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Conductive Boundary Conditions
for the Rayleigh-Bénard Instability

A technigue is developed for predicting the stability limit of conductively coupled
horizontal fluid layers heated from below and cooled above. The approach
presented gives exact solutions of the stability problem and is numerically much

simpler than previous multilayer solutions. Critical Rayleigh numbers are obtained
Sfor the case of three and four fluid layers separated by equally spaced identical
midlayers of various thicknesses and conductivities with isothermal outer walls and
Jor the symmetric two-layer problem with outer walls of finite thermal conductivity.
Other configurations are considered briefly.

Introduction

Natural convection in parallel arrays of fluid layers is a
problem of current technical interest. The most outstand‘ng
example of a coupled fluid layer array is the set of cover layers
on a flat plate solar collector. In this example, as in many
others, the basic design objective is convection suppression, to
reduce heat loss. A necessary first step toward suppressing
convection is prediction of the stability limit of the quiescent
state of the fluid.

To date only the two-layer problem has been studied. Ger-
shuni and Zhukhovitskii [1] considered the stability of a pair
of identical fluid layers separated by a conducting midlayer,
allowing the outer boundaries to be either isothermal or of the
same conductivity as the midlayer. They found approximate
solutions using the Galerkin method. Catton and Lienhard [2]
generalized the problem to allow for fluid layers of differing
heights, considering isothermal outer boundaries; their solu-
tions were obtained using a higher order Galerkin
approximation.

Here, I consider the stability of the one-dimensional con-
ductive state of an array of horizontal fluid layers heated from
below and cooled above. A general technique is formulated
for obtaining exact solutions of the stability problem in an ar-
bitrary number of layers when the thermal coupling is by con-
duction through intermediate solid layers (the important
problem of radiative coupling is not treated here). The method
follows standard techniques of stability analysis and relies on
manipulation of the boundary conditions to simplify the equa-
tions to be solved. The resulting computational procedure is
much simpler and yields higher accuracy than the previous
multilayer solutions.

The heart of the procedure is the formulation of a third kind
thermal boundary condition dependent upon the wavenumber
and, more generally, a coupling parameter which must be
iterated. While third kind conditions were first discussed for
the single layer more than fifty years ago by Low [8], only in
1968 was a wavenumber-dependent condition considered by
Nield [I1], in the context of a conductive boundary slab. Ap-
parently, no subsequent work has dealt with conductive
boundaries.

The Effect of Midlayer Conduction on Multilayer
Stability

The physical behavior of multilayer instability is discussed
in detail by Catton and Lienhard [2] in the context of a two-
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Fig. 1 Archetypical configuration for coupled layers

layer system. The general features of the instability are, at the
simplest level, just like those of the ordinary Bénard instabil-
ity. Once the temperature gradient in a fluid layer becomes
large enough, the release of buoyant energy by fluid motion
exceeds the associated viscous dissipation and convection en-
sues. However, heat conduction through adjacent solid layers
modifies the stability limit of a layered system and allows ther-
mal interactions between adjacent fluid layers.

When fluid layers are coupled by a conducting midlayer, a
thermal disturbance in one layer of wavelength A is present in
the adjacent layers at the same wavelength. Thus, if one layer
has a higher Rayleigh number than an adjacent layer, we may
think of it as becoming unstable at some critical Ra and driv-
ing convection in the adjacent layer, even if the latter might
otherwise be stable. In no case can one layer in a thermally in-
teracting group be quiescent while convection occurs in the
others. If the thermal coupling is weak, however, the
amplitude of convection in one layer may be much less than in
others.

The thermal conductivity and thickness of the midlayers are
the dominant parameters affecting the stability of a layered
system. Thicker, more conductive layers tend to damp out
thermal disturbances, resulting in weaker coupling between
the layers. Thin midlayers allow less damping of thermal
disturbances, resulting in greater thermal coupling. In general,
when the thermal interaction of the layers is stronger, the
stability of an individual layer is lower. Poorly conducting
midlayers allow less dissipation of thermal disturbances and
result in hot and cold spots along the midlayer, lowering the
stability of individual fluid layers.

When considering the stability limit of a layered system, one
must distinguish between the overall Rayleigh number of the
layered system and the Rayleigh number of an individual fluid
layer. The overall critical Rayleigh number may be increased
indefinitely by adding more layers (for a fixed overall
temperature difference) and by making the midlayers less con-
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ductive. The individual layer critical Rayleigh number always
varies between 1708 (isothermal boundaries) and 720 (fixed
heat flux boundaries), with associated critical wavenumbers of
3.12 and 0, respectively. One other important critical Rayleigh
number is 1296 (with wavenumber 2.56) which occurs for a
single layer with one isothermal and one fixed heat flux wall.

The results presented here focus on the individual layer
critical Rayleigh number. The critical wavenumber is largely
ignored, both for brevity and because it varies between the
above limits, more or less in tandem with the critical Rayleigh
number and in a fairly regular fashion.

Governing Equations

Our analysis begins with the usual disturbance equations for
horizontally unbounded, plane solid and fluid layers. The
archetypical geometry is illustrated in Fig. 1. A fluid layer is
bounded by rigid, conducting solids above and below. The
thermal conditions imposed at the outer boundaries of the
solid laver are arbitrary. These conditions will be prescribed
later in the context of particular problems. The basic
temperature gradient is in the negative z direction.

Perturbation and normal mode analysis of the
Oberbeck-Boussinesq equations leads to the following sixth-
order O.D.E. for the normal mode amplitude of the
temperature disturbance, ©;, in a fluid layer i [1, 3]

IS'
{~—=+ (D1 -ap)}~s,+ (D} -ah)) (D} ~aDje,
= —aRq,9, (1)
where the dimensional temperature disturbance in layer i is
T/=AT;+0,(z))expls;t; +i(ayx; +a, ;)]

Here all quantities (except T7) are cast in the scales of layer /.
In particular, Pr is the Prandtl number, Ra; = (gB8/va)L}AT,
is the Rayleigh number of layer i, a} = a3, + aj, = 2wL;/\is
the wavenumber for layer i, and AT,—the temperature scale
for this layer—is the temperature difference across layer /.

We state without proof that instability will occur by passage
through a marginal state in which disturbances neither decay
nor grow characterized by s; = 0. This assertion, known as ex-
change of stabilities, has been proven for various boundary
conditions on a single layer (see, e.g. [1, 3]) and for a pair of
coupled fluid layers [4]. The proof for an arbitrary number of
solid and fluid layers involves only more algebra than the
proof in [4]. To find the critical Rayleigh number, we
therefore need only consider the case s; = 0in (1)

(D} -a})*®,= —ajRa®, (2)
The general solution of the above equation was found long
ago by Pellew and Southwell [5] and is
0, =A cosh (gz;) + A* cosh (g*z;) + A, cos (Gy2;)

+ B sinh (gz;) + B* sinh (g*z;) + B, sin (g,2;) 3)

where ( )* denotes a complex conjugate and
g =a(r—1)"

q =a%(l+% r(lxi\f?})

with
Ra,- = ﬂf o

Here we may take z,€ (—1/2, 1/2). The coefficients in (3) will
be chosen to satisfy the six boundary conditions on © which
we shall develop presently.

We are interested in situations in which the thermal distur-
bance will be carried into the solid layers above and below the
fluid layer. In these layers

Ty
dtg
where ( )z denotes a value in the solid. This equation has
been nondimensionalized with the scales: length—Ly, the

thickness of the solid layer; time—L} /ap; temperature—ATp,
the temperature difference across the solid layer. Perturbing

=V§Tp @)
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equation (4) and analyzing the disturbance into normal modes
yields .

[—Sa+(D§—023)}ea=0 ®)

The physical wavelength and growth rate (A and o) are com-
mon to the fluid and solid layers so that

2 2 L
k=—w Ll': il LB=GB= ! a;
a; ag i
and, with exchange of stabilities,
S; :SB =0

in the marginal state. The solution of equation (5) with sy = 0

is
)
— 6
> (6)
with the constants M and N to be found from the thermal
boundary conditions on the solid layer. Commonly, this re-
quires simultaneous solution for all the constants arising in the
entire set of fluid and solid layers.

|
Op =M cosh (agzy) + N sinh (agzg), z4€ (—T,

Boundary Conditions

Boundary conditions are required for the vertical velocity
disturbance w; and the fluid and solid temperature distur-
bances T; and T'.

At a rigid, horizontal boundary we have

v=(u, v, w)=0
and, with the continuity equation
ou av aw  dw

ax ay az az
at the boundaries. By (2) these are equivalent to
(D} —a})®,; = (D} —a})D©,;=0 (7
The thermal boundary conditions on a fluid layer match
temperature and heat flux to those of the bounding solids. In
physical variables

daT; daT,
—ky =t =y —2

dz dz
or, in terms of the nondimensional disturbances

0= () (F2)es

DI-BE =DBGH (8]

Note that the thermal boundary conditions are generally not
symmetric about the fluid layer and the even and odd func-
tions in ©, cannot be separated as in the symmetric case.

We may use equations (7) to reduce the number of free con-
stants in equation (3). Conditions (7) apply at each boundary
of the fluid layer (z; = + 1/2), and, by taking advantage of
the even/odd behavior of the cos/cosh and sin/sinh functions
in the expression for ©;, we find

cosh (g/2) cosh (g*/2)
g sinh (g/2)

Tf = TB!

and

&)

and
[ sinh (g/2)

sinh (g*/2) (g* —a*)B
g cosh (g/2) g* cosh (q"/?.)} [(q'z—az)B‘

(10)
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(¢*-ahA
=A(qf +a*)
q* sinh (¢*/2) J | (¢*?—a?)A*

J =By(q} +a*) [

These equations may be solved directly (e.g., by Cramer’s
rule) to find A/A,, B/B,, and their conjugates, cutting the
number of unknown coefficients from six to two.

Finally, we observed that if no forcing of the system’s ther-
mal disturbance is imposed the boundary conditions will be
homogeneous, and we must choose particular values of Ra to
obtain nontrivial solutions for © which satisfy equations (7)
and (8). The smallest of the eigenvalues Ra must be minimized
as a function of wavenumber to obtain the critical Rayleigh
number.

The Appearance and Use of Third Kind Thermal
Boundary Conditions

We are interested in developing a technique for collapsing
the coupling conditions (8) into a single condition applied
directly to the fluid layer, thereby avoiding the need to solve
simultaneously for the constants and Rayleigh numbers in all
fluid and solid layers. The simplest example of such an ap-
proach was given by Sparrow et al. [6] in 1964. They con-
sidered the case in which the medium adjacent to the fluid
layer could be characterized by a spatially uniform heat
transfer coefficients as

dT
ky —g—= = h(T=T.)
where the minus sign applies when 7, > T. Perturbing this
condition and scaling with AT}, L; produces

(1)

0/== (ﬂ)e,. = %40, (12)
ki

a third kind condition depending on a constant A (which is a
Biot number here). For Bénard-type problems the plus sign
applies at the (hot) lower surface if the direction of increasing
z is taken to be vertically upward. Equation (12) is applied
directly to the fluid layer and allows us to ignore the details of
the disturbance to the external medium.

Of particular interest are the two limiting cases:

A—=o0=20,=0

A—=0=0/=0
One may show analytically that the critical Rayleigh number
will increase monotonically as A is increased, in agreement
with the results of Sparrow et al.

A somewhat more advanced example is obtained when the
bounding surface is a semi-infinite wall of thermal conductivi-
ty kz. Here the appropriate solution of equation (5) is

Oy =M exp(—agzp), zp€(0, o) (13)

if zz = 0 at the boundary of the fluid and zj is scaled with L,.
Substitution into condition (8) gives

isothermal wall
fixed heat flux wall

k.
ejz( d )Me—ﬂaza
ky
O/=—-M azge 88 = —M ae”°F8

in light of the scaling. We may form a single third kind condi-
tion by eliminating M between these equa_lions

cos (gy/2) J
—qy sin (gy/2)

sin (gy/2)
+qg cos (gy/2)
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Fig. 2 Level curves of the Rayleigh number as a function of A and a
a;
0/=— ( e

k.7k )9': £ (%)9’ 9

with X defined as indicated. At a lower surface, z; will have
opposite orientation and the minus sign in equation (1)
becomes a plus sign.

For this problem A = (a,/X) is wavenumber dependent,
and the calculation of the critical Rayleigh number will include
a constrained variation of the parameter A with a;. Note,
however, that simultaneous solution for M, the coefficients of
©, and Ra is no longer required. We need consider only the
fluid layer and the disturbance in the wall requires no better
specification that equation (13).

The wavenumber dependence of A has a marked effect on
the stability limit of the fluid layer. The cases of equations (12)
and (14) are contrasted in Fig. 2, assuming for example that A
applies on top with the lower surface isothermal. The figure
shows schematically the level curves of Ra(a, A). The curve a,
is the locus of critical wavenumbers for given A # A(a), viz.,
the result of using equation (12). The critical Rayleigh
numbers for fixed A lie on this curve. On the other hand, when
A = a/X the critical Rayleigh number for a given X cor-
responds to the lowest Ra level curve intersecting the line A =
(1/X)a. Of particular importance is the observation that these
points do not generally lie on the curve @, for constant A.
Hence, there is not a unique curve for Ra, = Ra.(a, A(a)) if
A(a) is arbitrary.

To this point our remarks have been organizational. We are
now in a position to tackle some previously unsolved
problems.

The Two-Layer Problem With Finite Outer Wall
Conductivity

We consider here the problem of two identical fluid layers
separated by a finite thickness and conductivity midlayer and
bounded by identical outer walls of finite conductivity (Fig.
3). This configuration is symmetric about the centerline of the
midlayer. Lienhard and Catton [7] found that disturbances of
the two layer system with isothermal outer walls are either
even or odd about the midlayer centerline when the fluid
layers are of equal height. This will also be true when the outer
walls are not isothermal.

For even disturbances, the midlayer thermal perturbation
must be
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93 (ZB) =M cosh (GHZE) (Is)
and for odd modes
O, (zp) =N sinh (az25) (16)

We may substitute these general forms into equations (8) and
eliminate M and N. The result for even disturbances is

0/(1/2)= - A,06,(1/2) }
(17)
04(—1/2)=4,0,(—1/2)
with
e
; A= (XB1 ) tanh (a,A) (18)

and Xp = k\/kp, A = Lp/2L,. For the odd modes we find

a,
Ay (
XH.
Observe that A, < A, for a given two-layer system; as noted

above Ra, increases monotonically with A, so even modes will
always occur before odd modes. This agrees with the results of
[71.

The thermal conditions at the outer walls were developed in
the preceding section and are

0{(~1/2)=A,0,(-1/2) }
0;(1/2)= - A,,0,(1/2)

) coth (a,4) (19)

(20)

with A, = @,/X,, Xo, = k,/ko. The eigenvalue problems
for the two layers are the same. In agreement with physical in-
tuition, the layers must become unstable simultaneously (at
the same Rayleigh number). Accordingly, we need solve the
problem only for one layer, say the first.

The equations to be solved are algebraic. Equation (6) is
substituted into equations (17) and (20); equations (9) and (10)
are used to eliminate 4, A*, B, and B* in favor of A, and B,.

The result is
e G, A
=0
e.‘i ed Bl‘.l

where the @, are uninteresting functions of Ra, a, A,, and A,
which we have relegated to the Appendix. For nontrivial solu-
tions we must have

C,C,—C,C, =0 1)

For a given a, A,, and A, this equation has roots for varius
Ra. To solve for the stability limit Ra,, the smallest of these
roots was located using bisection and then minimized as a
function of wavenumber using parabolic fit of Ra(a) and the
requirement dRa/da = 0. Calculations made in double preci-
sion FORTRAN on a Vax-11 yielded the results in Table 1.
These results are believed accurate to the number of figures
shown.
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Table 1. Critical Rayleigh numbers for the two-layer system

A =0,001
X, =
b 0.0 0,1 0.3 o 30 10,0 =
By
0.0 1907.76 | 1667.96 | 1607, 18 | 1452,66 | 1391.00 | 1329, 56 | 1295.78
0,0003 |166B, 56 | 1627.90 | 1565.65 | 1447,85 | 1342,74 [ 1279,06 | 1244.04
0,001 |1596,97 | 1554,73 | 1489, 67 | 1364, 98 | 1251, 56 [ 1181.69 | 1142,89
0,003 |1483.85 | 1439,71 | 1371,02 | 1235.88 | 11D5,60 [ 1016.89 | 956,69
0,01 1374,40 | 1330,31 | 1261.32 | 1123,52 985, 59 fB4, 11 792,00
0,1 1304, 95 | 1262,17 | 1195,12 | 1060, 58 | 924,45 | 822,50 | 727.20
1.4 1296,71 | 1254,16 | 1187.44 | 1053,51 | 917,83 | 816.06 | 720.72
= 1295,78 ‘ 1253,25 | 1186, 58 | 1052,71 | 917.09 | B15.35 | 720.00
A =0,01
T
x, |
Xp 0.0 0,1 0,3 L0 1,0 10.0 =
1
0,0 1707.76 | 1667,96 | 1607, 18 | 1492, 66 | 1391, 00 | 1329.56 | 1295,78
0,001 | 1694, 0% | 1653,93 | 1592, 64 | 1477.02 | 1374, 23 | 1312,07 | 1277.90
0,01 1596, 65 | 1554,71 | 1489,65 | 1364, 96 | 1251,54 | 1181.67 | 1142,87
0,03 1483, 83 | 1439,69 | 1371,00 | 123586 | 1105.58 [ 1016 BB | 956.69
0.1 1374, 38 | 1330,29 | 1261, 30 | 1123,51 | 985,38 | B84,10 ) 792.00
1.0 1304.95 | 1262,17 | 1195, 12 | 1060, 58 | 924,45 | 822,49 | 727,20
10,0 1296,71 | 1254,16 | 1187, 44 | 1053.51 | 917.83 | B16. 06 | 720,72
= 1295, 78 | 1253, 25 | 1186, 58 | 1052.71 | 917.09 | 815,35 | 720,00
A=0,1
% | | [
Ky 0,0 0,1 0,3 1,0 3.0 10.0 @
1
0.0 1707,76 | 1667,96 | 1607.18 | 1492, 66 |1391,00 | 1329,56 | 1295,78
0,03 1667.45 | 1626,82 | 1564,50 | 1446,84 | 1341, 78 | 1278,12 | 1243,12
0,1 1594, 60 | 1552,43 | 14B7.47 | 1362, 96 | 1249,71 [ 1175.93 | 1141,18
0,3 1481, 23 | 1437,22 | 1368,74 | 1234,03 | 1104,19 | 101586 | 956,22
1.0 1372,95 | 1328,98 | 1260,16 | 1122,69 G985, DB B83. B4 | 792,00
a0 1324, 51 | 1281,30 | 1213, 60 | 1077.91 | 940.97 | B38.85 | 744,00
10,0 1304, 76 | 1262,00 | 1194.98 | 1060, 48 | 924,39 | 822,47 | 727.20
- | 1295, 78 | 1253.25 | 1186, 58 | 1052,71 | 917,09 | 815.35 | 720.00

The basic trends in the critical Rayleigh number Ra, as a

function of A and X p, were discussed in [2] for X, = 0. The
results for finite X; are entirely as expected, vlz., decreased
stability as the outer walls become less conductive and thus
less able to dissipate thermal disturbances. Observe that as
Xp, and X, — oo we recover the limiting case Ra, = 720, a
= 0 first found in [6].

The limit A — 0 is most profitably discussed with reference
to equations (18) and (19). Edwards and Ulrich (see [9]) found
that they could correlate Catton and Lienhard’s Ra, values as
a function of the single parameter A/Xp for smaller values of

382/Vol. 109, MAY 1987

A=0D3
T
X, | ‘
% 0.0 0,1 0.3 1.0 3.0 10,0 -
B .
1
0,0 170796 | 1667.96 | 160718 | 1492, 66 | 1361,00 | 1329, 56 | 1295,78
0,03 1690, 44 | 1650, 39 | 1689, 17 | 1473.68 | 1371,00 | 1308,90 | 1274,76
0.1 1654, 49 | 1613,91 | 1551,74 | 143401 | 1328, 87 | 1265.13 | 1230, 07
0,3 1577.79 | 1536,02 | 1471.67 | 1348,32 | 1236,08 | 1166,91 | 1128, 48
L.0 1452, 47 | 1409.19 | 1341, 80 | 1209,03 | 1080,64 992,82 932,78
3.0 136340 | 1320, 07 | 1252, 25 | 1116,81 981, 28 BEL, 74 792,00
10,0 1318, 28 | 1275,40 | 1208, 20 | 1073.47 937,42 835,90 T41, 60
L] |1295.7a | 1253,25 | 1186, 58 | 1052,71 | 917.09 B15.35 | 720,00
A=
%, i |
% 0.0 0.1 0,3 Lo 3.0 10,0 100, 0 o«
ﬂ!
0,0 1707, 76
0.1 1667, 96 | 1h28, 02
0,3 1607, 18 | 1566,03 | 150529
1.0 1492, 66 | 1451, 68 | 138A, 53 | 1267. 47
3,0 1391, 00 | 1349, 22 | 1284.33 | 1157,50 | 1037, 89
10,0 1329, 56 | 1287. 29 | 1221.24 | 1090,02 | §61.13 | 87210
100.0 | 1299.41 | 1286.91 | 1190,30 | 1086,72 | 921,90 | B21,91 | 753.34
|
- V295,78 | 1253, 25 | 1186, sa1 1052,91 | 917.09 | 815,35 | 740,99 | 720,00
Table 2 Rayleigh numbers for A/Xg = 1 at various A
% Error, % Error, Column 5
A Rac a, Ra By B, Column 4
0,001 1330, 31 2,50 o -
a, 01 1330, 29 2,50 0,0013% 0,021 20,7
0.1 1328, 98 2,50 0,10 2,04 20,4
0.3 1320, 07 2,51 o.77 15,4 20,0

A. To understand how this parameter (not to be confused with
the conductance ratio AXjp, ) becomes important, we let 4 —
0 in equation (18) and find

A
A, ~a} (
1 XBI
The group A/ Xy, is indeed the appropriate smgle parameter
for small 4. A calculation shows that this approximation in-
troduces less than 1.0 percent error in the boundary conditions
if a,4A < 0.175 (or < 10 percent error if ;4 < 0. 585).
However, the resultant error in Ra, is much smaller, as il-
lustrated in Table 2. For the case conmdered by Edwards and
Ulrich X, 0=a = 25= A4 < 0.23 for 10 percent
boundary conditions error; thus, they were able to collapse
data for 4 < 0.3 onto a single curve with high accuracy.
Conversely, from equation (19)

1
AXy,

), A-0 (22)

Ag~ A=—0
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Fig. 4 Critical Rayleigh number of the two-layer problem

Small A Parameter,

Table 3 Single layer with nonisothermal walls; present (PW); Hurle,
Jakeman, and Pike (HJP);, Gershuni and Zhukhovitskii (GZ)

)'.'B]
xD b, o 0,5 1.0 2,0 -
KE PW 1707.762 1415.093 1267, 471 1116, 412 | 720, 00O
1
HIP 1707.762 1415, 093 1267, 471 1116, 412 | 720
GZ 1708 1415 1269 1117 720.0
Xy
X 0.1 1.0 10,0 =
B
1
0.0 FW 1667, 96 1492, 66 1329, 56 1295.78
G2 1668 1496 1337 1304
-] Pw 1253, 25 1052,71 B15,35 720,00
GZ 1260 1054 815 720, 0

which is a midlayer to fluid layer conductance ratio. While A4
— 0 gives rise to a fixed heat flux boundary conditions for
even modes (horizontal dissipation of heat negligible), the
limit produces as isothermal wall condition for odd modes
(horizontal dissipation dominant). Of particular importance is
the observation that A/X B is only a meaningful parameter
for the special case of even two-layer modes with 4 — 0.
Nonetheless, A/Xp, provides a useful characterization of the
stability limit for this case.

The critical Rayleigh number is plotted as a function of
A/Xy, for various X in Fig. 4, using values for 4 = 0.001.
These universal curves also represent Ra, for 4 = 0,01, 0.1,
and 0.3 to within about 1 percent. We also note that, to w1thm
a tenth of a percent, A = 1.0 coincides with 4 = oo.

The case A — oo is essentially a single layer with outer walls
of different conductivity ratios X, , and X, . The case Xp =
Xy, was solved exactly by Hurle et al. [10] and the general case
was solved approximately by Gershuni and Zhukhovitskii [1].
A comparison to those works is made in Table 3.

The case X, o, = 0 was approximated in [2]. A comparison
of the present exact solutions to the former approximate solu-
tions (Table 4) shows Catton and Lienhard’s Ra, values to be
accurate to about 0.6 percent for thin midlayers and 0.02 per-
cent for A = 1.0, the worst errors occurring for Xal = 0(1).

Finally, a few calculations were made for the odd modes of
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Table 4 Comparison to Catton and Lienhard (CL), Xy = 0
A o, 01 a. 1 0.3 1.0
xB
1

(] W 707,76 =
CL 1708 =

0,2 PW 1338, 49 1525,71 1612, 08 1634, 67
CL 1345, 3 1527,9 1612.7 1634.9

1.0 W 1304, 95 1372,95 1452, 47 1451, 90
CL 1312,6 1378,5 1454, 7 1492, 2

100 W 1295, 87 1296.69 1298,12 1299, 36
cL 1299.8 1297, 5 1298, 5 1299, 6

Table 5 Odd modes of the two-layer system, A = 0.1

*p
XO 0,1 1,0 10,0 100,0
¢} 1694, 965 1609, 318 1400, 371 1309, 836
0.1 1655, 331 1570, 484 1360,753 1267, 868
1,0 1408, 697 1399,015 1182, 588 172,172
10,0 1318, 172 1239, 070 1011, 321 859, 441
- 1284, 511 1205, 946 75, 458 H07, B93

the two-layer system. The coefficient A,, however, is exactly
the boundary condition employed by Nield [11] in his study of
a single layer with one isothermal wall and a finite conductivi-
ty, finite thickness slab covering the other isothermal wall.
Therefore, since the results for X; = 0 have already been
found by Nield, we give only a brief table (Table 5) illustrating
the effect of taking X,, > 0.

General Midlayer Disturbances; Multilayer Arrays

The preceding results were easily obtained because the
midlayer disturbances could be found & priori by symmetry
considerations. More general configurations lack such sym-
metry, however, and we must develop a more systematic ap-
proach for these cases,

Recall the general solution for ©5 (equation (6)). Defining o
= M/N (—o < a < =), we obtain

BBJ. =N, (a; cosh (ﬂ'szBj) +sinh (ﬂajzaj 1)

where the subscript j denotes the jth solid layer. Elimination
of N between conditions (8) as before produces

:AUG"

A ( a; )[ cosh (a;A;) +o sinh (@A) ]
= Xs a cosh (@;4;) £sinh (¢,4;)

wherein the minus sign applies at the upper surface of a fluid
layer (sz = —1/2;z; = 1/2) and

(23)

A—(LB") —24 3
[ ZL: L] aﬁj e Uaf’ an BU — kﬂj

We have successfully removed one of the two unknowns. To
solve for the remaining unknown, «, we require an additional
constraint. At this point, we observe that, for given o, we may
solve directly for Ra in a particular fluid layer by substituting
the appropriate A’s into equation (21) and proceeding as
before. This suggests an iterative solution for a subject to a
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Fig. 5 The symmetric three-layer configuration
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Fig. 6 Critical Rayleigh number of the three-layer problem

matching condition which we now develop for a multilayer
array.

We seek a relationship between the Rayleigh numbers of the
various fluid layers at onset. In the marginal state, one-
dimensional conduction prevails. Accordingly, we may use the
‘“‘voltage divider’ to find AT,

(ATp4) (L7K),

AT;= (24)

; (L/K), + ? (L/K)g,

where AT, is the temperature difference between the outer-
most boundaries of the fluid layers. From this

if each layer has the same fluid. Thus, we may solve for a ; and
Ra; by iterating guesses for the «’s until equation (25) is
satisfied throughout. Notice that we need only find the roots
of equation (21) corresponding to each layer’s A’s—no more
complicated eigenvalue problem need be solved, We have
reduced the multilayer problem to a set of one layer problems.
Presently, we shall illustrate this approach for the three-layer
problem. Before doing so, we note that equation (25) allows us
to relate the individual layer critical Rayleigh number to the
overall critical Rayleigh number Ra, which is of interest to the
designer. The result is

Ray= (f—f ( ZJ: L+ ZJ; sz)a ATy,

384/Vol. 109, MAY 1987

=Ra,.(%)f ( Z,: L+ ZJ: LB_})S (zj: (%)1
+Z )

i
We note in passing that convective heat transfer behavior
for multilayer problems is best described in terms of Ray (see,
e.g., [7]). The basic trend in the heat transfer rate is that, when
the critical value of Ra; decreases, the heat transfer at a given
supercritical Ra increases. However, from the preceding equa-
tion we see that Ra; and Ra; need not vary in the same direc-
tion as a function of conductivity or aspect ratios (see the
discussion in [2]). Thus, some care is required in inferring the
effects of midlayer conductivity and thickness on heat transfer
from stability results for Ra;.

Three-Fluid Layer Stability

When a fluid layer is partitioned with two identical
midlayers, evenly spaced, the resulting configuration is sym-
metric about the centerline of the innermost fluid layer (Fig.
5). Symmetry considerations show that &) = —a, and A, =
Ay,; therefore, we need solve only for «,, say. (In asymmetric
situations both «'s must be found; this is possible, but more
complication than needed for illustration,) The eigenvalue
problems in layers one and three are equivalent.

For convenience, we take the outermost boundaries to be
isothermal (Ag, — o). Layer three has the boundary
conditions

0,(1/2)=0
0§(=1/2)=A;,0,(—1/2)
with
a, cosh (a;A4,;) + e, sinh (a;44,;)
A= (Xﬂn ) [ a, cosh (@,44,) +sinh (a;345,) ] (26)
while layer two has
04(1/2)= A 0,(1/2)
03(=1/2)= = A;,0,(—= 1/2) = = A 0,(~ 1/2)
with
B ( a, ){ cosh (@, A) —ay s.inh (@,A53) ] @n
Xp,, ay cosh (a,45,) —sinh (a,A4,,)
Observe that
a;=a, and A=Ay,
The matching condition (25) becomes
Ra, =Ra,

Solutions for this geometry were obtained iteratively. With
a guess for a,, Ray; was found by solving equation (21) with

Ay=o0, A =Ap
and Ra, from equation (21) with
Ay=AL=Ayy

The «, root of (Ra, - Ra,)(a) = 0 was then obtained via bisec-
tion. (Note that sharp changes in the function (Ra, — Ra,)(a)
made more sophisticated root-finding procedures, such as the
secant method, unsuitable.) After obtaining the root «,, the
function Ra, (@) was minimized as before.

The three-layer stability limit is presented in Table 6 and
Fig. 6 for various A and Xj. Basic trends in Ra,, are as
expected. When X, — 0, Raq — 1708 (isothermal midlayers)
and when Xz — oo, Ra, — 720 (fixed heat flux midlayers).
These limits, together with A — oo (single layer with identical,
finite outer wall conductivities), respresent decoupling of the
fluid layers.
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Table 6« Critical Rayleigh numbers for the three-layer system

J\“ = 0,001 A“lo.l
XB“ -ay n' R'i x““ 2y a R-i
0,005 165, 007 2.2 1270.78 0,005 9. 04824 3. 10 1696, 87
0,01 209, 323 2,19 1187, 49 Q.01 8, 96797 Lov 1686, 22
0.02 112,572 2,16 1137.41 0.02 B,79883 3,03 1665, 61
0,05 47,1581 2,15 1104, 24 0,05 B. 29340 Z,92 1609, 08
0.1 23,9591 2,15 1092, 61 0.1 7.4795%9 2,75 1530, 34
0.2 12,0781 2,15 1086, 67 0,2 6.05125 | 2,52 | 1417, 30
0.5 4, 85546 2,158 1083, 03 0.5 3. 5692 2,26 | 1257, 23
1.0 &. 43182 2,14 1081,72 1.0 2, 08358 2,16 : 1164, BS
2,0 1.21718 2,14 1080, 92 2,0 1. 16421 2,10 1096, 9%
5.0 0, 487393 2,14 1079.95 5.0 0, 555987 1,99 1020, 04
10,0 0. 244104 2,14 1078.82 10,0 0, 347477 1.86 960,88
20,0 o0.122217 2,14 1076, 74 20,0 0, 239858 1.68 904, 05
50,0 0, 0492742 2,13 1070,73 50.0 0.165709 1,42 442,18
100.0 0. 0249956 . n 1061, 08 100,0 0. 132130 1. 22 807,62
Py 000 Observe that the curves for varius A cross at X, = 2.4.
Here « = — 1 and we see from equations (26) and (27) that the
*s, ' 2 * e A’s are independent of A at this point and equal to (a,/Xy).
o N e —— To the left, @y < -1 and midlayer disturbances are

dominantly even; to the right, midlayer disturbances are
0,01 78, 0692 2.76 1536, 03 dominantly odd. As A — 0 there is a large region over which
Ra., = 1080 irrespective of Xj (viz., within a certain range

0,02 62,7325 2,53 1425, 47 ! Nl i i L :
midlayer conductivity is unimportant for thin midlayers). In

295 %, 005 & 1270.59 this region —aXj = 2.4, as one might deduce by formally set-
0.1 20,9289 2,19 1187, 27 ting A = 0 in equations (26) and (27); expansion of equations
s T 5k $136:98 (26) and (27) shows that this region is characterized by 1 >

. lal aA > (aA)?. Accordingly, we find the [empirical] result
0.5 4,71505 2,15 1103, 22 (hat
1.0 2, 40015 2,14 1090, 59 Razloao' 0=2.l4
2.0 1. 21259 2,14 1082, 65 thl’l
5.0 0, 491045 2,13 1073, 09

a,A
2 [

10.0 0, 249515 21 1062, 23 (@A) «2'4( Xg )<<l
20.0 0.129106 2.08 1043, 51 However, an attractive conclusion such as (22) is not found
50.0 0.0585810 1.98 999, 03 for the three-layer problem.
100,0 0, 0357651 1.85 950.82

Symmetric Four-Layer Array

If a fluid layer is partitioned with three evenly spaced, iden-
_ tical midlayers we have symmetry about the center of the in-
nermost midlayer. Reductions similar to those used in the two
and three-layer cases show that we need use only a single « and

£ a pair of layers having "
%' 0,(1/2)=0 (say)
z 0/(—1/2)=A,140,(—-1/2)
%
.E‘m 01(1/2)= A 104(1/2)
3 O1(—1/2)=A;10,(-1/2)
S with
800 R ( a, )[ cosh (agA4;) + aysinh (a,A44,) ]
-i’ M | A 1 | L N | 1 L | # xsﬂ o COSh(G‘Au)*’SiUh (a‘Aﬂ)
SR Co-:lucrml':flntn - 10’ 10" - =( a )[ cosh (a3A33) — &3 sinh (ayA43;) ]
Fig. 7 Critical Rayleigh number of the four-layer problem Xpyy ay cosh (a3Ay;) —sinh (a3453)
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_Table 7 Critical Rayleigh numbers for the four-layer system

“li = 0,001

"‘B“ =0y ay Raj

0.005 268,969 2.04 1192.28
0.01 161.266 1.94 1096.33
0.02 85.3790 1.91 1040.44
0.05 35.4119 1.89 1004.19
0.1 17.9379 1.89 991 .62
0.2 9.02782 1.89 985.22
0.5 3.62590 1.89 %81 .31
1.0 1.81586 1.89 979.93
2.0 0.909067 1.69 977.08
5.0 0.364419 1.89 978.11
10.0 0.182772 1.88 977.02
20.0 0.0919105 1.88 975.05
50.0 0.0374406 1.87 969.49
100.0 0.0192864 1.84 960.92

Ay = 0.01

xal i -3 aj Ra;

0.0085 70.5713 2.89 1598 .56
0.01 &3.8184 2.49 1509.11
0.02 51.3663 2.38 1377.34
0.05 28.9029 2.04 1192.16
0.1 16.1297 1.94 109&.12
0.2 8.54649 1.91 1040.04
0.5 3.55188 1.89 1003.20
1.0 1.80402 1.89 989 .68
2.0 0.913255 1.88 981 .40
5.0 0.373372 1.87 972.04
10.0 0.192665 1.83 482.18
20.0 0.102307 1.81 946,49
S0.0 0,0482971 1.71 912.8%9
100.0 0.0302173 1.58 879.24

Apy= (Xa; ) tanh (a;As3;)

By

Ra ;= Ra.
ay=ay; Xp,=Xp, =Xp,: An=An=Ay

Results of this calculation are given in Table 7 and Fig. 7.
The behavior of the critical Rayleigh number is qualitatively
very similar to the three layer case, but for each value of A the
stability limit is lower. The curves for each A do not have a
common intersection point because the third kind condition
on the center layer is quite different from those on the outer
midlayers. We again find a flattening of the stability curve for
thin midlayers in a region characterized by the same inequality
as the three-layer flat spot but having instead

Ra=980, a=1.89

Comparison to Experiments

At present a very limited amount of experimental data is
available for multilayer arrays. Ulrich [9] obtained critical
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Ayy = 0.1

By, -ag a4 Raj

0.005 7.42090 3.09 1695.39
0.01 7.36231 3.07 1683.27
0.02 7.23779 3.02 1659.77
0.05 &.86719 2.89 1594 .87
0.1 6.23853 2.48 1503.3%
0.2 5.07408 2.38 1369 .52
0.5 2.92593 2.02 1180.07
1.0 1.68672 1.90 1076.27
2.0 0.949694 1.83 1005.7%
5.0 0.4646513 1.71 736.81
10.0 0.296231 1.59 891.11
20.0 0205361 1.43 B50.03
50.0 0.141446 1.20 BO& .30
100.0 0.112737 1.04 7681 .94

Table 8 Comparison of exact solution to Sparrow et al. approximate
model

A =001
Xp \ Y 1 3 10
[Rn!p! (1398, 508) (1497, 594) (1607, 104)
Exact
0,01 1646, 346 1653, 344 1665, 496
3,00 3,02 3.05
0.1 1483, 324 1541, 551 1617, 780
2,78 2,91 3. 02
1.0 1407, 859 1497, 192 1594, 400
2,75 2,89 30
A =0,
X \ \'__ 1 h 3 I 10
{aagp: {1398, 508) (1497, 594) (1607, 104)
0.1 1641,724 1645, 910 16556, 666
3,00 3.0 3. 04
1,0 1460, 544 1494, 599 1529, 101
Z.76 2.85 2,92
10,0 1344, 928 1353,619 1357, 687
2,64 2,66 2,67

*

Rayleigh numbers of 1319 for a symmetric two-layer system
and of 1154 for a symmetric three-layer system, both having
isothermal outer walls and thin Teflon midlayers (A = 0.001,
X = 0.01). Hollands and Wright [12] obtained a critical
Rayleigh number of ~ 1220 for the same type of two-layer
configuration. All three points are within 6 percent or better
of the predictions made herein and thus agree to well within
the experimental uncertainty of the data.

Limitations of the Sparrow et al. Model

To come full circle, we may apply our generalized approach
to the prototype convective condition with which we began
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(equation (11)). This model, from Sparrow et al. [6], applies a
convective thermal boundary condition directly to the upper
surface of a rigidly bounded fluid layer, neglecting the possi-
ble effects of horizontal conduction in the cover plate. We
wish to assess the validity of this assumption.

If a single fluid layer 1 is covered by a conductive slab B
having above it a uniform heat transfer coefficient h, we easily
find that

(7,S+03C)
(G‘ES'I- Yec)

where v, = (hLgz/kg), S = sinh (ay/2), and likewise for C.
Substitution into equation (23) and some algebra yield the
thermal coefficient at the top of the fluid layer

o= () i

Og=—

1+ (ag/vy,) 11 C2

(28)
25C
@+ (srer)

Following [6], we define v = (AL;/k;) = 2AXy/y,. Some

analysis then shows that
A=y
only if

L.y 2
a (~_") <y 1 29)
L,
As a typical example for solar collectors, consider a 1/8 in,
glass cover plate (mean length: 0.75 m) over an air layer with
an 11 mph wind (300 K) above. Then

Y. =0.025<1

and, if @, = 3, the first inequality of (29) might be satisfied if
Ly = 71/2in. A more reasonable value would be L, = 1 in.,
however, an exact solution for this value using equation (28)
yields

Ra, =1687.9, a,=3.08
Here v = 10 and the Sparrow et al. approximation yields
Ra, =1607.1, a,=3.03

While the error is only 5 percent of the absolute Ra,, it
represents 20 percent (80/(1708 — 1296)) of the possible varia-
tion in Ra,. Clearly, the Sparrow et al. approximation should
not be used indiscriminantly. Some additional values are given
in Table 8 to help put this example in perspective.

Finally, we remark that the result of [2] that maximum
stability occurs for evenly spaced midlayers will only be true
when the outer bounding surfaces are of the same conductiv-
ity. In general, maximum stability is achieved by placing the
midlayer closer to the less conductive boundary. Exactly how
much closer must be determined by further study.

Summary and Conclusions

® The procedure developed herein facilitates simple, exact
calculation of the stability limit of arbitrary combinations of
fluid layers, conductive midlayers, and conductive
boundaries.

® The wavenumber dependence of the fluid layer thermal
boundary condition drastically affects the stability limit of
that layer.

e The stability limit of the symmetric two-layer system
with conductive boundaries is as given in Table 1.

* Previous approximate solutions of the single layer, con-
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ductive wall problem and the two-layer problem have been
reasonably accurate.

® The stability limit of the three and four-layer systems
with identical, evenly spaced midlayers and isothermal boun-
daries is as given in Tables 6 and 7.

* Cover plate conduction can strongly affect stability with
the convective boundary condition of Sparrow et al. [6].

® The present solutions are in good agreement with
available experimental data.
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APPENDIX

This appendix gives the functions C; used in equation (21).
Boundary conditions of the form

DO+A0=0, z=1/2

DO-A,0=0, z=-1/2
applied to equation (3) produce the @, indicated in the text as
€, = —qp sin (go/2) + Ay cos (gy/2)

+2 Re[i{q sinh (/2) + Ay, cosh (q/zn]
Ay
C, =g, cos (g4/2)+ Ay sin (g,/2)
B
+2 Re{?(q cosh (g/2) + Ay sinh (q/z))]
0
C; =4y sin (go/2) - Ay, cos (go/2) y
A ’
-2 Re{A—(q sinh (g/2) + A, cosh {q/Z))}
]
Cy=qy cos (go/2)+ Ay sin (gp/2)
+2 Re[—BB—(q cosh (g/2) + A, sinh (q/2)}]
0

in which B/B, and A/A, may be evaluated from equations (9)
and (10).
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