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Abstract. The circular hydraulic jump exhibits behavior quite differ-
ent from that commonly observed in planar jumps. Here we examine
experimentally some of the causes and consequences of those differ-
ences. We suggest that surface tension plays a dominant role in
establishing the shape of the circular jump for impinging jets. The
importance of surface tension is a direct result of the thinness of the
liquid films normally encountered in circular jump configurations.
A sequence of instabilities appears in the jump’s structure as the
subcritical liquid film becomes thicker and surface tension effects
decrease. These conclusions are corroborated by experiments on
thin planar films which result in unusual jump structures, like those
seen in circular jumps. In addition, we show that the standard
momentum balance for the circular jump is effective only at relative-
ly low supercritical Froude numbers or at low ratios of downstream
to upstream depth. Typical values of those parameters for circular
jumps are often quite large relative to the usual values for planar
open-channel flows.

List of Symbols

d jet diameter
D fictitious downstream drag force

Fry Jjet Froude number, u/,/gd
Fry, supercritical film Froude number, u d*/8¢,./gh®

Fr, subcritical film Froude number, u d*/8r ./gs’
g gravitational body force

h local thickness of liquid sheet

p hydrostatic pressure

r radius measured from jet stagnation point

r; radius at which hydraulic jump begins

r, radius at which subcritical depth equals s

R radius of curvature of jump interface

Re, Reynolds number of the jet, u d/v.

s liquid sheet thickness after hydraulic jump
u(r,y) radial velocity distribution in liquid film

u, velocity of impinging jet

i, depth average velocity for sheet of thickness h, u,d*/8rh
y distance normal to the wall ____

We  Weber number of jump, s\/pg/o

Greek letters

v liquid kinematic viscosity
p liquid density
o surface tension

1 Introduction

Jet impingement cooling systems sometimes operate with
a hydraulic jump downstream of the region of impinge-
ment (Fig. 1). The slow-moving liquid in the sub-critical
region presents degraded heat transfer characteristics,
which makes prediction and control of the jump location
important in thermal design. This paper examines the
difficulties that have been found in using simple jump
theory to predict the jump’s radial location in jet impinge-
ment.

The open-channel hydraulic jump of undergraduate
textbooks is usually manifested as a roiling turbulent free
surface connecting the supercritical and subcritical re-
gions of the flow. For planar flow, application of a
one-dimensional momentum balance describes the rela-
tionship between upstream and downstream depth and
velocity with an accuracy of about 1% over conditions
ranging from laboratory flumes to hydroelectric power
plants (Peterka, 1963). In such situations the jump prob-
lem is both classical and well understood.

In contrast, Fig. 1 shows a liquid surface that is very
smooth, with a sharply defined and relatively steady hy-
draulic jump. In addition, the upstream (supercritical)
liquid film is very thin, with a minimum thickness of about
100 um for the 5 mm diameter jet shown. Apart from these
obvious differences in flow field, this jump differs from the
usual open channel jump by the range of the supercritical
Froude number. For the impinging jet, the upstream
Froude number can be as much as several hundred, while
typical open-channel flows have supercritical Froude
numbers of no more than 20 or 30. Each of these factors
contributes to unexpected deviations from the standard
theory of the hydraulic jump.

1.1 Experimental tests of the theory

Direct adaptation of the momentum balance theory to
impinging jet jumps was first made by Watson (1964), and



Fig. 1. Hydraulic jump for an impinging jet: Single-roller condition,
d=4.96 mm, r;=4.78 cm, Re,~22000.

several subsequent investigators modified his theory
slightly; the basic result is generally a prediction of the
radial position of the jump. Experimental tests of these
models, however, have not been entirely satisfactory. Wat-
son himself presented data showing both good agreement
and relatively poor agreement, and subsequent compari-
sons have been numerous: Olsson and Turkdogan (1966),
Ishigai et al. (1977), Nakoryakov et al. (1978), Bouhadef
(1978), Craik et al. (1981), Errico (1986), and Vasista (1989)
have each tested Watson’s model. Some of these investiga-
tions have reported rough agreement with the model,
some have found good agreement for a limited range of
parameters, and others have found relatively poor agree-
ment. Craik et al, for example, reported that Watson’s
model works best when the jump radius is more than ten
times the supercritical depth, with larger disagreements
for smaller radii. Errico’s data often showed poor agree-
ment with Watson’s prediction, an effect he attributed to
his own lower flow rates (thus smaller jump radii) and
deeper jumps. Vasista’s measurements showed increasing-
ly poor agreement with Watson’s model as downstream
depth increased and as jet diameter increased. These
studies did not systematically vary dimensionless groups,
and most do not clearly distinguish an upstream Froude
number. However, to focus on the trends of disagreement,
we note that decreasing the jump radius and increasing
the jet diameter both tend to raise the supercritical Froude
number by supplying faster moving liquid to the jump.
We surmise that Watson’s model is less accurate when the
downstream flow is too deep or when the upstream
Froude number is too high.

A clue to the cause of this behavior lies in the velocity
profile behind the jump. The experimental studies have
shown that the flow just behind the jump can separate,
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creating a recirculating eddy attached to the wall. This
separation is a result of the abrupt increase in hydrostatic
pressure at the jump, an effect that is clearly worsened
when the downstream flow is deeper. Measurements by
Errico (1986) and by Craik et al. (1981) show that the
separated region can be quite long and that its length
changes significantly with flow conditions. Further, the
supercritical film is deflected upwards and travels over the
separated region while maintaining a high speed. Clearly,
the complex flow field behind the jump has a serious effect
on any one-dimensional momentum conservation model.
Velocity profile effects thus account for some of the dis-
agreements reported.

A second complication is that the shape of the jump
surface has been observed to have several forms, variously
being smooth, curved, showing standing or radiating
waves, and showing outright instability (the latter being
reminiscent of the usual open channel jump). The para-
meters reported to be responsibie for these changes in-
clude increasing downstream depth (Craik et al., 1981),
increasing volume flow (Errico, 1986; Thomas et al., 1991),
and increasing upstream Froude number (Ishigai et al.’
1977). Typically, the changes reported are described as
some form of instability in the smooth free surface of Fig.
1. These successive changes in the jump surface have
a controlling influence on the velocity profile beyond the
jump and may affect the breakdown of the jump radius

‘predictions.

In this light, previous studies have generally concluded
that the failure of the standard jump momentum balance
results from the nonuniform velocity profile and perhaps
from the presence of wall drag beneath the jump. These
factors are clearly linked to the shape and stability of the
jump interface, but the latter have generally been implied
to be primarily a property of the axisymmetric geometry.
Apart from the apparent Froude number dependence
reported by Ishigai et al., no consideration has been given
to the variables that control the stability of the jump
surface.

Our purpose hereinafter is to describe new experi-
mental results on the stability of the jump’s free surface.
We argue that the stability is primarily dependent on the
liquid surface tension, which can play a significant role
only when the subcritical fluid layer is relatively thin. The
thinness of the downstream flow is a condition that has
seldom been met in planar jump experiments but which is
a regular feature of axisymmetric hydraulic jumps, even
those that are described as deep in the preceding dis-
cussion. In addition, our data show that a large super-
critical Froude number (or equivalently a large ratio of
downstream to upstream depth) is the other key factor in
the failure of standard jump theory as applied to the
circular jump. Both observations show that the thinness of
the upstream and downstream films, rather than axisym-
metry per se, is responsible for the failure of one-
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dimensional theories of the jump. This conclusion is cor-
roborated by an experiment on a thin planar film.

1.2 Predictions based on the momentum theorem

Knowledge of the upstream and downstream flow vari-
ations together with control volume mass and momentum
conservation are sufficient for predicting the jump radius,
provided that: (i) the wall drag in the region beneath the
jump can be neglected; and (ii) the flow exiting the control
volume satisfies the one-dimensional or uniform velocity
profile usually assumed (Watson, 1964). The momentum
balance is merely an extension of that for plane flow:

h h
2mr; (j pu(r;, y)zdy+J p dy)

2, ( f pulry, y) 2dy+ f » dy) ()

where the terms are as shown in Fig. 2 and in the list of
symbols. One particular feature of this balance is that
viscous drag steadily slows the thin upstream film, causing
the supercritical thickness and velocity profile to vary
strongly with the radius and the jet Reynolds number.
Thus, the supercritical Froude number is a strongly de-
creasing function of radius, and the lefthand side of Eq.
1 is strongly dependent on Reynolds number and jump
radius, r;.

Equation 1 was evaluated in dimensional form by
Watson (1964) who used his solutions for the supercritical
velocity distribution to obtain equations for the jump
radius. Subsequent investigators have used other profiles
or procedures (e.g. Bouhadef, 1978), but all models express
the same general dependence of the jump position on
upstream Reynolds and Froude numbers and a down-
stream Froude number or depth.

We may cast these results into the form of classical
jump theory by defining the supercritical Froude number
at radius r; just ahead of the jump as:
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where h is the film thickness and #, is the average velocity
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Fig. 2. Control volume and terminology for the jump momentum
balance.
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Assuming that the outflow velocity is also unidirectional
and neglecting curvature effects in the jump region, mass
and momentum conservation lead to the following equa-
tion for the ratio of downstream to upstream depth:

%:%(\/mq) @)

The various circular jump formulae proposed by previous
investigators, including Watson, can generally be ex-
pressed by the above equation, apart from minor vari-
ations related to the assumed velocity distributions and
the method of calculating the supercritical liquid sheet
thickness.

2 Experiments

Experiments were performed using both laminar imping-
ing water jets and thin planar water films. In each case, an
obstruction was introduced downstream to create a sub-
critical region and, thus, a hydraulic jump.

The circular jets issued vertically downward from
a small sharp-edged orifice at the base of a large plenum.
Such orifices produce a uniform velocity profile across the
jet a few diameters beyond the orifice. The plenum flow
was carefully damped with honeycomb near the inlet to
ensure that the jets were laminar. The main components of
the apparatus are a water reservoir, a pump, the plenum,
and a target plate in which the jumps were formed. Water
is pumped from the reservoir to the pressurized plenum
from which it exits as a free jet. The jet strikes the target
plate normally and flows radially outward and over the
plate’s edge. The flow rates were varied by adjusting two
globe valves on the supply line; the flow rate was deter-
mined from the pressure in the plenum and the orifice
discharge coefficient (taken as 0.611). The brass orifice
plates at the lower end of the plenum are interchangeable;
orifice diameters of 3.2 mm and 6.3 mm were used along
with a plenum of 152 mm diameter. Further details of this
apparatus are given by Vasista (1989).

The target plate was supported on adjustable screws
that allowed the target to be horizontally levelled so that
an even, axisymmetric flow was obtained. The target was
a circular aluminium plate of 1.9 cm thickness and
30.5 cm outer diameter. A 29.8 cm diameter circular de-
pression was milled into the center of the plate, leaving an
outer lip with a height of 1.3 cm. Circular plexiglas sheets
of various thicknesses were inserted into the depression to
vary the effective lip height, thus allowing the subcritical
(downstream) depth of the jumps to be varied. The liquid
depths were determined by using a micrometer point
gauge. The radial position of the jump was measured from
radial graduations on the target plate’s surface.



Each test consisted of recording the pressure, the
liquid thickness upstream and downstream of the jump,
the jump radius, the insert height, the orifice size, and the
distance from the orifice to the plate. In addition, the jump
surface condition was noted. The measured values are
shown in Tables 1, 2, and 3.

Some tests were also conducted using a surfactant
(detergent) to reduce the surface tension of the water. The

resulting surface tension was measured using a ring gauge.’

The results of these tests are given in Tables 4 and 5.
The planar jet experiment used a constant head tank
to supply water to a cylindrical plenum having a horizon-
tal axis. One endplate of the plenum included a rectangu-
lar slot; at the lower edge of the slot, a rectangular
plexiglas sheet extended horizontally from the plenum
perpendicular to the end plate. An adjustable gate cover-
ing the upper edge of the slot allowed variation of the
height of the gap above the plexiglas sheet. Water issued
through this gap as a thin planar film that flowed along
the upper surface of the plexiglas sheet. Rectangular
obstructions were placed downstream on the sheet to
produce hydraulic jumps in the water films. Ensuring two-
dimensional flow along the sheet required several pre-

Table 1. Hydraulic jump data for water

We r;/d s/h r./d Fr, Form

Re;, = 524 x 10% Fr, = 54.1

6.09 6.08 1057 18.0 196 unsteady

4.77 11.37 948 207 129 unsteady

4.67 1232 895 212 112 unsteady

461 14.0 513 220 438 unsteady

424 1496 450 225 38.1 unsteady

3.97 16.49 390 232 30.8 double+ unsteady
3.83 16.0 385 230 32.9 double+ unsteady
3.61 17.13 343 236 28.2 double

3.39 1873  29.7 244 229 double

3.13 1825 281 241 244  double

2.86 19.53 241 248 20.7 single+double
3.00 19.69 251 248 20.3 single +double
2.66 18.57 235 243 234 single

2.08 17.00 199 235 28.7 single

2.52 19.21 21,6 246 21.6 single

Re, = 646 x10% Fr, = 66.7

6.18 786 1277 189 243 unsteady

5.15 13.71 605 219 59.8  unsteady

4.83 14.82 538 224 51.0 unsteady

4.53 15.93 478 230 437 unsteady

4.51 1573 480 229 449 unsteady

4.18 17.14 41.5 236 37.1 double+ unsteady
3.83 18.55 354 243 30.9 double + unsteady
3.82 1845 355 242 31.3 double+ unsteady
3.53 20.07 304 250 25.6  double

3.28 21.89 259 259 20.6
322 2208 252 260 20.2
2.98 2297 224 265 18.3
286  23.19 213 266 17.9
259 2420 185 27.1 16.0

single + double
single + double
single
single
single
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cautions. Two moveable plexiglas walis were put on either
side of the plexiglas sheet; the leading edges of these walls
were positioned just at the position of the jump to help
maintain the subcritical flow and prevent it from rolling
off the edges of the sheet. Upstream of the jump, however,
the edges of the plexiglas sheet were left open so as to

Table 2. Hydraulic jump data for water

We ri/d  sth r./d Fr, Form

Re, = 749x10% Fr, = 773

5.51 897 1243 19.5 279 unsteady

541 13.7 6532 219 72.2  unsteady

4.88 14.72 56.14 224 62.5 unsteady

4.52 17.14 4621 236 450 double+ unsteady
4.58 1694 4728 235 46.2 double + unsteady
431 17.24 4385 236 444  double + unsteady
391 19.16 3624 246 34.7 double+ unsteady
391 1856 3731 243 374 double

3.68 2067 3177 253 28.9 double

358 2158 2964 258 26,0 double

318 2229 2550 261 240 single+double
3.01 23.59 2578 268 20.8 single

Re, = 839x10% Fr, = 86.6

5.36 8.64 121.2 19.3 328 unsteady

4.90 1465 5778 223 73.0 unsteady

4.65 1696 4876  23.5 534 unsteady

4.65 16.65 4949 233 55.6 unsteady

4.42 17.05 4644 235 528 double+ unsteady
4.29 18.24 4257 241 45.3 double+ unsteady
381 19.53 3556 248 38.6 double+ unsteady
3.70 19.84 3403 249 37.1  double

354 2001 3230 250 364 double

341 21.33 2927 257 31.1  double

339 2337 2658 267 24.8 single +double
311 2327 2449 266 25.1 single

286 2481 21.08 274 21.3  single

Table 3. Hydraulic jump data for water

We rifd s/h r./d Fr, Form

Re; = 9.39x10% Fr, = 97.0

5.76 8.87 134.6 194 376 unsteady

5.14 15.5 5949 228 75.1  unsteady

4.92 17.75 51.16 239 559 double + unsteady
4.51 1835 4558 242 51.8 double+ unsteady
4.07 19.66  38.67 248 44.1 double

379 2016 3519 251 41.5 double

379 2208 3225 260 33.2  double

2.90 24.15 2255 271 26.6 single

Re, = 11.0x10% Fr, = 113

6.10 9.67 1524 19.8 445 unsteady

4.70 17.84 5023 239 67.6 double + unsteady
4.54 19.14 4567 246 57.6  double + unsteady
416 2209 37.77 257 442 double

416  21.38 3661 260 40.8 double

3.70 23.37 30.80  26.7 355 double
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Table 4. Hydraulic jump data for water with reduced surface
tension

Table 5. Hydraulic jump data for water with reduced surface
tension

We r;/d s/h r/d Fr, Form We rifd s/h r./d Fr, Form
Re, = 524 x10% Fr, = 54.1 Re, = 749 % 10% Fr, = 71.3
6.11 827 108.2 19.1 180 unsteady 7.50 827 1434 19.1 288 unsteady
5.90 1048 105.7 20.2 144 unsteady 6.16 14.71 6244 224 62.5 unsteady
5.36 12.50 89.74 213 109 unsteady 5.75 15.32 56.60 22.7 47.5 unsteady
4.71 14.92 4410 225 38.4 unsteady 5.05 16.13 47.84 231 51.5 unsteady
4.68 1512 4346 226 37.3  unsteady 4.82 1694 4388 235 46.2 double + unsteady
447 16.13 3943 231 324 double+ unsteady 443 18.15 38.03 241 39.5 double + unsteady
4.04 17.34 3351 237 27.5  double+ unsteady 3.96 21.17 2943 256 27.3  double
4.01 17.74 3258 239 26.0 double+unsteady 3.96 19.76 3144 249 323  double
3.94 18.55 3080 243 234 double 3.08 21.57 2252 258 26.0 single+double
3.28 18.95 2523 245 22.3 double 2.88 22.18 2049 26.1 243  single
324 20.16 23.38 251 19.2  single + double 2.60 23.19 1749  26.6 217  single
2.86 20.56 2025 253 18.2 single
280 2278 1787 264 141 single Re; = 9.19% 10% Fr, = 950
221 23. 13.61 2638 129 ingl
359 single 691 665 1190 183 376  unsteady
Re, = 6.46 x 10% Fr, = 66.7 5.79 15.12 59.89 226 77.0 unsteady
532 16.73 5093 234 62.0 unsteady
7.02 464 8837 17.3 237 unsteady 5.01 1774 4575 239 544 double+ unsteady
5.81 12.50 108.1 21.3 157 unsteady 4.98 18.55 43.75 243 49.1 double+ unsteady
5.56 14.31 55.89 222 54.8 unsteady 4.88 19.05 4191 245 46.2 double + unsteady
5.17 15.73 4848 229 449 unsteady 4.81 19.56 40.31 248 434  double+ unsteady
4.84 16.33 4407 232 41.3  double + unsteady 4.44 19.76 36.87 249 424  double+ unsteady
4.83 16.94 4267 235 38.1 double+ unsteady 4.27 21.17 3325 256 359 double
431 17.34 37.27 237 36.1 double 392 22.18 29.11  26.1 320 double
4.05 18.15 3372 241 32.5 double 354 22.98 2538 265 293  single
3.58 18.95 28.63 245 29.4  single +double
324 19.76 2495 249 26.6 single
2.84 21.57 20.08 25.8 214 single
2.37 2298 1570  26.5 18.3  single
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tween 1.6% and 3.1% and that for the Froude number is
less than 4%. For the jump height the uncertainty is about
1.5% to 3%; this uncertainty is primarily the result of
surface disturbances that tended to increase with increas-
ing jet velocity.

3 Discussion
Figure 3 plots the data on the coordinates of Eq. 4. The

circular hydraulic jumps asymptotically approach the
classical theory at low Froude number and low ratio of

s/h e=——>»

Fig. 3. Plot of data as Froude number versus ratio of downstream
to upstream depth: — Equation 4

downstream to upstream depth. For high Froude num-
bers or larger downstream depths, the axisymmetric
jumps deviate increasingly from the classical theory, Eq. 4,
which is represented by a solid line. It should be noted
that the classical theory has generally been applied in
planar open-channel situations where Fr,<30 and
5/h<30. The circular jump thus pushes both parameters



well beyond the established range of the theory. The
trends of Fig. 3 are consistent with the failures of Watson’s
theory reported by other investigators for large down-
stream depths and small jump radii (the latter correspond-
ing to higher supercritical Froude number).

Let us examine these departures in the context of the
shape of the hydraulic jump and in relation to surface
tension forces.

3.1 Observations of the jump’s form

Several forms of circular jump appeared sequentially in
the experiments as the downstream depth was increased
(Fig. 4). For small differences between supercritical and
subcritical depths, a smooth jump occurs in which the
depth increases gradually and without any flow reversal.
As the downstream depth increases, the hydrostatic pres-
sure along the sloped jump surface becomes larger; this
finally results in a backward flowing roller on the free
surface, giving a cusped jump interface. This single-roller
jump is the case shown in Fig. 1. The single-roller jump
has a very abrupt transition in liquid depth, and this sharp
change in hydrostatic pressure creates a separated eddy
on the wall just behind the free surface roller; the main
flow travels at high speed between the two vortices. Both
the surface roller and the wall vortex were confirmed by
our hydrogen bubble experiments (although the surface
roller can be seen with the naked eye). The flow immedi-
ately after the jump was not unidirectional and showed
very complex patterns.

With a further increase in downstream depth, the
single roller on the jump surface becomes lower than the
downstream flow, giving the surface the appearance of
a double jump (Fig. 5). This double structure is less
smooth and steady than the single roller, and shows
unsteady azimuthal variations on the free surface. The
distance between the two “jumps” varies with jet velocity,
diminishing at lower velocity. If the downstream depth is
decreased, the doubie jump reverts to a single jump.

If instead the downstream depth is increased further,
the double jump becomes unstable, and entrains increas-
ing amounts of air. Finally, all semblance of order is lost
(Fig. 6), and the jump becomes entirely unstable. The
liquid surface is turbulent, traps air bubbles, and tessclates
radially with no appearance of axisymmetry. This condi-
tion is similar to the usual picture of an open-channel
hydraulic jump. ’

The edge of the single and double jumps is basically
circular for stable laminar incoming jets. On this circle,
a pronounced azimuthal wave pattern can sometimes be
seen. For very stable incoming jets and small jet velocities
the wave pattern is very regular and periodic. This
azimuthal instability is different from the sequence of
vertical instabilities just described, and it appears to be
a type of Taylor instability produced by the density differ-
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Fig. 4a-d. Instabilities of the circular jump: a jump without roller;
b jump with single roller; ¢ jump with double roller; d unstable jump
with turbulent flow and air entrainment

Fig. 5. Jump with double roller: Re, = 51,500, d=4.96 mm,
rj=90.3 mm, s=9.2 mm

ence between the air and the water. The wave pattern
disappears as the flow rate increases. This azimuthal insta-
bility is similar to that reported by Craik et al. (1981).

3.2 The role of surface tension

Open channel hydraulics has long been focused on large
scale jumps as found in dam spillways. In that literature
(e.g., Peterka, 1963) the supercritical liquid sheet is typi-
cally several centimeters thick and the subcritical sheet is
thicker still. Surface tension forces are entirely negligible



Fig. 6. Unstable jump: Re, =45500, d=4.96 mm, s=13.2 mm
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Fig. 7. Circular jump data (dimensionless jump radius versus
Weber number) showing regions of jump forms

for such thicknesses, and they cannot suppress the surface
turbulence observed. For the circular jumps shown here,
the thickness of the subcritical liquid sheet is only
millimeters and the surface tensiort is dynamically impor-
tant. Balancing the hydrostatic pressure force behind the
jump and the surface tension force along the surface of the
jump gives

pgs~a/R ®)

where R is the radius of curvature of the surface roller.

Our observations show that the radius of curvature at the

jump is about one half of the jump height, s. Hence,

surface tension can balance the hydrostatic pressure be-

hind the jump if

s~ 20 (6)
Pg

For water, the thickness s is on the order of millimeters
when the pressure and surface tension forces are in bal-
ance. Surface tension stabilizes the surface of the axisym-
metric jump primarily because the subcritical film is thin.

One principal result of the stabilization of the free
surface is an increase in the adverse pressure gradient
along the wall, because the change in liquid height can
occur more abruptly than for the more spread-out,
unstable surface. As noted earlier, the adverse gradient
produces a separation vortex beneath the jump. The sep-
arated region along the wall may therefore be regarded as
a consequence of surface tension stabilization, rather than
a consequence of axisymmetry.

We may examine the role of surface tension in stabil-
izing the jump by introducing a jump Weber number that
characterizes the ratio of the hydrostatic force to the
restraining surface tension force:

We=s |4 7
a .

In Fig. 7 the form of the jump is shown as a function of
Weber number and dimensionless jump radius for various
values of the Froude number and of the surface tension. If
the shape of the jump were solely determined by the
Weber number, then the different regions of jump form
would be divided by the lines normal to the horizontal
axis. The figure shows that this is not the case. The
borders of different types of jump are at some angle to the
Weber number axis and thus depend on both Weber
number and the jump radius. This implies that the type of
jump is not only a function of the Weber number, but also
of the factors defining r;/d. Nevertheless, the controlling
influence of the Weber number is apparent. In particular,
the single roller jump occurs only in the range of smallest
Weber number.

If the preceding arguments are correct, it follows that
similar phenomena should occur in a planar jump if the
liquid sheet has a thickness that is of the order of
millimeters. Such a flow should differ from the classical
planar jump through the strong influence of surface ten-
sion on the jump surface. Fig. 8 is a photo of such a thin
planar jump. The liquid issued from a gate with a gap of
about 1.9 mm from the bottom wall. The free surface is
smooth and a cusp can be seen at the jump. For the planar
jump there is not only a surface roller, but also a hump
upstream of it. Hydrogen bubble visualization showed
that this hump was in fact a recirculating vortex beneath
the film, over which the supercritical flow travelled (Fig.
9). As in the circular jump, this vortex probably results
from boundary layer separation caused by the adverse
hydrostatic pressure gradient. In contrast to the circular
jump, the separation vortex has moved from the subcriti-
cal region into the supercritical region. The backflowing
surface roller now sits somewhat behind it. However, these



Fig. 8. Planar hydraulic jump in a thin water film issuing from
a 1.9 mm high gate. Fr, ~ 26.2, s/h~8.6, Wex3.63

observations confirm the peculiar behavior to result from
the thinness of the liquid sheet and the effects of surface
tension, rather than from an axisymmetric geometry.

3.3 The departure from the standard theory

To quantify the extent of the departure from the standard
control volume momentum balance, we may introduce
a fictitious drag force that corrects for the velocity
nonuniformity of the separation, as well as for any wall
drag beneath the separated region. We locate the up-
stream end of the control volume just before the jump and
the downstream end at some point in the subcritical
region. In this case, the momentum balance (Fig. 2)
becomes

h h
2mr (J pu(r;, y)zdy+f p dy)

=—D+2nr, (rpu(rs, yidy + Jsp dy) 8

o

where D is a drag force exerted on the liquid control
volume in the downstream direction. Using the depth
average velocity to evaluate the integrals and introducing
the upstream (supercritical) Froude number as before

Fry=——— ©

as well as the downstream (subcritical) Froude number

Fr,= B @
8r./gs®

we can rearrange the above equation to obtain:

Fr\*3/1 1 D
) (4 Fr2)=(24Fr2 )= 1
(Fr;.) <2+ r,,) (2+ rs> pgs? (1)

(10)
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Fig. 9. Flow field for the hydraulic jump in a thin planar flow
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Fig. 10. Plot of dimensionless total momentum loss as a function of
Weber number for various Reynolds numbers.

The drag term itself is likely to depend on the Reynolds
number, the Weber number, and a term characterizing
jump length, such as (r,—r;)/d.

Figure 10 shows the dimensionless momentum deficit,
—D
pygs*

equation. Here, the highest depth in the subcritical region
was taken as the downstream depth, s, and the velocity
was assumed positive in the radial direction. The figure
shows that the fictitious momentum loss can be a very
large portion of the total momentum. The loss increases
with jet Reynolds number. The loss curves for constant
Reynolds number each seem to have a minimum at
a Weber number between 3 and 4, a region typically
corresponding to the double jump. The loss grows steadily
as the Weber number rises beyond this, in the region of
unstable jumps. As the Weber number decreases below 3,
the single jump region, the loss also grows. While this may
imply a greater viscous loss for the single jump structure,
it must also be realized that these jumps occur nearer to
the lip of the target plate (which is at a radius of 30.5d; cf.
Tables 1-5), a situation that may influence the subcritical
flow.

Finally, we note that a full prediction of the circular

jump radius will in fact depend on six dimensionless

which is

divided by the terms on the lefthand side of
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groups (for details of the dimensional analysis, see Liu,
1992). If the initial conditions are set at the jet nozzle, an
appropriate functional equation is

r; S ¥
‘j=F<R€d, Fr,,, We,,, g,g) (12)
Here, the dimensionless jump radius, r;/d, is a function of:
the jet Reynolds and Froude numbers, Re,=u,d/v and

Fri=u f/\/gﬁ, which together describe the radial evolu-
tion of the local supercritical Froude number; the jump
Weber number, which controls the jump shape; and the
dimensionless downstream depth, s/d, and the dimension-
less radius, r/d at which that depth occurs. Previous
studies have accounted for only some of these parameters,
which may explain some of the difficulties they reported.

4 Conclusions

Hydraulic jumps in thin liquid sheets are stabilized by
surface tension, resulting in very smooth jumps for low
values of an appropriate Weber number. As this Weber
number increases, the jump surface undergoes a series of
instabilities, finally reaching a turbulent condition similar
to that seen in classical open-channel hydraulic jumps.
The surface tension stabilization promotes separation of
the flow along the wall in the vicinity of the jump, leading
to a wall vortex in the subcritical region. In addition,
a smooth backflow can occur on the front surface of
a stable hydraulic jump. While these effects are most easily
seen in circular hydraulic jumps, similar phenomena occur
in planar flows when they are sufficiently thin.

Circular hydraulic jumps can show large disagree-
ments with simple (uniform subcritical flow) models for
jump. These disagreements are worse when the ratio of
downstream to upstream depth is large or when the super-
critical Froude number at the jump radius is large. A full

theory of the circular hydraulic jump must include both
parameters describing upstream and downstream flow
evolution -and parameters describing the stability of the
jump surface.
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