM approach (with geometric duration distribution) provides a compu-
tationally efficient approach to learn common prognostic dynamic behaviors from a
large patient cohort. There are other aspects of the learned dynamical models that need
to be investigated further, for example, dynamic mode distributions and discovery of
rare or unique dynamic behaviors. Future work aims to conduct further performance
comparison of these techniques, and fully characterize the effects of the HDP and beta
process priors and hyperparameter settings on the discovered dynamic behaviors in the
context of physiological patient monitoring.

In summary, we presented a framework to discover prognostic dynamical behaviors
from vital sign time series in a critical care setting. In particular, our results demon-
strate that the discovered dynamics provide additional predictive values to conven-
tional snapshot-based acuity metrics, and thus the proposed approach holds promise to
providing additional insights to state of health of patients. Future and ongoing work
involve combining the switching dynamics framework with clinical data, including
lab tests, medication records, progress notes, and clinical interventions (administration
of fluids, pressors, and titration of medications) to further investigate the clinical and
physiological interpretation of the discovered dynamic modes (Lehman et al. 2014b),
and to devise a comprehensive risk score capable of continuous patient monitoring and
treatment decision support.
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