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Abstract— A life threatening condition in Intensive Care Unit
(ICU) is the Acute Hypotensive Episode (AHE). Patients expe-
riencing an AHE may suffer from irreversible organ damage
associated with increased mortality. Predicting the onset of
AHE could be of pivotal importance to establish appropriate
and timely interventions. We propose a method that, using
waveforms widely acquired in ICU, like Arterial Blood Pressure
(ABP) and Electrocardiogram (ECG), will extract features
relative to the cardiac system to predict whether or not a
patient will experience a hypotensive episode. Specifically, we
want to assess if there are hidden patterns in the dynamics
of baroreflex able to improve the prediction of AHEs. We
will investigate the predictive power of features related to the
baroreflex by performing classifications with and without them.
Results are obtained using 17 classifiers belonging to different
model families: classification trees, Support Vector Machines
(SVMs), K-Nearest Neighbors (KNNs) replicated with different
set of hyper-parameters and logistic regression. On average,
the use of baroreflex features in the AHE prediction process
increases the Area Under the Curve (AUC) by 10%.

I. INTRODUCTION

Several studies [1][2][3][4] have attempted to predict
Acute Hypotensive Episodes (AHE) in the intensive care
unit and several valid approaches were shown, often using
a great variety of methods. To this extent, international
conference challenges were held on the subject [5], thus
highlighting the interest from the research community. Heart
Rate and Arterial Blood Pressure have already been used
to predict hypotension but not beat-to-beat baroreflex. The
baroreflex is an important reflex involving the Autonomic
Nervous System (ANS), that helps in regulating Arterial
Blood Pressure (ABP). The sensors in our body that measure
the pressure that permit to create a feedback loop in the
cardiac control system are the baroreceptors, mainly present
in the aortic arch. From a control system point of view,
the baroreflex can be considered as a measure of the in-
teraction between the controlling variable (heart rate, HR)
and the controlled variable (Systolic Blood Pressure, SBP).
Estimation of measures of baroreflex from waveforms is well
documented in literature. In an open loop model, baroreflex
gain has been computed with sequential time models as
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well as monovariate frequency domain transfer functions
[6]. However, these models consider only the influence
that SBP has on HR modulation. No feedback is taken in
consideration, so that the effect of HR changes on SBP
can be taken into account. For these reasons, more accurate
closed loop models have been developed [7][8][9]. In any
case, none of these measures have been considered within a
framework for AHE prediction. In this study, we propose a
beat-to-beat analysis from ABP and ECG waveforms using
a point process framework to extract coupling features for
baroreflex sensitivity assessment, and we investigate the
statistical power of these features in predicting AHE in a
dataset of 86 subjects from the MIMIC Physionet Database
[10][11]. More specifically, we compare the performance of
two sets of features, differing in the inclusion or exclusion
of baroreflex related features.

II. METHODS

A. Modeling

In order to estimate the baroreflex we use a bivariate Point
Process model [12] characterizing heart beat dynamics. A
point process is a discrete event happening in continuous
time, this definition suits perfectly in establishing a proba-
bilistic characterization of the succession of heart beats.

Assuming history dependence, the Point Process model
that explains the waiting time until the next heart beat is:
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Where u j denotes the previous heart beat occurred before
time t and µt the instantaneous heart beat distance value.

Since the effects of the sympatho-vagal influence occur
on a millisecond timescale, but its effects last for several
seconds, the interval must be modeled as dependent on the
recent history of the Sino-Atrial node inputs

µt ≡ µRR(t) = a0 +
p

∑
i=1

aiRRt−1 (2)

The time interval between heart beats is defined as the
RR time elapsed between R peaks in the ECG.
The evaluation of the parameters in 1 and 2 is adaptive,
since the objective is to track the instantaneous physiological
changes along time. The measure of µRR(t) is time varying
and is determined by the time varying AR coefficients
ai(t)

p
i=0.



To account for direct systolic pressure modulation on
heart rate variability (baroreflex sensitivity) but also for the
mechanical effect that a variation of heart rate has on the
hemodynamics, such a model requires to build a bivariate
mathematical structure that describes the bidirectional dy-
namics between the two variables (see Fig. 1).
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Fig. 1. Bivariate modeling structure

As mentioned before, in order to calculate the baroreflex
we need to take into account the action of SBP on HR. For
this reason, we will consider SBP as a covariate in the RR
interval point process model. The equation 2 becomes

µt ≡ µRR(t) = a0 +
p

∑
i=1

aiRRt−1 +
q

∑
j=1

b jSt− j (4)

Where St− j denote the previous jth measure of systole
before time t. Now the mean RR is modeled as a bivariate
AR model [9].
It has to be highlighted that this model does not take into
account the time lapse between the two inputs: as it is known,
the R wave in the ECG precedes the systole in the ABP
by the pulse transit time. However this does not affects
the transfer amplitude. With a linear system assumption,
baroreflex can be estimated as the absolute value of the
transfer function of the built bivariate model. Given the
parametric model in 4 it is therefore possible to evaluate
the baroreflex frequency response as
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Where fs is the beat rate of the RR.
It is possible also to estimate the power spectrum or the gain
in the frequency domain as

PRR(ω, t) = σRR(t) |H11(ω, t)| (6)
Barore f lexgain(ω, t) = |H12(ω, t)| (7)

B. Features

Based on other studies [13][9] the information that is more
useful in predicting AHE resides mostly in blood pressure,
moreover having a confined dataset, we had to limit the
number of features. Therefore, we have included only those

predictors that describe SBP and the ANS descriptors on
both RR intervals and SBP:

• SBP statistical moments
• LF, HF, VLF spectral powers (for both RR and SBP)
• LF/HF (for both RR and SBP)
• Baroreflex amplitude
• Baroreflex frequency

Regarding the spectral features, using the Point Process
model, we were able to extract the spectral power as a
function of both time and frequency. The VLF, LF and HF
power were calculated as an integral of the time-frequency
signal in the following range of frequencies [14]:

• VLF: 0.004 - 0.04 Hz
• LF: 0.04 - 0.15 Hz
• HF: 0.15 - 0.4 Hz

In this way we were able to obtain a time-varying signal
tracking the spectral power in these frequency bands.
Using the Point Process method described in Section II-A,
and in particular the formulas 5 and 7 we calculated the
baroreflex as a function of both time and frequency. The ac-
tual signal that we used to compute features took in account
only the contribution of the LF range of frequencies, since
it is known that in the HF the modulation of the RR period
is due mainly to the influence of the respiration, whereas the
VLF are generated by slow mechanisms involving circadian
and hormonal influences not necessarily dependent from
baroreflex control.

C. Classification

To estimate the predictive power of the baroreflex, classi-
fication was performed with two sets of features: the first set
contained information only about SBP and ANS descriptors
while the second one added to the first the features related
to the baroreflex.
We used in total 17 different classifiers that can be grouped
by method:

• 4 classification trees
• 6 SVM
• 6 KNN
• Logistic Regression

All these classifiers maintained the same hyper parameters
during the two experiments.

III. EXPERIMENTAL DESIGN

A. Acute Hypotensive Episodes

There are several definitions of a AHE in literature, of
which some relies on absolute assumptions, whereas others
use a more relative approach [15]. For the purpose of the
following work, we used an absolute definition, using prede-
fined and fixed thresholds, which was proposed by Physionet
for the 2009 Computer in Cardiology Challenge [5]: An AHE
is any period of 30 minutes in which at least 90% of the
Mean Arterial Pressure (MAP) is below 60mmHg.



Fig. 2. Baroreflex example from the cohort. The top row are RR intervals, middle top row systolic pressure, middle-bottom row LF/HF power ratio
and bottom row baroreflex sensitivity. Note a sympathetic activation due to a critical condition ( around minute 7), resulting in a sudden increase of SBP.
Afterwards, vagal activation yields to an hypotensive phenomena (circa minute 23).

B. Data Selection

Records were pulled from the MIMIC-III Waveform
Database Matched Subset[11], a large publicly available
database containing almost five thousands de-identified ICU
entries as recordings from the bedside ICU monitor. Data,
before being incorporated into the MIMIC-III database,
was first deidentified in accordance with Health Insurance
Portability and Accountability Act (HIPAA) standards using
structured data cleansing and date shifting.
Each record belongs to a different patient and only those
containing at least one ECG lead and the ABP channel were
took in consideration. For the hypotensive population, only
the first AHE was considered while control patients were
those that never experienced an AHE along the entire MIMIC
monitoring. Each selected record is 30 minutes long, if the
record belongs to an hypotensive subject, then the waveform
represents the 30 minutes right before the first AHE. For
control patients it was selected the first available and valid
30 minutes window.
Signal quality was regarded as the highest priority in this
study, all signals were treated with different filters, fed
to Signal Quality Indexes (SQI), and annotated. To ECGs
was applied a Pan-Tompkins like algorithm[16] for R-
peak annotations and for blood pressure a pulse waveform
delineator[17].
Annotations fusion, the assignment of each R-peak to the
relative pulse waveform, was performed using a set of
adaptive templates working synchronously with a finite-state
machine based on a gaussian model.
In the end each record was visually inspected and ectopic

beats were corrected, when possible, with an adaptive point
process filter [18]. In the end, the cohort counted 86 ICU
patients of which 41% (35 records) were hypotensive.

C. Data Window and Lead Time

For the analysis settings we defined two parameters:

• Data Window (DW): the time interval of a given size of
the record from which the features for the classification
are extracted.

• Lead Time (LT): The time interval between the upper
limit of the Data Window and the onset of the hypoten-
sion (or end of the record for controls). Data form the
LT is withheld and therefore inaccessible

Given these definitions, the main question the study is: is it
possible from the information in the DW to tell if an AHE
is going to happen in LT minutes?

D. Quantification of Baroreflex Predictive Power

The predictive power of baroreflex features was assessed
through a comparative analysis. From the 86 patients cohort
we built two datasets, A and B, differing in the predictors
used. Dataset A had features related only to SBP and
HRV while dataset B shared with A the same features plus
additional regressors computed from the BRFX. If the model
trained on B showed equal or worse performance compared
to that of A, then it could mean that the extra features in
B did not bring additional information. On the other hand,
an improved performance would sustain the hypothesis that
BRFX features have relevant class separation power.



IV. RESULTS

A 30 min segment from the dataset with exemplary
RR and SBP time series, together with resulting LF/HF
and Baroreflex instantaneous estimates, is shown in Fig.2.
Note the sharp dynamic changes around min 7, denoting a
shift towards sympathetic driven dynamics possibly due to
critical cardiovascular stress. Also note the sharp dicrease in
Baroreflex up to the hypothensive phenomenon at around
min 24, followed by a recovery in stability (and parallel
baroreflex increase starting from min 25. Classifiers were
trained using values of data window and lead time of
respectively 20 and 10 minutes. Using features extracted
from these series, as described in Methods, classification
performance was assessed through five-fold cross-validation
and results were computed in two different datasets: one
with (B) and one without (A) baroreflex features. The scope
was to understand the real contribution in terms of increased
performance of the baroreflex related features. AUCs from
different families of classifiers are shown in Table I. The
second and third column show respectively the AUC of those
models trained on dataset B and A (with or without the
features from BRFX). The column labeled variation shows
the change in performance for each family. A positive change
means that the models using the baroreflex features perform
better. Overall, the inclusion of baroreflex sensitivity features
increased the classification performance in terms of AUC by
10.7% on average.

TABLE I

Classifier B - BRFX A - NO BRFX Varition (%)
Trees .67 .63 +7.0
SVMs .68 .62 +9.7
KNNs .64 .57 +11.2

Logistic Regression .62 .54 +14.8

Logistic regression results show baroreflex frequency hav-
ing an odds ratio of .6 (pvalue < .07).

V. CONCLUSIONS

We devised an automatic routine able to annotate and
extract meaningful time series from the MIMIC Waveform
Database, thus extracting information from a non-controlled
and unstable environment such as that of the ICU, charac-
terized by artifacts, noise and missing data. We then applied
advanced modeling techniques, such as the bivariate point
process, to investigate the complex coupling between heart
rate and blood pressure. Using this information, it was pos-
sible to assess baroreflex sensitivity within a physiological
control system critical for hemodynamic stability as driven
by the Autonomic Nervous System. In the end, using a two
way classification strategy, we have shown how the use of
advanced models for quantification of baroreflex improve
the prediction of acute hypotensive episodes. Hypotensive
episodes are severe conditions and as such require prompt
intervention, it is therefore critical to find tools able to alarm
clinicians prior to the event. The hidden pattern in baroreflex
requires further investigation, but shows promising results,

pointing at how important is the link between ANS dynamics
and hypotension.
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