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Cost of desalinated water

Energy + CAPEX + OPEX
make-up levelized cost
of desalinated water

Energy adds > 30% to
cost of desalinated
seawater

Energy cost is higher at
very high salinity (e.g.,
oil/gas waste water)

Energy cost is small
factor for brackish water
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Desalination plant control volume

Q,TO Wsep
Saline 4 Black Box [ Product (p)
water ————> Separator |
(sw) | epa ——— > Brine (b)

By eliminating Q between the first and second laws

W =  (h = T,s), + My (h = Tys), - mg, (h - Tgs),

sep 0 gen
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Desalination plant control volume

Q,TO Wsep
Saline 4 Black Box [ Product (p)
water ————> Separator |
(sw) | epa ——— > Brine (b)

By eliminating Q between the first and second laws
0

WSEP B mp(h - TOS)P * mb(h - TOS)b - msw(h - TOS)SW + TO%
When S gen = 0:
) Wsep is a thermodynamic property of the end states.

° Wsep is minimized if the entering and leaving streams are at the dead
state pressure and temperature, T, and p,,.
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Entropy generation by transport processes (W/K-m3)

@ Heat transfer\
1

1 q 1
o= v?.]o + ?E., - ?gvﬂ,k.]k
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Entropy generation by transport processes (W/K-m3)

@ Heat transfer\
1

1 q 1
o= v?.]o + ?E., - ?gvﬂ,k.]k

@ Electric current \_/
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Entropy generation by transport processes (W/K-m3)

@ Heat transfer

/

1 q 1
- V;— Q E" B ?gvﬂ”k']k

@ Electric current \_/

@ Mass transfer

John Lienhard (MIT) Entropy Generation in Desalination 13 November 2018 4121



Entropy generation by transport processes (W/K-m3)

@ Heat transfer

/

1 g 1
= Vol E" B ?gvﬂ”k']k

@ Electric current \_/

@ Mass transfer

o is product of flux vectors J. and driving force vectors X
o= Z X;-J;
i
The driving forces are gradients that cause fluxes of heat, mass, and current.
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Equipartitioning of entropy generation

The fluxes are an approximately linear function of the driving forces:
)i = g LyiXe

For heat flux,
_ __ “297 = _
jQ = LQQV(1/T) = LQQT VT = -RVT
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Equipartitioning of entropy generation

The fluxes are an approximately linear function of the driving forces:
)i = g LyiXe

For heat flux,
- - - 29T = -
Jg = LoqV(1/T) = ~Lo(T°VT = -RVT

So, o varies as square of temperature & concentration gradients:
0= Z XL, X,
iR

For heat flux,
2
0=Xy- )y = R(VT/T)
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Equipartitioning of entropy generation

The fluxes are an approximately linear function of the driving forces:
)i = Z LyiXe
k
For heat flux,

- -l T2VT =-
Jg = LoqV(1/T) = ~Lo(T°VT = -RVT

So, o varies as square of temperature & concentration gradients:
0= Z XL, X,
iR

For heat flux,
2
0=Xy- )y = R(VT/T)

Lowering spatial/temporal variance of driving forces minimizes overall entropy
generation (Tondeur & Kvaalen, 1987; Johannessen et al., 2005).
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Balancing a counterflow heat exchanger

Hot
< Th,in
Heat Exchanger
Tc,in >
Cold
(mcp), > (mcp),, (mcp). = (mcp)y,

Il
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Entropy generation minimization by balancing

Counterflow heat exchanger at fixed effectiveness
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Humidification-dehumidification

Open water, closed air, HDH cycle

Water Heater

Hot Q Warm

Warm Moist Air

A\ 4 A\ 4

Mp

Humidifier Dehumidifier (——
Pure

A Water
Cool Dry Air
mp m¢

Brine Cool Saline Water
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Humidification-dehumidification

Open water, closed air, HDH cycle

Entropy generation

2 2
VT p°R 2
o= Rl— | +— VWW T
T MM ww c 60
a w a w o
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s
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Water o 100
Cool Dry Air
mp ms
Brine Cool Saline Water
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Humidification-dehumidification

Open water, closed air, HDH cycle

generation
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Humidification-dehumidification

Entropy generation minimization thru balancing: HCR, = 1

& 08 :
gen o humidifier + dehumidifier |
507 | adehumidifier '
. 3 o humidifier
Modified heat S06 I
. . a
capacity rate ratio e HCRd =1
%05 | ‘
2 5
: 04 [
AHmax cold '§ OOOOLOO
’ [ 1 1
HR=T | ok, :
max, hot S Ban, b E
§o.2 3 3 !
o 1 '
accounts for latent P R e |
heat of water vapor i :
v 0 N N N N N 1 N N
08 1 1.2 1.4 16 1.8 2 2.2

Modified heat capacity rate ratio in dehumidifier, HCR{ [-]
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Humidification-dehumidification

Energy efficiency maximized at HCR of minimum entropy generation
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Modified heat capacity rate ratio in dehumidifier, HCRd [-]
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Balancing HDH with a single extraction

90 -
—Air in humidifier and dehumidifier
—Water in dehumidifier
80 —— Water in humidifier
e e 70t
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Humidification-dehumidification plant

HDH balancing technology is patented, licensed, and commercialized

Global Water Intelligence

2013 WATER TECHNOLOGY IDOL

2014 INDUSTRIAL WATER PROJECT
OF THE YEAR
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Membrane distillation cycle balancing

Direct-contact MD

1 kgls 1 kals

rhf,out rhp,in

0.94 kg/s 0.94 kg/s
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Membrane distillation cycle balancing

Direct-contact MD Air-Gap MD

1 kgls

1kgls 1 kgls 1kgls

preheat
stream

0.94 kg/s l
0.94 kg/s 0.94 kg/s 0.06 kg/s

Mf out Mp,in 1kgls
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Single-pass reverse osmosis system

RO Module
my M, = 0.4 kg/s
pup = 69 bar Datm = 1 bar
= 85°/°<‘_‘ > | Pam = 1bar.
" \J_, k Pure water
Nbooster = 85% .
My My,
Prec = 64.14 bar Porine = 67 bar
mp Y
Pree = 2 bar Pressure Exchanger
Npx = 96%
A —
9 My My = 0.6 kg/s
nfeed = 85% pfeed =2 bar patm =1 bar
Seawater o
¢ = Tkg/s
Patm = 1 bar
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Entropy generation in RO

To find Sgen from water transport through membrane, V_p  is required:

V.p,=V/(g,+RTlna,)
=vV(p-1,)
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Entropy generation in RO

To find Sgen from water transport through membrane, V_p  is required:
V.p,=V/(g,+RTlna,)
=vV(p-1,)
Entropy generation per unit membrane area:

. %
Sgen= 0 GdX—/ [V— lQ W.TW ( )

J(Tlrl) T(AP am,) = j(Ap an,)
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Entropy generation in RO

To find $gen from water transport through membrane, V_p  is required:
V.p,=V/(g,+RTlna,)
=vV(p-1,)

Entropy generation per unit membrane area:
' g V(p-n,)|dx
S! = odx = / [V— - —
gen 0 jQ woT

_,(TL_TlO) T](Ap an )= j(Ap an,)

Water flux from solution-diffusion model, for A the membrane permeability:

J,=A(Ap-an )

Thus,

LA
S! = (Ap an )

gen

<|
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Pressure variation in single-pass RO

10 m%h (44 gpm) 5 m3h (22 gpm)
feid permeate

5 m3h (22 gpm)

Entropy generation g
Py
v A
~17 w 2
Sgen = T (Ap - AI-Iw)
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Novel RO configurations that are better balanced

Concentrate

reg |
S

} =" C
Diluate D‘—l

@ Split-feed counterflow RO
(above left)
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Novel RO configurations that are better balanced

Circulation RO module
pump

Concentrate Feed

Variable-
volume high
pressure tank

reg |
S

Diluate h@‘—l

Brine reject

........... >

@ Split-feed counterflow RO
(above left)

@ Batch RO with pressurized tank
(right top)
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Novel RO configurations that are better balanced

Circulation
pump

RO module

Concentrate Feed

F_@'L_.@.g_.

Variable-

-4

S volume high . .
Diluate <_D‘—| pressure tank Brine reject
........... >
@ Split-feed counterflow RO Atmospheric High pressure
pump RO
(above left) pressure tank ' e dule
. . Feed P
@ Batch RO with pressurized tank ~ «-ooo
(right top)
@ Batch RO with pressure exchanger
(right bottom) Pressure Brine reject
exchanger
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Entropy generation in balanced, counterflow HX

Q = UAAT

For T >> AT:

. . AT
Sgen = Q(T T )

h,in " ¢,in
For a given Q = UAAT:

@ At fixed UA, a higher flux, more compact device has same Sgen
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Entropy generation in balanced, counterflow HX

Q = UAAT

For T >> AT:

. . AT
Sgen = Q(T T )

h,in " ¢,in
For a given Q = UAAT:

@ At fixed UA, a higher flux, more compact device has same $gen

@ Lower AT lowers Sgen, which favors raising UA (e.g., use more area)
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Entropy generation in balanced, counterflow HX

Q = UAAT

For T >> AT:
. . AT
Sgen = Q( )
Th,in Tc,in
For a given Q = UAAT:

@ At fixed UA, a higher flux, more compact device has same $gen

@ Lower AT lowers Sgen, which favors raising UA (e.g., use more area)

@ If additional area is expensive and U cannot be raised, a higher AT can
limit capital investment, but with higher Sgen and lower energy efficiency
(CAPEX vs. OPEX)

e Brackish water reverse osmosis (BWRO)
o Electrodialysis
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Electrodialysis

High membrane cost favors high average flux: concentration balancing less useful

Concentrate Diluate Concentrate

/1 '.\ /1 r\
Anode & e Xot he) Cathode

Cation Anion
exchange exchange
membrane membrane

Feed

1 .1
o=?E'1_?;vT”k'lk

., Apg Av_  voltage diff. of one cell pair
Sr.==|av, -—] for P o
J T P Ay, salt chem. potential diff.
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Summary

Minimizing entropy generation minimizes desalination energy consumption

Desalination systems are like thermal power cycles in which the useful output
is the work of separation.
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Summary

Minimizing entropy generation minimizes desalination energy consumption

Desalination systems are like thermal power cycles in which the useful output
is the work of separation.

Q $gen in desalination systems is dominated by transport processes.

@ For a given “duty”, Sgen is minimized by making o uniform along the flow
path (equipartitioning). Approximated by keeping the driving force for
transport uniform (balancing).

John Lienhard (MIT) Entropy Generation in Desalination 13 November 2018 21/ 21



Summary

Minimizing entropy generation minimizes desalination energy consumption

Desalination systems are like thermal power cycles in which the useful output
is the work of separation.

Q $gen in desalination systems is dominated by transport processes.

@ For a given “duty”, Sgen is minimized by making o uniform along the flow
path (equipartitioning). Approximated by keeping the driving force for
transport uniform (balancing).

© Balancing maximizes energy efficiency in several desalination systems,

both experimentally and theoretically. Often done by adjusting mass flow
rate ratios.
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is the work of separation.

Q $gen in desalination systems is dominated by transport processes.

@ For a given “duty”, Sgen is minimized by making o uniform along the flow
path (equipartitioning). Approximated by keeping the driving force for
transport uniform (balancing).

© Balancing maximizes energy efficiency in several desalination systems,

both experimentally and theoretically. Often done by adjusting mass flow
rate ratios.

@ Balancing of concentration difference is often most significant in
evaporative devices (with carrier gas).
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Summary

Minimizing entropy generation minimizes desalination energy consumption

Desalination systems are like thermal power cycles in which the useful output
is the work of separation.

Q $gen in desalination systems is dominated by transport processes.

@ For a given “duty”, Sgen is minimized by making o uniform along the flow
path (equipartitioning). Approximated by keeping the driving force for
transport uniform (balancing).

© Balancing maximizes energy efficiency in several desalination systems,
both experimentally and theoretically. Often done by adjusting mass flow
rate ratios.

@ Balancing of concentration difference is often most significant in
evaporative devices (with carrier gas).

@ In systems designed to minimize CAPEX, differences in driving force may
be too large for balancing to help.
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Supplementary slides
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Forward osmosis mass exchanger balancing

Concentrate (c)

Concentrated draw (dc) Heat (Q)

Ty (streams, Work (W)

FO exchanger

_____i______

environment)

Regen.
system

Feed (f)/\

Entropy generation

SII

gen ~

Diluted draw (dd)

Product (p)

<!

A
w

T(ndraw - I-lfeed)z

FO exchanger efficiency

100%

90%

80%

70%

60%

50%

40%

0 bar pinch
——20 bar pinch
—— 40 bar pinch

s s s s

0.2

0.4 0.6 0.8 1
Mass flow rate ratio

1.2
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Entropy generation in a balanced counterflow heat

exchanger

T2 T2

dx

For a balanced counterflow exchanger of length L, T_ =T, in ¥ OX where the

constanta = (TC out = cm)/L Integrating the local entropy generation for
AT << T__ . gives:

c,ou

. L
$yen = UPAT? f dx -
0 (Tc,in + ClX)
_ UPAT? ( 11 )
a Tc,in Tc,out

QAT |\ _[_Qar
T.T T . T
c,in c,out c,in” h,in
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Least work of separation

Reversible limit: S =0
gen

5 T T
Wieast ~| ——ws,p=0.0 gkg
[kd/kg] A ——wsp=0.5gkg g

L ws,sw =35 g/kg
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