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Stagnation-Point Heat Transfer 
During Impingement of Laminar 
Liquid Jets: Analysis Including 
Surface Tension-
The stagnation-zone characteristics of an impinging liquid jet are of great interest 
because the maximum heat transfer coefficient occurs in that region. This paper is 
an analytical study of the fluid flow and heat transfer in the stagnation zone of an 
unsubmerged liquid jet. The role of surface tension is emphasized. Stagnation-zone 
transport is strongly dependent on the potential flow above the boundary layer. 
Only a few studies have examined the potential flow of an unsubmerged jet, each 
using approximate potential flow theory and neglecting surface tension. In this paper, 
numerical solutions for a laminar unsubmerged jet are obtained, using a simulation 
method for steady, inviscid, incompressible flow with surface tension. A series 
solution that satisfies the boundary conditions in an approximate manner is con­
structed in terms of Legendre functions. Numerical solution of the momentum 
equation shows that surf ace tension has an effect on the stagnation-point flow field 
when the Weber number is small. Solutions of the associated boundary layer problem 
are used to obtain predictions of the influence of Weber number on the stagnation-
zone heat transfer. The results are validated by comparison to measurements at high 
Weber number. 

1 Introduction 
The stagnation zone of an impinging jet is characterized by 

an extremely thin thermal boundary layer. This results in a 
very large heat transfer coefficient, but it also sensitizes the 
stagnation-zone cooling efficiency to various parametric in­
fluences that would be less important for a thicker thermal 
boundary layer. Such effects include minor variations in the 
free-stream flow field, wall roughness, wall conduction, and 
so on. In this paper, we examine the role of surface tension, 
which can change the shape of the jet's free surface and alter 
the radial velocity gradient over the stagnation-zone boundary 
layer. 

The stagnation-point flow field has been studied extensively 
for submerged jets. The theory is based on an infinite flow 
field assumption under which the partial differential equations 
of the boundary layer admit a similarity transformation 
(Schlichting, 1979; White, 1991). The free-stream flow is de­
termined from a separate potential-flow calculation. For an 
unsubmerged jet, the free surface between the liquid and gas 
phases imposes an additional boundary condition, which greatly 
complicates the calculation of the inviscid flow above the wall 
boundary layer; a numerical solution is required. The influence 
of the free surface on the near-wall flow field is even more 
complex for small Weber numbers, when surface tension ef­
fects are strong. This may be of particular concern for small-
diameter jets. 

Numerical methods for free-surface problems generally fall 
into one of two classes (Crank, 1984). In the first class, the 
problem is solved as originally formulated in the physical plane. 
After computation of approximate trial solutions, the free 
boundary is adjusted numerically to an improved free bound­
ary. In the second class, the problem is recast by some suitable 
change of coordinates, and the transformed problem is solved 
numerically as a fixed-boundary problem. 
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To avoid solving the full Navier-Stokes equations, the stag­
nation flow can be divided into an inviscid flow and a boundary 
layer. The inviscid flow, which provides the free-stream con­
dition needed for the near-wall viscous flow, represents the 
primary computational problem. Schach (1935) employed an 
integral-equation method, which was developed from Green's 
theorem. Shen (1962) expanded the velocity potential in a series 
using Legendre polynomials. The free-streamline boundary 
condition was satisfied in an average manner. Shen suggested 
an iteration scheme, but it lacked a method for successively 
correcting the approximated free-streamline position and it was 
not actually carried out. Strand (1964) expanded the velocity 
potential in Bessel functions. The free-streamline boundary 
condition was satisfied by discrete points. None of those so­
lutions included the surface tension. 

In the following, a series solution that includes surface ten­
sion is constructed. An iteration scheme for the free surface 
is conducted using a correction function. The solution is given 
by Legendre functions and satisfies the free-surface boundary 
conditions in an approximate manner, with accuracy improv­
ing as more terms are retained. The solution is validated by 
comparison to experimental data for high Weber number, lam­
inar jets, which have both uniform velocity profiles and large 
Reynolds numbers. 

2 Analysis 
The flow field is separated into an outer, inviscid, irrota-

tional flow and a near-wall viscous boundary layer. The in­
viscid flow is determined using potential-flow theory with 
surface tension along the free streamline. The resulting radial 
velocity distribution along the wall is used as the free-stream 
flow in the subsequent boundary-layer calculation. Gravita­
tional effects are neglected. 

Inviscid Impinging Jet Flow. For an inviscid, axisymmet-
ric, and irrotational jet (Fig. 1), the velocity potential is given 
by 

= 0 (1) 
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v=known 
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Fig. 1 Computational domain and boundary conditions 

The boundary condition along the inlet to the computational 
domain is 

v = known = U/ (2) 

In the present computation, the inlet velocity is assumed to be 
uniform (and thus irrotational) and purely downward. The 
inlet is located at a distance of one diameter above the wall; 
the orifice producing the jet is presumably somewhat farther 
above the wall. For a jet issuing from a plenum, the influence 
of surface tension on the inlet velocity must be taken into 
account as 

«/=C„ (3) '2^= U--±-
P Aj Werf-

for sharp-edged orifices, with C„ the velocity coefficient, P0 

the plenum gage pressure, p the liquid density, and Wed the 
Weber number.2 The Weber number characterizes the mag­
nitude of the surface tension pressure relative to the dynamic 
pressure: 

a 
Wed = (4) 

where a is the surface tension and d is the jet diameter. 
Along the free streamline, the velocity normal to the surface 

is obtained from the condition of no flow through the liquid 
surface: 

= 0 (5) 

The velocity tangent to the streamline is obtained from Ber­
noulli's equation: 

2 ^ 2 _ 2 — 
P P 

(6) 

where K is the curvature of the free surface. The Bernoulli 
constant is evaluated at the inlet and has the same value for 
all streamlines. Along the target plate and the axis of symmetry 

v„ = 0 (7) 

2Lienhard and Lienhard (1984) showed viscous losses to have a negligible 
effect on C„ for a sharp-edged orifice. Equation (3) above corrects an error in 
their handling of surface tension for a circular jet's C„. The correct expression 

for C„ is V 1 -K lC%2/y/Re'd-4/We^ for K2 = 0.242738 and CD the discharge 
coefficient ( = 0.611). Equation (3) is correct to —0.1 percent for Wed> 10 and 
Rerf>10000. 

N o m e n c l a t u r e 

B„ 
C„ 

d0 

fAO) 

A0, Au A2 = consts in Eq. (25) 
A2„ = consts in Eq. (20) 

B = dimensionless velocity 
gradient 
= 2(d/uf)(dU/dr) 
consts in Eq. (25) 
consts in Eq. (25) 
velocity coefficient for 
liquid jets 
jet diameter, fully con­
tracted, m 
orifice diameter, m 
any continuous function 
of 6 

h = heat transfer coefficient 
= q„/(T„-Tf), 
W/m 2 K 

G(Pr) = function of Prandtl 
number given by Eq. 
(31) 
thermal conductivity of 
liquid, W/m K 
Nusselt number based 
on jet diameter 
= qwd/k(Tw-Tf) 
local gage pressure in 
liquid, Pa 
gage pressure in 
plenum, Pa 
Legendre function of 2n 
order 

k = 

Nuw 

P = 

Pa = 

Pr = Prandtl number of 
liquid 

Q = volume flow rate of jet, 
m3/s 

qw = wall heat flux, W/m2 

r = radius coordinate in 
spherical coordinates, 
or radius coordinate in 
cylindrical coordinates, 
m 

R(d) = spherical radius-coordi­
nate of free surface, m 

Rerf = Reynolds number of the 
jet = Ufd/v 

Tw, Tf = temperature of wall, in­
coming liquid jet, K 

u, v = liquid velocity compo­
nents in radial, axial di­
rection of cylindrical 
coordinates, m/s 

Uf — incoming jet velocity = 
CvS/2Pp/p, m/s 

U(r) = radial velocity just out­
side boundary layer, 
m/s 

v = liquid velocity vector = 

V</>, m/s 
v„ = normal velocity in 

streamline coordinates, 
m/s 

v, = tangent velocity in 

We, = 

y = 

a = 

P = 

e = 

K = 

/* = 

V = 

P = 
a = 

</> = 
d/dn = 

d/dt = 

Superscripts 
(n) = 

* 

streamline coordinates, 
m/s 
Weber number 
= pu}d/o 
axial coordinate in cy­
lindrical coordinates, m 
thermal diffusivity of 
liquid, m2/s 
numerical relaxation 
factor 
polar angle of spherical 
coordinates 
free surface curvature, 
m"1 

m 
dynamic viscosity of 
liquid, kg/m s 
kinematic viscosity of 
liquid, m2/s 
density of liquid, kg/m3 

surface tension, N/m 
velocity potential, m2/s 
derivative normal to 
the solution domain 
boundary 
derivative tangent to 
the solution domain 
boundary 

result from the nth iter­
ation 
dimensionless variable 
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Fig. 2 Free-surface iteration 

Schach's results (1935) show that the velocity is essentially 
uniform and parallel to the target plate for a radius larger than 
1.25 diameter. In the present computation, the outlet is placed 
at r/d= 1.25 and the outlet velocity is assumed uniform and 
parallel to the target. From Bernoulli's equation, the outlet 
speed is then 

(8) 

neglecting the free surface curvature. 

Inlet Velocity Profile Boundary Condition. Our calcula­
tions assume a uniform velocity distribution for the incoming 
jet. This distribution occurs, for example, at a few diameters 
distance from a sharp-edged orifice. Often, the velocity profiles 
of jets issuing from nozzles are not uniform. A jet flowing 
from a long pipe, in which the flow is fully developed, has a 
parabolic velocity profile if it is laminar or a one-seventh power 
law profile if it is turbulent. Other cases may lie between these 
nonuniform distributions. However, for long jets, viscosity (or 
turbulent mixing) will produce a uniform profile at large dis­
tances from the nozzle. 

Previous investigations have shown that a nonuniform ve­
locity profile can produce larger stagnation-point velocity gra­
dients and higher Nusselt numbers than for a uniform profile. 
For example, prediction and experiments by Scholtz and Trass 
(1970) showed that an axisymmetric, parabolic profile jet has 
2.27 times the heat transfer of a uniform-profile jet. Sparrow 
and Lee (1975) found similar results for planar jets. Previous 
studies also show that velocity profile effects become more 
pronounced as the nozzle is moved very close to the target (// 
d< 1). Furthermore, many experimental and numerical studies 
show that the distance at which the surface velocity approaches 
the mean velocity depends strongly on both the nozzle type 
and Reynolds number (Scriven and Pigford, 1959; Duda and 
Vrentas, 1967; Davies and Makepeace, 1978). 

The Physical Coordinates and Nondimensional Equa­
tions. If Eqs. (l)-(8) are to be solved, a choice of a physical 
coordinate system is required. Cylindrical coordinates (Strand, 
1964) have the advantage that the boundary conditions at the 
inlet and outlet are simplified, since the inlet and outlet coincide 
with one of the coordinate planes. However, concurrent dif­
ficulties occur because the free-surface derivatives in these 
coordinates become either infinite or zero at the inlet and 
outlet. While those derivatives are irrelevant for the zero-sur­
face-tension case, they are essential when surface tension is 
included. Spherical coordinates (Shen, 1962) avoid the above 
problems while preserving the simplicity of the mathematical 
expressions. We adopt spherical coordinates with radius r and 
polar angle 0. The origin is placed at the stagnation point with 
the pole along the vertical axis of symmetry; the free-surface 
radius is R(0) (Fig. 2). 

Dimensionless velocity is defined relative to the ideal-jet 
velocity: 

The coordinates r and R are nondimensionalized as 

R* = 

2d 

R 

2d 

(9) 

(10) 

(11) 

The factor of 2 is included to make the dimensionless radius 
less than unity in the computational domain so as to guarantee 
the convergence of the series expansion (Eq. (20)). In addition, 
we scale the velocity potential and the surface curvature as 

2du <f 
(12) 

(13) 

In terms of the velocity potential, the dimensionless equation 
of motion is 

K =2dK 

v V = 
" i a / . 2 d \ I (d . a d \ 

r dr \ or J r sin 0 \d8 ddj </>* 

The boundary condition along the inlet (Eqs. (2)-(3)) is 

/ W \ d<t>* i a** . 
T ^ = - 7 - T C O S 0 - — — s i n 0 = - 1 

\d" /inle, dr r dd 

The boundary condition along the outlet (Eq. (8)) is 

1 = ~ s i n 6 > + 4 r77-cos0 = Vl +4 /W 
' , , dr r 3d 
outlet 

e</ 

= 0 

(14) 

(15) 

(16) 

Along the free surface, the boundary conditions (Eqs. (5)-(6)) 
are 

/ d < A 1 /d<l>* 1 d<t>* dR*\ 

W / / , dR*Y W r*2 90 dd) 
<J{**-dr)+1 

(d<t>*\ 1 (1 d<j>* dR* 1 d<l>*\ 

/ / 1 dR*\2 V 9r* ^0 r* 3 0 / 

l{¥-d¥)+l 

(17) 

= Vl-K*/We r f + 4/Wed (18) 

The dimensionless curvature of the free surface, K*, is given 
by: 

R-
d^R* 

dd2 — R' 
\dd 

cot0 dR* 

r* dd 
- - 1 

Rl + 
dir 

dd 
R 2 + 

dj£ 
dd 

(19) 

Inviscld-Flow Solution Procedure. The solution of La­
place's equation in spherical coordinates is 

!>*(/•*, 0)= 2A2nr*2nP2n{cos8) (20) 

where P2„ (cos0) is the Legendre function of 2n order. The 
Legendre function automatically satisfies the boundary con­
dition (Eq. (7)) along the target and the axis of symmetry. 

The coefficients A2n cannot be determined by conventional 
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orthogonal-function methods. If the jet boundary can be lo­
cated, we may pursue the problem using a modification of an 
alternative method due to Shen (1962), as follows. 

Assume/,,(9) is an arbitrary continuous function of 6, and 
multiply both sides of the boundary conditions by/„. Substitute 
4>* into the equations and integrate along the boundaries to 
obtain a set of nonlinear algebraic equations. By solving the 
set of algebraic equations, the coefficients A2„ can be calcu­
lated. Initially, the location of the jet's free boundary is both 
unknown and unlikely to coincide with a coordinate line. To 
proceed, we may assume a jet free boundary and integrate the 
equations along this assumed boundary; then we may correct 
the previous boundary and repeat the computation until the 
solution converges, satisfying both Eq. (14) and the boundary 
conditions (Eqs. (15)—(19)). Shen (1962) also suggested an it­
eration scheme for use with this method, but he did not carry 
it out. 

The principal difficulty with Shen's iteration scheme was 
the lack of a method of successively correcting the free-bound­
ary shape. We suggest an alternative method to locate the free 
boundary, as represented by the function R*—R*(6). The 
constraint on the free surface is a flux condition that the total 
flow rate over every jet cross section must be the same. Spe­
cifically, for any 8, 

{ 2*^edr =Q 

or, equivalently, for any R*, 

fiRt) d<t>* . 
Jn dr* * 

(21) 

(22) 

We integrate the total flow rate over a cross section. If the 
flow rate is larger than Q*, we pull in the free boundary (Fig. 
2). If the flow rate is smaller than Q*, we push out the free 
boundary. Then, the correction function for Eq. (21) is 

R *( / ;+!) 
(9) 

= /?*(n)(0) 1+0 [Q 

RMi\ dtf.. 
2ir——dr 

dd 
J_ 
Q* 

(23) 

where /3 is a relaxation factor. The convergence of the iteration 
strongly depends on the value of/3. In the present computation, 
/3 was chosen between 0.03 to 0.2. Similarly, for Eq. (22) 

9in+l)(R*) 

1+0 H 9<"></?*) 

2rR-%r*/Q 
(24) 

In the computation, discrete points on the free surface are 
chosen to be corrected by the above two equations. For points 
near the inlet and the outlet Eq. (24) is used; for the other 
points Eq. (23) is used, to achieve better convergence. The 
points that represent the shape of the free surface then are 
fitted to the following equation: 

^ ^ S ^ + S ^ (25) 

where A0, A\,A2, B„, C„ are adjustable constants. The accuracy 
of the curve fit is within ±0.2 percent. This fitted equation is 
substituted back into the original equations to calculate a new 
set of coefficients of A2n. In principle, it is not necessary to 
curve fit the points; the equation could be discretized instead. 
However, curve fitting simplifies the calculation significantly. 

Boundary Layer Solution. For the boundary layer, cylin­
drical coordinates are more convenient than spherical coor­
dinates, since the boundary layer is very thin and no singularity 
arises as for the free surface. The basic equations for axisym-
metric flow are 

d(ur) d(vr) _Q 

dr 

d\ dv 

dy 

u — +v — = - - Vp + vV v 
dr dy p 

with the energy equation 

dT ar , 
w —-+v-— = a V T 

dr dy 

(26) 

(27) 

(28) 

In these equations, r represents the radial distance from the 
stagnation point and y the vertical distance from the target 
plane (White, 1991). 

The velocity just outside the boundary layer can be obtained 
from Eq. (20) 

U(r) = J]2nA2„r2n-lP2„(cos(6 = T/4)) (29) 

Very close to the stagnation point only the first term in the 
above equation need be considered. The solution of the bound­
ary layer equations can be obtained using a standard similarity 
transformation, from which the Nusselt number at the stag­
nation point is obtained as: 

NIL, = G(Pr)Rei/2 

where (White, 1974) 

V2Pr/7r 

l+0.804552V2Pr/7r 
G ( P r ) = i 0.53898 Pr0 4 

d dU 
I 

Pr<0.15 

0 .15<Pr<3.0 

(30) 

(31) 

L 0.60105 Pr1 -0.050848 Pr<3 .0 

The boundary condition can be either uniform wall temper­
ature or uniform wall heat flux, since the stagnation-point 
boundary layer thickness is independent of r. The effect of the 
Weber number, or surface tension, on Nusselt number is im­
plicit in the above equation through its effect on the dimen-
sionless velocity gradient. 

4 Results 
Validation of the flow-field solution is based on a compar­

ison to existing results for infinite Weber number (Schach, 
1935). The essential contribution of the flow field solution to 
the subsequent stagnation-point heat transfer analysis is the 
streamwise velocity gradient that enters the Nusselt number 

5 = 2-d_d£ 
' uf dr 

(32) 

For the present solutions, B is 1.832 for infinite Weber number. 
This value differs from Schach's value of 1.76 by only 4 per­
cent, corresponding to a difference of about 2 percent in Nus­
selt number. While both the present solution and Schach's 
result are approximate, the good agreement between the two 
results lends a measure of confidence to the present procedure. 
An experimental comparison is described below. 

Calculated Inviscid Flow Field and Velocity Profiles. Figure 
3 shows the free-surface shape and nondimensional inviscid 
velocity distribution, \/uf, for infinite Weber number. In the 
plane of the axis of symmetry, the radius of curvature of the 
free surface is smaller than the jet radius. For an axisymmetric 
jet, the free surface begins to deflect much closer to the target 
than for a planar jet. 

Free-surface deflection is caused by the increased pressure 
near the stagnation point. The above characteristics are also 
seen in Fig. 4, which shows the calculated nondimensional 
pressure distribution, p/Po- The pressure is a maximum at the 
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Fig. 3 The inviscid velocity field, v", for Wed-<» from the potential 
flow solution 
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Fig. 6 Velocity and pressure variation along the target plate (y/d= 0) 
for several values of Weber number and inviscid flow 
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Fig. 4 The inviscid pressure distribution, p/P0, as Wed— <x> 
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Fig. 5 The free-surface shape for several values of Weber number and 
inviscid flow 

stagnation point and decreases steadily with increasing radius. 
In the region r< 0.25c?, the nondimensional pressure is larger 
than 0.75; beyond r/d= 0.8, the pressure is less than 10 percent 
of the stagnation pressure. 

The Role of Weber Number. Figure 5 shows the calculated 
free-surface shape as a function of Weber number. The free-
surface deflection is progressively reduced as Weber number 
decreases. This happens because surface tension provides an 

0 . 4 -

0.10 0.20 0.30 0.40 0.50 
y / d 

Fig. 7 Vertical profiles of downward velocity and radial velocity-gra­
dient along jet centerline for inviscid flow (Wed-oo) 

additional restoring force, which balances the higher pressure 
near the stagnation region. 

A lower bound on the Weber number is set by surface-tension 
choking of the nozzle. Lienhard and Lienhard (1984) showed 
that flow from a circular orifice will choke when 

Wed = 
PUJdg 

(33) 

where the orifice diameter is d0. Under these conditions, the 
surface-tension force prevents a steady flow from the upstream 
plenum. 

Figure 6 shows the velocity and pressure variation along the 
target plate at different Weber numbers. The smaller the Weber 
number, the faster the velocity grows with radius and the 
quicker the pressure drops along the plate. Because the surface 
curvature changes from concave (along the incoming jet) to 
almost flat (in the far field), surface tension pressure decreases 
radially and produces a net increase in the momentum of the 
outflowing liquid. Thus, the downstream velocity tends toward 
the ideal-jet velocity, -^2P0/p, which is greater than the in­
coming velocity u/. The vertical velocity distribution is shown 
in Fig. 7. 

A previous paper (Liu et al., 1991) estimated from boundary 
layer growth ideas that the stagnation zone is confined to the 
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2.40 

2.20 

2.00 

I .80 

Table 1 Velocity gradients at the stagnation point during laminar jet 
impingement: BI2 = (d/u,)(9U/Si)\ / is either the height of the inviscid-flow 
computational-domain or the experimental jet's length 

0000 

Fig. 8 Effect of Weber number on the free-stream (inviscid) stagnation-
point velocity gradient, B=2(d/u,){dU/Br) 

region r/d< 0.787. Figure 6 shows that the linear rise of veloc­
ity expected for true stagnation-point flow occurs only for 
r/d <0.35, although it may provide a useful approximation to 
r/d as large as 0.75. 

Figure 8 and Table 1 show the effect of Weber number on 
the velocity gradient at the stagnation point. The dimensionless 
gradient, B, at the stagnation point is higher for smaller values 
of Weber number. The increase is related to both the decrease 
in free-surface deflection (Fig. 5) and the increase of the down­
stream speed above the incoming liquid speed (Fig. 6). As the 
Weber number decreases from infinity to 16.7, the dimen­
sionless velocity gradient increases by 26 percent. Since the 
Nusselt number is proportional to the square root of the ve­
locity gradient, the Nusselt number goes up by about 13 per­
cent. For common cooling applications with water, the Weber 
number is usually more than several hundred, and Weber num­
ber effects will be negligible. For low-velocity small-diameter 
jets, however, such effects may have some importance. 

Table 2 shows the Nusselt number formulae obtained from 
Eq. (30) when the values of B from this or other investigations 
are employed or when different expressions for G(Pr) are used. 
The theoretical results may be compared to experimental data 
available for high Weber numbers. Experiments with uniform 
velocity profile, laminar jets for 2100< Wed<34,000 and high 
Reynolds numbers are represented by 

(34) Nurf = 0.745 Rei /2Pr 

to an accuracy of about ±5 percent (for details, see Liu, 1992; 
Liu et al., 1991, present some related data). In general, the 
predictions are in good agreement with the data. 

Two comments should be made in regard to turbulent liquid 
jets. First, because the Reynolds number is greater than 2400 
for most turbulent jets, the Weber number is usually large, as 
is seen from the following: 

y li J pad pad 

Thus, unless jet diameter is very small, direct stagnation-point 
surface-tension effects can be neglected for turbulent jets. 

Second, turbulence may increase the Nusselt number at the 
stagnation point by disrupting the already thin boundary layer 
there. This effect has been experimentally observed by com­
paring nearly-uniform-profile turbulent and laminar liquid jets 
(Lienhard et al., 1992), and is well documented in submerged 
flows and submerged jets (Kestin, 1966;Mehendaleetal., 1991; 
Simmons et al., 1990). The laminar formulae developed above 
are not recommended for turbulent jets. 

Investigators 
Miyazaki and 
Silberman (1972) 
Sparrow and 
Lee (1975) 

Scholtz and 
Trass (1970) 
Schach(1935) 
Shen (1962) 
Strand (1964) 
Present 
computations 

Present data 

B/2 
0.951 
0.457 
0.964 
0.445 
0.393 
1.74 
1.51 
3.76 
0.731 
0.88 
0.743 
0.958 
0.916 
0.981 
1.06 
1.16 
0.77 

jet type 
planar 
planar 
planar 
planar 
planar 
planar 
planar 

circular 
circular 
circular 
circular 
circular 
circular 
circular 
circular 
circular 
circular 

inlet velocity profile 
uniform 
uniform 
uniform 
uniform 
uniform 

parabolic 
parabolic 
parabolic 
uniform 
uniform 
uniform 
uniform 
uniform 
uniform 
uniform 
uniform 
uniform 

l/d 
0.5 
1.5 
0.5 
1.5 
oo 

0.25 
1.5 
1.0 
1.0 
1.5 
1.5 
1.0 
1.0 
1.0 
1.0 
1.0 
> 6 

We, 
oo 
oo 
oo 
oo 
oo 
oo 
CO 

CO 

oo 
oo 
oo 
oo 
CO 

50 
25 

16.7 
> 2100 

Table 2 Axisymmetric stagnation-point Nusselt number expressions 
for various investigations 

Investigators 

Scholtz and Trass 
(1970) 

Scholtz and Trass 
(1970) 

Nakoryakov el al. 
(1978) 

Liu et al. (1991) 
Eqn. 30 

Eqn. 30 

Eqn. 30 

Eqn. 30 

Lienhard et al. (1991) 

Stevens and Webb 
(1991) 

Nuj 

0.727 ReJ^Pr0'361 

l<Pr<10, (/rf=1.0 
1.648 ReJ^Pr0'361 

l<Pr<10, l/d=0.5 

0.753 ReJ^Pr1'3 

0.797 ReJ^Pr1'3 

Pr>3, l/d > 1.5 

0.813 ReJ^Pr1'3 

Pr>3, l/d = 1 
0.832 R e ^ P r 1 ' 3 

Pr>3, l/d = 1.5 

0.733 ReJ^Pr"3 

Pr>3, l/d =1.5 
i.24 R e y w 3 

Pr>3, l/d > 1.5 
2.67Re°'567Pr°-4(//(f)-M33<i(u//<0-°-237 

Velocity gradient 
& initial distribution 

Strand (1964) 
uniform laminar 

Inviscid vortex 
eqn., parabolic 

Schach (1935) 
uniform laminar 

Schach (1935) 
uniform laminar 

Present 
(Wej - co) 

Strand (1964) 
(Wej -> co) 

Shen (1962) 
(We,, -> co) 

Correlation, 
turbulent/splattering 

Correlation, 
turbulent 

5 Conclusions 

The influence of surface tension on stagnation-point heat 
transfer beneath an impinging liquid jet has been analytically 
studied. The results include the zero-surface-tension (high 
Weber number) case as a limit. Various past results for the 
stagnation-point Nusselt number are also summarized. 

9 Surface tension affects the stagnation-point velocity gra­
dient and Nusselt number for Wed less than about 100. The 
increase in Nusselt number is about 13 percent at a Weber 
number of 16.7. For most industrial cooling applications, how­
ever, Werf is too large for this effect to be of significance. 

« The dimensionless stagnation-point velocity gradient ob­
tained for Werf—oo is B= 1.832, in good agreement with the 
results of Schach (1935) and others. 

• Stagnation-point Nusselt number formulae for this and 
previous investigations are summarized in Table 2. Those re­
sults include both laminar and turbulent jets with both uniform 
and nonuniform velocity profiles; most have experimental val­
idation. For laminar jets, the results differ principally in the 
method of correlating Prandtl number effects; more data are 
needed at very high and very low Prandtl number. For high 
Weber number, uniform, laminar jets, and experimental data 
are well represented by Nud= 0.745 Rey2Pr l /3, which is within 
the range of the various predictions. 
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