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We present a statistical-mechanical selection theory for the sequence analysis of a set of
specific DNA regulatory sites that makes it possible to predict the relationship between
individual base-pair choices in the site and specific activity (affinity). The theory is based
on the assumption that specific DNA sequences have been selected to conform to some
requirement for protein binding (or activity), and that all sequences that can fulfil this
requirement are equally likely to occur. In most cases, the number of specific DNA
sequences that are known for a certain DNA-binding protein is very small, and we discuss
in detail the small-sample uncertainties that this leads to. When applied to the binding sites
for cro repressor in phage lambda, the theory can predict, from the sequence statistics
alone, their rank order binding affinities in reasonable agreement with measured values.
However, the statistical uncertainty generated by such a small sample (only 6 sites known)
limits the result to order-of-magnitude comparisons. When applied to the much larger
sample of Escherichia coli promoter sequences, the theory predicts the correlation between
in vitro activity (k, Ky values) and homology score (closeness to the consensus sequence)
observed by Mulligan et al. (1984). The analysis of base-pair frequencies in the promoter
sample is consistent with the assumption that base-pairs at different positions in the sites
contribute independently to the specific activity, except in a few marginal cases that are
discussed. When the promoter sites are ordered according to predicted activities, they seem
to conform to the Gaussian distribution that results from a requirement for maximal
sequence variability within the constraint of providing a certain average activity. The
theory allows us to compare the number of specific sites with a certain activity to the
number that would be expected from random occurrence in the genome. While strong
promoters are “‘overspecified”’, in the sense that their probability of random occurrence ix
very low, random sequences with weak promoter-like properties are expected to occur in
very large numbers. This leads to the conclusion that functional specificity is based on other
properties in addition to primary sequence recognition; some possibilities are discussed.
Finally, we show that the sequence information, as defined by Schneider et al. (1986), can
be used directly (at least in the case of equilibrium binding sites) to estimate the number of
protein molecules that are specifically bound at random “‘pseudosites” in the genome. This
provides the connection between base-pair sequence statistics and functional in rivo
specificity as defined by von Hippel & Berg (1986).

1. Introduction repressor—operator or RNA polymerase-promoter
interactions). Such binding selection derives from
specific interactions between the active site of the
protein and the base-pairs in the DNA binding
sequence. In a recent paper (von Hippel & Berg,
1986) we discussed the molecular origins of this

1 Present address: Department of Molecular Biology, SpeCI.ﬁCltyz a”?d als‘o explore.d thf’ requirements for
The Biomedical Center, Box 590, S-75124 Uppsala, specific binding site selection in the IW‘_”_g (',e_,II,
Sweden. These requirements stem from the competition for
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(Genome-regulatory proteins recognize and bind
to specific DNA sites among a vast excess of
Structurally  similar  non-specific  sites  (e.g.
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protein by non-specific sites that are close to the
specific ones in sequence andjor in binding affinity
(von Hippel, 1979). To quantify the extent of this
non-specific competition, and thereby the magni-
tude of the effective binding selection process, we
need to know the magnitude of the reduction in
specific binding affinity that accompanies the
insertion of each of the ‘“wrong” base-pairs that
distinguish a particular non-specific site from the
specific site. One way of doing this is to isolate or
create sites with various degrees of homology to the
specific sites and to measure the resulting binding
constants (e.g. see Jobe et al., 1974; Mossing &
Record, 1985).

In the absence of exhaustive binding data, one
can still make some inferences about the relative
importance of specific base-pair interactions at
different positions within the binding site. Positions
in the site where the base-pairs vary greatly
between the specific sequences can be expected to
contribute little to the binding specificity, while
conserved or nearly conserved base-pairs doubtless
contribute a great deal. Thus, Schneider et al. (1986)
have used information theory to quantify the
importance of particular base-pairs, based on their
variability in the specific sequences. However, this
measure of information is not directly related to the
relative binding affinities, and thus cannot tell us
anything quantitative about specific interactions.
Mulligan et al. (1984) have found a correlation
between the activity of promoter sites and a
“homology score” that measures the closeness of a
particular sequence to the perceived consensus
promoter sequence. This homology measure weighs
the importance of each “wrong” base-pair (relative
to the consensus sequence) against the observed
variability among all promoters. Mulligan et al.
(1984) and Mulligan & McClure (1986) also used this
homology score as a basis for a computer search for
promoters in known DNA sequences. Similar search
algorithms, using somewhat different weighting
schemes, have been presented and applied by others
(Harr el al., 1983; Staden, 1984). Recently, a more
elaborate pattern-recognition method has been
designed and wused to analyze Escherichia coli
promoter sequences (Galas et al., 1985).

While the results of the present paper will be
relevant to the design of search algorithms and to
the interpretation of sequence analyses, our main
focus will be on the relationship between sequence
variability within a set of specific sites and the
interaction free energy contributed by each base-
pair in the site. The connection between sequence
variability and binding affinity derives from an
evolutionary selection constraint. That is, specific
binding sequences can be assumed to be selected to
show binding affinities in some wuseful range.
Fortunately, we do not need to understand the
exact nature of this selection constraint in order to
establish the required theoretical connection
between sequence variability and binding free
energy. In the next section we explore the
consequences of some different selection constraints

and derive the desired relations between the
sequence variability in the set of possible binding
sequences and the corresponding interaction freg
energies. In the third section the theory is first
applied to the binding sites for the cro repressor of
lambda phage and is then extended and applied tq
the K. coli and coliphage promoter sequences
studied by Mulligan et al. (1984). Our theory
suggests a more general homology measure that ig
directly related to binding and activity; thig
measure more closely resembles the statistica}
weighting scheme used by Harr et al. (1983). The
significance of the information measures used by
Schneider et al. (1986) is also discussed in light of
the present results, and it is shown how they relate
to the functional specificity requirements in the
living cell. In the fourth section we explore the
consequences of the theory for the evolutionary
selection of binding interactions. It is obvious that
specificity is not maximized in evolution. Instead
we argue that evolution minimizes the maximum
loss of specificity, in the sense that specificity will
tend towards a situation where mutational errors
have relatively small effects.

The  statistical-mechanical selection  theory
provides a physical basis for the analysis and
interpretation of sequence data. It enables us to
quantify the expected specificity for any sequence
and sets that in relation to the requirements for its
biological function. A statistical analysis of this sort
requires a fairly large sample of specific sites to
provide a reasonable predictive accuracy. Thus, all
quantitative results are compared to the expected
statistical uncertainties. However, the general
results of the theory are not dependent on actual
sequence analysis; thus, they provide a framework
within which the relationships between sequence
variability, specificity and function can be
understood.

2. Statistical-mechanical Ensembles that Describe
the Sequence Variability of Specific Binding Sites

Protein~-DNA recognition is based primarily on
the DNA-sequence-dependent hydrogen bond donor
and acceptor patterns exposed in the grooves of the
double helix. These patterns must be more or less
complementary to similar patterns in the binding
site of the protein. In particular cases these
interactions have been identified physically (e.g. by
X-ray crystallography), but in general the structure
of the recognition site on the protein is not known.
One can also gain information about the impor-
tance of base-pair interactions in a recognition
sequence by studying the effects on recognition of
the modification or substitution of individual base-
pairs. In the absence of detailed laboratory studies
of such effects, the sequence analysis of natur?{blly
occurring recognition sites can provide similar
information. This follows because we assume that 10
the course of evolution nature has carried f)‘lt
analogous experiments, testing base-pair substitt-
tions and accepting and rejecting sequences on the
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basis of their properties as recognition sites. In
recent years the number of known sequences has
been increasing sharply, while the physical charac-
terization of their functional properties (binding,
activity, etc.) has lagged far behind. Thus, it
Lecomes particularly important to derive as much
information as possible from the sequence analysis
itself.

(a) Consensus sequences

A certain sequence-specific (“‘recognizer”) protein
can normally recognize and bind to DNA sites that
vary somewhat in sequence, so that a base-pair at
any particular position may differ from site to site.
In general such sites share common features,
consensus base-pairs that “almost always” appear
at the same position in every site. These consensus
base-pairs then form a distinct pattern that can
help the biologist to identify previously unknown
recognition sites in other DNA sequences. Qualita-
tively, it can also be argued that sites that differ
more from the perceived consensus sequence are
weaker recognition sites, and this also appears to be
s0 in cases that have been tested (e.g. for operators
or promoters). In principle, the consensus sequence
could be defined as the sequence that, at every
position in the site, carries the base-pair most often
found at this position in the set of all naturally
occurring sites that have been sequenced.
Obviously, with such an extended definition of
consensus, not all consensus base-pairs turn out to
be equally significant. Some questions that
naturally arise are: (1) how should one quantify the
significance of ‘a consensus base-pair and the
importance of deviations from it? (2) What can be
deduced from the sequence data about the
recognition mechanisms and the functional proper-
ties of particular sequences?

Various statistical measures have been applied in
approaching the first question. For example,
Schneider et al. (1986) have used information
theory to analyze some sets of operator sites and
have assigned a measure that quantifies the
importance of the base-pair choice at each position
in a particular kind of recognition site. This
measure of information is determined from the
probability that the observed base-pair utilization
frequency has appeared at random. Thus, the
information-theoretic sequence analysis can also be
used to estimate the probability that a certain kind
of recognition sequence will occur at random in the
genome. However, a statistical measure of this sort
Cannot tell us anything quantitative about the
fecognition efficiency (binding or activity) of a
Particular base-pair sequence. Mulligan et al. (1984)
deviscd a measure for the importance of any
Particular base-pair choice at individual positions in
Promoter sites, based on its frequency of occurrence

;1 Fhe set of identified promoter sites found in .
- %li. Although it is not obvious why this particular

Measure should be chosen, Mulligan et al. (1984)
Used it to quantify a homology score (defined as the

degree of closeness of a given promoter to the
consensus sequence) and were able to demonstrate a
correlation between this core and the activity of
various promoter sequences.

What has been missing in most sequence studies
of this sort is an @ priori coupling between sequence
choice and funetional properties. In order to use the
sequence  analysis  of the naturally ocecurring
recognition sites to predict the recognition efficiency
of any particular sequence, one must know what
constraints the sites were chosen to satisfy. In the
course of evolution, only sequences with binding
affinity {or activity) in some useful range would be
selected as specific recognition sites. These evolu-
tionary selection constraints provide the necessary
relationship between sequence choice and functional
properties. Rather than just guessing what this
relationship might be, we shall proceed by assuming
that some selection constraint is operating and then
consider all possible sequences that could satisfy it.

(b) Selection model

For simplicity of discussion, let us first consider a
set of sites that have been chosen on the basis of
affinity for a particular sequence-specific protein
(e.g. operator sites). Differences in base-pair choice
at certain positions in individual sites can have
several causes. (1) Certain sites may require a
different binding affinity depending on their
functional role in the genome. (2) Some base-pair
choices may be neutral with respect to binding
affinity: or if they do matter, the binding affinity
could bhe compensated by appropriate choices at
other positions in the site. (3) Some base-pair
choices may be required for regulation (e.g. binding
of effector molecules) rather than for binding of the
recognizer protein under consideration. The effect of
a requirement of this type is difficult to predict
without knowing its exact nature and will not be
taken into account in the derivations below.
However. the results of the analysis make it possible
to identify and discuss the effects of some such
requirements.

Thus. we shall consider the effects of the binding
requirements for one particular recognizer protein
on base-pair variability (or base-pair conservation)
within the set of binding sites. To be able to do this
we shall assume that the binding free energies for
all possible sequences are known and then derive
the most probable base-pair utilization frequencies
that ensue. This is analogous to a statistical-
mechanical approach in which it is assumed that
the energy levels of a particular system are known;
a distribution of level occupancies can then be
calculated. In the Appendix these distributions are
calculated from first principles. In this section we
shall pursue the statistical-mechanical analogy.

The basic assumptions we make are: (1) indivi-
dual binding sequences are selected to have a value
of binding affinity for the recognizer protein in some
useful range. Depending on the functional role of
the protein -DNA interaction at issue, this range
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may well vary between individual sites. (2) The
number of sequences in such an affinity range that
could possibly be used is large. If selection is only
on the basis of affinity, “neutral sequence drift”
within this selection constraint will ensure that all
possible sequences are equiprobable. (3) Each
possible base-pair B (B =0, 1, 2, 3, where e.g.
0=AT, 1=T-A, 2=0G-C, and 3=C-G) at
position [ (I =1, 2, .. ., s, where s is the site size) in
a binding site contributes a certain amount gzkT'}
to the binding free energy at that site. These
individual base-pair contributions are assumed to
be independent and therefore additive. The
strongest. binder, the cognate base-pair designated
B = 0 at each position, is considered to define the
ground-state level with ¢4 =0. Thus, ¢y are
dimensionless positive numbers that express the
decrease in (favorable) binding free energy (in units
of kT) that results when the cognate base-pair at
position ['is replaced by base-pair B; this will be
referred to in the following discussion as the local
(per base-pair) discrimination energy.

The total discrimination energy for a particular
sequence is given by the sum of the local
contributions from the individual base-pairs. In this
way the binding affinity for all sequences are
measured relative to the best binding (cognate)
sequence. (In principle any particular base-pair
sequence could be chosen as the standard to which
other sequences are compared; then g5 could be
either positive or negative.)

(i) Sites selected with the same binding affinity

Let us consider the potential binding sites as the
set of all possible sequences that have binding
affinity in some limited range around some fixed
required value. All such sequences must have
discrimination energy in some limited range AE
around a required level E. Thus, in each potential
site, the local contribution g, from every position [
must sum to K. In the set of all potential sites,
what is the frequency with which a certain base-
pair B appears at a certain position in a site? This
question can be answered by counting all possible
sequence combinations that provide the required
discrimination energy £ (see the Appendix).
However, a completely equivalent question is
frequently asked in statistical mechanics, where one
seeks to describe the probability of energy-level
occupancy given that the total energy should sum
to a given value (e.g. see Gurney, 1949). Thus, a
potential site can be considered as the realization of
a statistical-mechanical system of s independent
particles and a given energy E. Choosing base-pair
B at position [ in a sequence corresponds to putting
particle / into energy level ¢ in the corresponding
statistical-mechanical system. (Thus sequences are
chosen according to a microcanonical ensemble.) To
start with we shall assume that base-pairs are
chosen with equal a priori probabilities, i.e. that

1 kT, the product of the Boltzmann constant and the
absolute temperature.

—

they are equally common in the genome. (Thig
assumption is removed in the Appendix.) Then, in
analogy with the probability distribution over
single-particle levels, the probability f,, of choosin
base-pairs B at position ! is proportional to the
usual Boltzmann factor exp (— 2¢,):

Jip(E) = exp (— Aeip)/4q;

B=0,1,2,3 and (=12, ... 5, (1
where:

q; = [1+exp (—Ag,) +exp (—4g,) +

exp (= 4e3) /4 (2)
is the partition function that is chosen to ¢iisure
that the base-pair probabilities in equation (1) sum
to unity at each position {. The coupling factor 4 ig
a dimensionless number, which has to be chosen so
that the distribution satisfies the selection con-
straint, i.e. so that the discrimination energy £ hag
the assumed value. In a sense, 4 compensates for
the fact that, even if base-pairs contribute
independently to the binding affinity, thei fre-
quency of occurrence cannot be totally independent
since their contributions in each site must add up to
the assumed value of E.

In the combinatorical derivation of statistical-
mechanical energy distributions (e.g. see Gurney,
1949), a statistical parameter corresponding to A
appears as in equation (1) in order to satisfy the
constraints on overall energy. When it is reqjuired
that the relations agree with classical thermo-
dynamics, this parameter can be identified with the
absolute temperature of the system as A = 1/kT.
Obviously, in the case of sequence selection
described here, we are not concerned with a
thermodynamical system. Thus, 4 has a less
obvious physical interpretation, though it serves, in
the same sense as k7', as a proportionality fa:tor to
relate populations of base-pair choices to i.inding
free energies. In the Appendix we show that 4 is
determined by the density of potential sites, i.e. by
the number of possible sequence combinations that
have the required discrimination energy E.

Since the free energy contributions of individual
base-pairs to the binding affinity are assumed to be
additive, £ can be calculated as the average over
the whole set:

s 3
E= Z Z €8 fis- (3)
=1 =1

Inserting fjz from equation (1), this gives an
implicit relation from which 4 can be calculated:
Thus, the base-pair utilization frequences fig Qf
equation (1) depend implicitly on £ through theif
dependence on A(E) via equation (3).

In the particularly simple case where all local
discrimination energies are the same (g = &), from
equations (1), (2) and (3) one finds for a site
comprising s base-pairs that:

AME) = In (3se/E —3)/e. (4)

While the selection parameter A in principle ¢a8
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have any positive value, for practical reasons it
seems that 1 varies between ~05 and ~ 15 at
most.

(ii) Sites selected with a distribution of binding
affinities

In general a set of sites will include all known
binding sequences for a given protein. These sites
may exhibit a wide variety of affinities for the
protein, depending on their functional role in the
genome. A set of x, binding sites will then have
some distribution g(£) of discrimination energies so
that n,g(E)AE is the number of sequences that have
diserimination energies in the range AE around £,
The observed base-pair utilization frequencies fgbs
in this whole set will be an average over the
expected base-pair frequencies in each affinity
range:

fig* = f fi(B)g(E)dE. (5)
Ax seen in equation 4), A(E) is relatively insensitive
to changes in £. Thus, to a first-order approxima-
tion in variations of , equation (5) gives:

f‘l%bs = -flﬂ(<E>seq)x (6)

and, while equation (1) still holds, £ has been

replaced by its average value over the whole set of
sites:

CBDeq = fEQ(E)dE« (7

Again, from the assumed additivity of all individual

- base-pair contributions, as in equation (3) the
selection energy {E)eq is equal to the average over
the base-pair utilization frequencies:

s

3
<E>seq= Z Z £IB./}oBbS'
=1 831

This expression consequently determines
—4 ™~ meter l((E}scq) if the individual
§ known. Tt should be stressed that 1 is thus a
quantity determined from the properties of the
whole set of sites, and (at least to a first-order

. 2pproximation) does not vary from site to site.
© Thus, the expected base-pair utilization frequen-
cies are very insensitive to variations in the
- Tequired discrimination energy, and are determined
Primarily from its average. Consequently every site
I the set gives approximately the same contribu-
ion to the base-pair frequencies, regardless of its
®xact discrimination energy. It therefore follows
t}_lat the base-pair frequencies from the whole set of
inding sites can be analyzed properly and not just

Tom sites with affinities in some limited range.
.. The statistical sequence analysis of a set of
sblnding sites will provide the base-pair utilization
fl‘equencies, fi5*. With these we can caleulate the
Ocal discrimination energies, £, via equation (1) in

(8)

the para-
&p terms are

&)

Aety® = In (£ /i)
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and their average over all possible substitutions:
s 3

1
AE=—— % N jebs.

10
3s (51 =0 (10)

With this definition, 3s€[4  corresponds 1o the
average discrimination energy for a random
sequence. The parameter 1, in principle determined
by equation (8), remains undetermined from the
sequence analysis unless real binding free cnergies
are known for at least some sites. When all Jocal
discrimination energies ¢, are known from equation
(9), one can calculate the actual discrimination
energy:

s 1 = !
BABH = 3 am =3 3 In (/g ()
=1 =1

for any sequence {B}i-{. This will also provide
information on the form of the required discrimina-
tion energy distribution g(E) for the set of specifie
sites studied.

(ii1) Sequence information

From the observed base-pair  frequencies,
Schneider et al. (1986) defined and calculated the
information contained in a given set of sequences

as:
s

3
L= % fo*In| f&°Ip°(B)].
I<1 8%
where p°(B) is the « priori probability of the
occurrence of base-pair B. When all base-pairs are
equally common in the genome, p°(B) = 1/4. and
one finds, using equations (8) and (9) that:

Iseq = _A<E>seq— I=Zl In qr-

Thus, the sequence information is directly related
to the average discrimination. In fact. in the
statistical-mechanical analogy the negative of the
sequence information serves as the “selection
entropy” (see below). The connection of this
selection entropy with the thermodynamic: entropy.
S, becomes even more clear when it is observed
from equation (12b) that (d[seq/(KE)scq = —4, in

(12a)

(12b)

analogy  with  the thermodynamic  relution
(dS/dE) = /T, in which 7T s the absolute
temperature.

In the Appendix the probability of random
occurrence of a site with discrimination energy
below some cut-off energy K is calculated. From
equations (A16) and (12b), one finds that.:

Ps(<E>seq)
} Pt (13)
T P WL (e S

expresses the probability of random oceurrence of a
site with discrimination energy less than the
average (&), for the sites in the set studied. All
the quantities required (A(E>seq, Ag, and lieq) to
calculate this probability are determined from the
sequence data via equations (8), (9), (10) and (12a).
While the expression is dominated by I, (and this
is the primary physical meaning of the sequence
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information) the correction factor is also significant.
Equation (13) makes it possible to estimate the
number of randomly occurring binding sites in the
genome.

When the local discrimination energies (g,z) are
known we can also calculate the average binding
constant, Kg, for a random site. Since the random
probability for any particular sequence {B,} of
length s is 47 and its binding constant is a factor
[ exp (—&5) smaller than that of the consensus
=1 ‘
sequence (Kg), one finds:

[{R = KO4_SZ [[ exp (_8131)

Bhi=1
= Ko‘rsllj1 [1+exp (—&y)+
exp (—ep)+exp (—&3)] (14a)
= Ko’ljl @ (A=1),

where the sum is over all sequence combinations
{531} of length s. Thus, in the particular case when
the selection parameter A = 1, the statistics for a set
of specific sites can be used directly to estimate the
specific affinity of a random site. From equations
(12b) and (14a), the average binding constant for a

random site is:

KR = KO exp ('—<E>seq'—lseq); l= 1. (14b)

This relationship between sequence statistics and
specific affinity for a random site has been derived
independently by Gary Stormo (University of
Colorado; personal communication). As shown in
the Appendix, equation (A33a), the relation (14b)
holds also when base-pairs are not equiprobable in
the genome; furthermore, it holds to first-order in
(A—1) even when 1 is different from 1, see equation
(A33b). Actually, Ky is the average of the specific
component of the binding constant for a random
site. If the protein can also bind in a totally non-
specific mode with binding constant K, this
constant should be added to equations (l14a) and
(14b) for an estimate of the overall non-specific
binding constant (see von Hippel & Berg, 1986). If
the protein binds to random DNA dominantly in
this non-specific binding mode, K,, > Kz and K,
may not be observable.

(iv) Summary of the selection theory

The results of the theory follow from the
assumption that all base-pair sequences that
provide the same specific affinity (or activity) have
an equal probability of selection as recognition sites
during evolution. To make the calculations more
tractable, we have also added the assumption that
individual base-pairs contribute independently to
the affinity. As discussed further, below, together
with the results of the sequence analyses, neither of
these assumptions can be strictly true in general.
However, the equiprobability assumption repre-
sents the simplest assumption that is consistent

with what is known about neutral sequence drift
and natural selection. The independence assump-
tion is removed in the Appendix, so that the theory
can account for the possibility that neighboring
base-pairs contribute co-operatively to the binding
affinity (or activity).

On the basis of these two assumptions the results
follow from the caleulations presented mostly in the
Appendix. The statistical-mechanical analogy
enables us to reduce the computations in the main
text and to draw on various well-known results and
concepts (e.g. Boltzmann factors, partition fune-
tions, etc.). It should therefore be stressed that this
selection theory works in analogy with a statistical-
mechanical ensemble. Specific sites are assumed to
be selected to have affinity (or specific activity) in
some useful range, while the possible states of a
statistical-mechanical system are limited by the
amount of energy that is available. This is why
binding free energies of the DNA sequences serve as
discrimination energies in the selection theory, in
analogy to the energy levels for a statistical-
mechanical system. Similarly (the negative of), the
sequence information serves as the selection entropy
describing the “‘degeneracy” (or sequence varia-
bility) of the sites, i.e. it provides an estimate of the
number of different sequences that could possibly
function as specific sites. The selection parameter A
provides a coupling between the affinity require-
ment and the sequence variability. In effect, 4 is a
coupling factor between the protein properties
represented by the set of interaction free energies
{e) and the DNA properties in the form of the
base-pair choices { fiz}.

Sequence mutations that do not change the
binding affinity very much are assumed neutral for
selection so that all possible sequences with the
required binding affinity are equiprobable. Thus,
the sequence mutations are analogous to the
thermal transitions in a statistical-mechanical
system. A collection of specific sites, where each
individual site has been selected to serve a
somewhat different function, will not be strictly
analogous to a statistical-mechanical ensemble
where individual systems are interchaggeable. This
is why the functional distribution ‘of sequence
specificity, g(£), in principle cannot be determined
in analogy with a statistical-mechanical energy
distribution. However, as we found above, the
average sequence statistics are very insensitive t0
the actual form of the required functional specl-
ficity distribution so that the properties of
individual sites can be analyzed properly.

In the Appendix the relations above have been
calculated from first principles and have also been
extended to account for the possibility that the
base-pairs do not oceur with equal probability 17
the genome. These relations cannot be expeqtefi tlo
apply exactly like the corresponding statistica!”
mechanical relations because of the limitations 1
the number of possible realizations; the nun’lber'o
sequences  conforming to some discrimmagl‘;g
energy requirement may be of the order of 10

!
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Figure 1. Relationship between base-pair frequencies
Jis and  discrimination energies ¢y in g randomly

valuex and the lines are the expected relations using
eqns (1) and (4) (or (A12) and (A13) from the Appendix).
Slope a. results for {e}io, = {0-4, 0-6, 08, 12, 1-5, 1.7,
9. 211, 25, 2.8} and E.=32 At every position /,
bu =¢€p =& is assumed. A tota) of 706 different
sequence combinations fall within the cut-off. Slope b,
results for {gg}l0 = {1-0, 1-5, 20, 2'5, 30, 3-5, 4.0, 45,
50 5-5} and £, = 8-7. A¢ every position [, g, = &y = &3
is assumed. A total of 2029 different sequence
combinations fall within the cut-off.

—_—

10° rather than 1029
mechanical system.

We have also checked
C()mgvulf‘l‘

as in a normal statistical-

the relations on the
by entering various sets of local dis-
CTiN:iation energies {&15) and counting all possible
binding sequences with an overall discrimination
below some cut-off E.. From the observed base-pair
frequencies in the sample of all sites below this cut-
off value. we can predict the local discrimination
Erergies g, from equation (1) or equation (9) and
fompare them with the values ¢, that were
assumed to generate the sequences. As seen from
W0 1 iresentative examples in Figure 1, the basic
esult  (eqn (1)) holds well  except when &5
pproaches E,. This limitation is expected since
88€-pairs with such large discriminations will not
fontribute in the sample of possible sequences. The
Straight lines in Figure 1 with a slope corresponding
O A represent the predicted relation between the
Obsery base-pair frequencies and the loca)
energy. While the computer calcula-

e sive and/or the number of different discrimina-
o0 energies is large, we conclude from the results

“igure 1 that the theoretical relations above can
€ used for most situations and do, in fact, become
"¢ exact as the number of possible sequence
SMmbinations increases.

=]
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(¢) Statistical small-sample errors

In the preceding section we derived the expected
relationship between discrimination energies and
base-pair utilization frequencies in the set of all
possible sites. The specific sites that have been
experimentally identified and sequenced in any real
case can be expected to form g very small subset of
all sequences that could possibly have been used in
nature. This will introduce “small-sample effect””,
0 that the observed base-pair utilization frequen-
cles will not hecessarily be identical to those
expected. In the Appendix, equation (A40), we
show that the best estimate of the true (in the set of
all possible sites) base-pair frequency is:

Ji8

_ nlB+ I

N+4’
where n is the number of occurrences of base-pair
B at position { in the sample of N sites. This is often
referred to a Laplace’s Law of Succession. The
assignment as in equation (15) makes obvious sense
in the limit when no observations of the sequences
have been made, j.e. when 7,3 = N = 0, since under
these conditions Jis = 1/4 and all base-pair choices
are equally probable at each position in the site. In
other cases (& # 0), equation (15) provides the best
assignment in the sense that it minimizes the
uncertainty (or the expected variance)
estimate. When used in place of the frequencies
(= ng/N) actually observed in the sample, equation
(15) smooths out the differences between the
various base-pair choices somewhat and also affords
a non-vanishing probability of occurrence to base-
pairs that have not been observed in the sample.
Although equation (15) gives the best estimate for
the expected base-pair frequency f,,, it does not
necessarily give the best estimate for a function of
Jis (like, e.g. jgy = In (f10/ fi8)), as discussed in the
Appendix. However, as a first approximation, our
small-sample  correction implies  the usage of
equation (15) in al expressions where 3 s
required.

With equations (9) and (15), the local discrimina-
tion energies should be estimated as:

, <n,o+ A

Abg = In{——
np+1 )

for each base-pair 3 at position /.
In the Appendix the statistical errors in the base-
pair frequency assignments introduced by the small
sample have also been calculated. From equation
(Adl), the expected relative standard deviation
$ilfis in the base pair frequency assignment is
given by:

(15)

(16)

N2 — g+ 1)
($i8/f18) (g + (N +5)

1 ~fis

~ =
~N

Nfig

Thus, the relative error is much smaller for base-
pairs that occur frequently in the sample. For large

(for N » 1). (17)
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Table 1
Small sample uncertainties and contributions from
random fluctuations in base-pair choice at irrelevant
positions

N® silfin®  (nodr®  mol5%)t adg Ui

10 0-45 4-2 7 030 0-078
20 035 74 1 0-27 0-055
30 0-29 10-4 14 25 0-042
40 0-26 13-4 17 0-24 0-033
50 0-23 16-1 21 0-22 0-027
60 0-21 19-1 24 020 0-022
70 0-20 219 27 0-19 0-019
80 019 24-5 29 018 0-018
90 0-18 27-2 33 017 0-013
100 017 30-2 36 017 0-014
112 016 335 40 0-16 0-013
120 0-15 358 42 0-16 0-012
200 0-12 51-5 65 013 0-0074

Columns ¢ to f were calculated from 1000 randomly generated
samples of size N.

? Sample size.

® Relative standard deviation in the assignment of base-pair
frequency from eqn (17), calculated for an “average™ base-pair
observed N/4 times.

¢ Average number of occurrences of the most common base-
pair at an irrelevant position.

4 Number of occurrences of the most common base-pair, for
which the probability is 5%, or less, that a larger number will be
observed at an irrelevant position. These numbers provide a
quick estimate of the significance in base-pair variability.

¢ Average discrimination energy assigned to an irrelevant
position.

f Average sequence information from eqn (A34) in a random
assignment of base-pairs.

values of N, the measure in equation (17) agrees
with the relative standard deviation in the
frequency of occurrence of base-pair B in the
sample if it is known to occur with probability fis.
In column b of Table 1 the relative error from
equation (17) has been listed for various sample
sizes N.

From equation (9) the expected standard devia-
tion in Ag;z would be approximately:

8, = [(8101f10)> + (s18/ f18) 11 (18)

From equations (11) and (16), the discrimination
energy E for a certain sequence {B,}j., would be
estimated as:

S 1

E({B})= 3. In (3‘—‘5“—) (19)
=1

Since the variances are additive, the expected
standard deviation in this estimate AE would be
approximately:

4
S
g = { 2 [(Szo/fzo)z+('*'m./f/m)zl}
Biro

x (6m/N)¥, (20)
where s;p/fig is given by equation (17). Since the
discrimination energy £ is defined relative to the
consensus sequence, the sum in equation (20) is
taken only over positions in the sequence at which
base-pairs other than the consensus base-pair

(B = 0) occur. In the approximate relation, m is the
number of non-consensus base-pairs in the sequence
under consideration and this part of the expression
has been evaluated using equation (17) with an
average base-pair frequency fio = fig = 1/4. When
two different sequences are compared, equation ¢ )
gives the expected standard deviation of e
difference in their discrimination levels (AK) it the
sum is taken instead only over the base-pairs that
differ in the two sites.

Equation (20) accounts for the uncertainty in the
discrimination energy relative to the consensus
sequence. There is also an uncertainty as to whether
the perceived consensus sequence really repres :itg
the cognate (best binding) sequence. As discuss ¢ in
the Appendix, even irrelevant positions will be
assigned positive (or possibly zero) discrimination
energies through the use of equation (16). The
inclusion of many irrelevant positions in the
analysis will substantially increase the statistical
uncertainty in the discrimination energies esti-
mated from equation (19).

Equations (16) and (19) will serve as the ba-. for
the sequence analyses below. The expected dcvia-
tion given by equations (17) and (20) represent the
statistical small-sample errors. If one obsecrves
deviations much larger than these, they are likely
to represent errors in the physical assumptions, e.g.
base-pairs at different positions that do not
contribute independently to the binding affinity or
certain highly conserved base-pairs in the sitex that
serve some purpose other than to contribuie to
the binding affinity. Such base-pairs will have
a statistical weight in the sample that is
not proportional to their effect on binding
discrimination.

3. Sequence Analysis of Specific Sites
(a) Operator selection

In principle, we can apply our theory directly ma
equation (16) to derive local discrimination energies
(6;) using published compendia of base-pair
utilization frequencies; for example, repressor
binding sites of various types on E. colt DNA. Base-
pair frequencies in the binding sites for the £. coli
lexA, trpR, lacl and argR gene products, ax wcll as
for the lambda cI and cro gene products have been
assembled by Schneider ef al. (1986). Unfortunately
each of these sets of sites consists of less than a
dozen DNA base-pair sequences. As a consequence
of these small sample sizes the statistical errors aré
very large and predictions may be of limited value,
especially if the binding constants of the relevant
protein to the various sites differ rathc: little.
Nevertheless, order-of-magnitude predictions ¢an
be made that are in reasonable accord with
published binding data.

As an illustrative example we can consider the
(non-co-operative) binding of the cro repressor ©
phage lambda to the two sets of three adjacent
operator sites at the lambda Py and P promoters:
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Table 2
Binding sites Sor cro and lambda ¢l rePressors
Consensus T AT A ¢ G GIC C6GGTGATAA®
AATAGTGGOC G GCCACTAT T
(nyg+1) A2 2134 110 1o 2 35 23 17 1109
C3 3 1 413 2 128 2 ¢ 102 1 1 11 112
G2 1 10 1 1 12010 ¢ 2812 134 1 33°
T 910 17 18 25 3 » L'l 110 1413 22
Ogs CTATCACCGE ¢ AAGGCGATAA -
GATANGCT G G G TTCCCT ATT
3 3 5
e IR = 0-0125¢
9 10 8 10
Ok, CTALCACCE T GOGETAETTGA S
GATTGOGT G CQ & A CGCACAACT
3 + 2 2 2 4 3
- - - - - — 54 1044
9 7 6 10 8 7 10
Og;y T T cCoeTeTe G CGGTGATAA*©
AATGCGAGQAC C GCCACTAT T
1 3 5
- _ 0-107¢
7 10 8
0, ATACCACTG G CGAGTGATALC -©
TATGCGT G AC C GCCACTATG
2 +4 3 2
- - z ~ 0-0176¢
9 7 8 9
0O, TTATCTCCTGG G CGGTGTTGA ©
AATAGAGAC C GCCACAACT
3 5 4 3
— - - — 003214
10 8 7 10
(R TAACCATCT G CGGTGATAA:®
ATTGGTAGA ¢ @ CCACTATT
2 4 2 3
— - - = 5710734
10 7 12 10

* Symmetric consensus sequence
® Numbers of occurrences plus one

tormed by taking the most common base-pair at each position.
(ng+1) for each base-pair at each

position. Since the protein

binds symmetrically, individual binding sites have been counted in both directions, thereby artificially

increasing the sample from 6 to 12 (cf.
°The 6 binding sequences for cro

Schneider et al., 1986).
and lambda cI repressor as listed, e.g., by Ohlendorf et al. (1982).

¢ The fractional number under a certain base-pair is (nz+1)/(nyo+1) = exp (~Aesp), which expresses
the reduction in binding constant (taken to power ) from a non-consensus base-pair in the sequence.
The number on the right is the product of these reductions, which gives the total reduction in binding

constant (taken to the power 1) for

“Taking these operator sites as being 19 base-pairs in
length, we can use the base-pair utilization
frequencies listed by Schneider et al. (1986)

’

together with equation (19), to predict the relative
Inding constants (taken to the power 1) of these
tes for cro repressor. The relative values of

’:(Ii’(‘iE') obtained for these sites, listed in the

er 0R3/0R2/OR1/OL1/0L2/OL3, are found to be:
V/0-044/8-6/1-4/2-6/0-46 (see Table 2). This set of
lative values can be compared to the relative
alues of the measured binding constants (tabu-
ted by Ohlendorf et al., 1982), which are: 1-:0/0-12/
2/0'5/0'5/0~l. Obviously, no single value of 4 can
used that will make the predicted ratios agree
those observed. However, of the differences
Only the diserepancy factor of ~70 for the
fR1 Site is really significant; the others fall within
® expected statistical uncertainty of about a
b(l)r i))f 6 for a sample of this size (ef. eqn (20) and
o

he discrepancy at Og; may have biological

-

a particular sequence relative to the consensus sequence.

significance. The Og; operator is the strongest
binding site (of the 6 cro operators under
consideration) for the lambda cI repressor: thus.
clearly its base-pair sequence has been selected o
satisfy another strong constraint in addition to ero
protein  binding. The ¢I binding interaction
involves significant contacts with the middle hase-
pairs of the operator sequences, while c¢ro protein
binding does not seem to involve these positions
(see Ohlendorf et al., 1982). If we recalculate our
predicted ratios of binding constants, using only the
14 base-pairs (the central 17 base-pairs of the 19
base-pair sequence of each operator, omitting the
central 3 base-pairs) that have been implicated in
cro binding, we find for the expected ratios of
exp (—AE): 1-0/0-20/0-87/2-8/0-26/0-15. This brings
all the calculated ratios of binding constants
(assuming that 1 is close to unity) within or close to
the expected standard deviation of about a factor of
6 from the ratios of the experimental values.

This result demonstrates that while predictions
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may be of limited direct usefulness for sets of
binding sites based on such small sample sizes,
ratios of binding constants can be estimated at least
to within an order of magnitude. Furthermore, the
theoretical description is consistent with experi-
ment. and large deviations from the predicted
ratios can be used to infer the existence of other
selection constraints that perturb base-pair utiliza-
tion frequencies. In the following section we analyze
E. coli promoter sequences to show that the theory
can be used to make predictions of considerable
utility for systems based on larger sample sizes.

(b) Promoter selection

The initiation of transcripts by RNA polymerase
at promoters, unlike repressor binding, is not an
equilibrium selection process as described in the
previous sections. However, it is a useful example
for our selection theory because there are many
more sequences available for promoters than for
any other type of protein binding site on DNA.
Hawley & McClure (1983) have compiled a list of
112 different promoter sequences from E. coli. We
can extend the arguments for equilibrium selection
to steady-state selection in the following way.

(i) Promoter activity

In a system with a collection of different (and
non-interfering) promoters P; (¢ =1,2,...) the
reaction scheme for chain initiation at each of them
can be written as (cf. McClure, 1985):

[ 2% K
Pi+R 2 (PR)y > (PR), > Pi+R (21)

where R denotes RNA polymerase, (P;R), repre-
sents the initial (closed) complex of promoter and
polymerase, and (P;R),, denotes the “melted-in”
(open) complex. The third step, kj is the rate with
which the promoter is ‘“‘cleared” by the elongating
polymerase (R'), and thus made available to accept
a new polymerase. Thus, the steady-state chain-
initiation flux for each promoter of type ¢ in the
system can be calculated as:

T+ KR (1+Ky[kS)

where {R¢] is the concentration of free polymerase
and:

(22)

Ky = ks 23

Pk (23)
corresponds to the inverse of the Michaelis—Menten
constant. The ratio of initiation fluxes through
different promoters is given by the ratio of their
respective k, Ky values if the denominator in
equation (22) is close to unity, i.e. if the promoters
are not saturated. There are strong indications that
this may be the case in vivo (Bremer & Dalbow,
1975 Crooks et al., 1983). Thus, the discrimination
for promoter selection under steady-state condi-
tions is determined by a ratio of k, Ky values for the
various promoter sequences in question, just as the
equilibrium binding distribution is determined by

ratios of binding constants. The discrimination free
energies of our theory can then be replaced by a
combination of binding and activation free energies.

(ii) Promoter homology

A correlation between in vitro values of k, Ky and
sequence has been demonstrated by Mulligan et al.
(1984), who find a linear relation between
log (k, Kg) and a “homology score’ defined in terms
of the deviation of each promoter from the
consensus sequence. We are now in a position to
apply physical theory to describe these correlations,
The discrimination level AE defined in equation (19)
will serve as a measure of the departure from
homology. One basic difference of this approach
from the ad hoc homology score defined by Mulligan
et al. (1984) is that their score is derived by adding
the observed base-pair frequencies n;p, while the
measure A£ from equation (19) adds In (n;5 +1) for
every base-pair B, in a sequence {B/}j-,. '

To apply our theory, we must first include the
contributions from the variable-length spacer
region between the two important sequence regions
around positions — 10 and —35. In agreement with
previous assumptions we assume that the spacer
contributes independently to the binding inter-
actions. Then the variation in spacer length can be
shown to contribute an additive term to the overall
discrimination energy (see eqn (A21) of the
Appendix). As a consequence, equation (19)
becomes:

AE(BY. L) =3 In (M) +

1=1 n181+1

n(Lgp) +1

where L, (= 17 for the promoters) is the optimal
spacer length and L is the actual spacer length for
the sequence in question. n(L) is the observed
number of occurrences for spacer length L in the
sample of sequenced promoters. Using equation (24)
requires that cvery given specific sequence be
aligned with the consensus sequence in only one
way; otherwise the number of occurrences n(L) of &
certain spacer length is not uniquely defined. Thus,
both the — 10 and the — 35 regions must be so well-
defined that alternative alignments (assuming
different spacer lengths) are not possible. This 18
true for most of the promoter sequences listed, bub
certainly not for random sequences. In principle it
would be possible to relax this assumption and
enter different alignments with different weights.

(iii) Activity-homology correlations

Using the compilation of base-pair frequencies
obtained by Hawley & McClure (1983), the 30-base-
pair site size, and the list of in vitro k, Ky values for
31 promoters presented by Mulligan et al. (1984), we
find the correlation plotted in Figure 2 betweer
In (k, K ) and AE defined by equation (24). A least”
squares line can be fitted fairly well through "{‘f
data points with a correlation coefficient 7 = 0-8%
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Figure 2. Observed correlation betwe
promoters. Since there are uncertainties
(In (k; Kp) = — 1-00AE + 24-85) has been
points. The numbers for the var
(1984). The broken lines represe
from the predicted uncertainty (

This is only a marginally better fit than was
obtained with the homology score used by Mulligan
et al. (1984). which gave r = 0-83. From our theory
we expect that k, Ky will vary proportionally to
exp (—K£). Thus, the slope of the line in Figure 2
gives the parameter 1~ 1-0, although there is a
large uncertainty in the quantitative estimate of
the slope interpreted as the physical parameter 1.
In Table 3 we have listed the observed base-pair
frequency data from Hawley & McClure (1983) and
Some of the various quantities that are relevant for
the statistical-mechanical analysis. In keeping with
he basic selection assumption of the theory we
ave excluded the six promoter sequences listed by
Hawley & MeClure (1983) that were created by
fusion «y mutation, and have considered in the basic

-8et only the 106 naturally occurring sequences. This

exelusion has a very small effect on the numerical

- Tesults

" The large statistical uncertainties in the esti-

energy  discussed in

¥ standard deviation in the estimated numerical
of about 41 unit; the uncertainty is
Mewit smaller for sites with good homology.
°re is also a large experimental uncertainty in
1€ promoter strengths as given by k,Kg. In
'8ure 2, data points connected by a continuous
“rtical line correspond to measurements of k, Ky
o the same promoter carried out in different
Oratories (see Mulligan et al., 1984). Thus,

en calculated discrimination level 15
in both co-ordinates (AE and In (k, K B
determined by minimizing the average
ious promoters and references to the original lite
nt a +1 standard deviation, both ag observed fo

\E

and in ritro activity k, Ky for various
)) in this Figure, the least-squares line
perpendicular distance from the data,
rature are as given by Mulligan et al.
r the 31 data points and as expected

~ £ 1 unit) in AF and the experimental uncertainty in In (k, Ky).

agreement with the theory can be expected only on
average. In fact, the deviations from the least-
squares line observed in Figure 2 are of the
magnitude expected from the uncertainties in the
two co-ordinates.

Extending the straight line in Figure 2 f{o
maximum homology (discrimination E = 0) would
give (kyKy)p, = 1010y -t-t However, there is
no reason to expect the linear relationship to extend
that far. From column d of Table 3 it can be
estimated that between four and nine positions
in the site size may be irrelvant for specificity since
the base variations at these positions could well be
caused by random fuctuations. Rach of these
irrelevant positions would contribute, on average,
0-16 (see Appendix. section (¢}, and column e of
Table 1) to the estimate for AZ. Thus, AE could
probably not be smaller than about 1.

More important, however, is the fact that k, Ky is
a combination of kinetic factors. From equation
(23) we have k, K, = kyky/(ky+ky). Most of the
promoters in Figure 2 probably work in the limit
where k4> k;, so that the observed correlation
between sequence homology and activity k,K,
actually pertains to k, Ky ~ kykylky. Thus, if k, is
fairly insensitive to sequence (e.g. diffusion-limited)
the observed correlation is between sequence
homology and the ratio kalks. When this ratio
becomes large, promoter activity will become
association limited. &, K, ~ k, from equation (23).
Then the straight line in Figure 2 should level off at

733
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Table 3
Statistics from the promoters
. b A C G T 1,4 Keye T ng 7, ® b

—45 A 52 15 19 23 0-127 0-519 AA 23:18:9 1-0
A 40 20 14 35 0-079 0-305 AA 19:15-6 0-9
A 43 12 20 34 0-102 0-354 AA 20:14-4 1-6
T 37 21 10 41 0-115 0-293 AA 19:13-0 1-8
A 39 23 20 27 0-035 0-3256 AA 14:13-4 0-2
—40 A 38 17 24 . 30 0041 0-292 TT 14:10-5 11
T 19 26 25 39 0-034 0-324 TT 16:15-9 00
T 26 11 27 45 0-102 0-400 TA 15:10-1 16
C 25 4 29 15 0-059 0-341 CT 31:32:5 -03
T 3 8 12 87 0-670 0-482 T 75:73-0 0-4
-35 T 6 7 6 91 0-737 0-460 TG 71:72.2 03
B 3 H 86 10 0-647 0-493 GA 56:55-3 0-1
A 70 I8 3 19 0-401 0-533 AC 44:37-8 13
; 25 59 11 15 0-213 0-550 CA 32:26-3 1-3
A 49 9 17 35 0-168 0-409 TT 21:13-8 2-1

-30 T 26 25 15 44 0-070 0-400

(spacer) 0-694
T 22 26 14 48 0-099 0-458 TA 16:12-4 11
T 29 19 29 33 0-019 0-163 AT 17:10-6 2-1
T 17 25 27 41 0-048 0-351 TG 28:15-5 34
-15 G 23 20 42 25 0-045 0-379 GT 15:11-2 1-2
G 18 27 35 30 0-027 0-215 GT 29:26-6 05
T 3 11 12 84 0-610 0-506 TA 77:783 —03
A 101 3 2 4 1-016 0-285 AT 43:44-3 -0-3
T 28 16 13 48  0-100 0-457 TA 29:275 0-3
-10 A 63 15 18 14 0-237 0-592 AA 33:31-6 0-3
A 55 22 14 19 0-152 0-541 AT 54:52:0 0-4
T 2 1 i 103 1-089 0-232 TA 32:31-6 01
A 34 14 33 29 0-048 0-164 GC 19:10-9 2:6
C 22 37 22 29 0-025 0-272 cG 15:9-6 19

-5 A 30 30 29 21 0-010 0-077

2 Position number in the promoter sites as labeled by Hawley & McClure (1983).

b Consensus sequence.

° Base-pair utilization (n,z+ 1) for B = A, C, G, T, at position I.
4 Sequence information at position ! from eqn (A35). From eqn (A36) exp (—~N1,) gives a measure
for the probability of random occurrence of the observed base-pair utilization at this position. The sum

of the entries in this column gives [, = 7-1.

€ (g is the average contribution to the discrimination energy at this position. The sum of the

entries in this column gives A(E), = 12-0.

{ Most frequent doublet at this position and the following.

£ ,,0bs
LZ)

is the number of occurrences of the most frequent doublet and 7, is the expected number based

on the singlet frequencies of the respective base-pairs.
B (03 —n,)/[Ry(1—n,/N)|! is the deviation in the observed doublet frequency divided by the
expected standard deviation. This gives a measure of the significance of the observed doublet

correlation.

k,kg =~ k, when the discrimination energy decreases
below that which corresponds to ky/k, ~ 1. In fact,
the “best” promoters in Figure 2 may already be
approaching this limit. This may also be the reason
why a very efficient synthetic promoter with close
to maximal homology exhibits almost no change in
its in vitro activity when one of the strongly
conserved base-pairs in the —35 region is substi-
tuted (Rossi ef al., 1983). This substitution would
increase the discrimination level A from 1-1 to 2-8.
These small values would keep both sites well
within the region conjectured to correspond to an
association-limited promoter activity (cf. Fig. 2).
Similarly, when the discrimination energy
becomes very large (and k, Kp becomes very small)
other kinds of interactions (e.g. purely non-specific
electrostatic) may become dominant so that the
straight line cannot be extended too far in this

direction either. Also, since the s\ope is rather
uncertain even within the range of the available
data, predictions too far outside the observei range
would not be very reliable even if the linearity
observed does hold over the entire range.

(iv) Promoter classification

If the promoters are classified according to
increasing values of AE (see Fig. 3), their order will
differ appreciably (in detail) from the list given by
Mulligan et al. (1984) for decreasing value~ .t thell
homology score. This is not surprising, xince the
homology score is defined quite differently from 4
given by equation (24). However, the gross f@nures
of these classifications are very similar within t.he
expected statistical errors, so that a promoter wit
a large homology score according to Mulligan et av

(1984) will have a small discrimination level AR




separation between groups have been

in Fig. 2 holds.

our listing. In fact, a linear relationship between the
two neasures holds very well (with correlation
coefticient 0-98) over the entire range of the
promoter sample. However, this linear relationship
between the two measures relies on an approximate
Proportionality between

210 [tmo+ 1)f(mup, + )] and ¥ (mo— s,

"‘(\Thef

ilable This is certainly not true in general, and may not
range hold as well for arbitrary sequences or different
parity Samples. Thus, since equation (24) is based on

. Physical theory, we propose that the discrimination
level 1E provides a better and more general
Measure for the departure from sequence homology
3 it pertains to binding and activity.

The small-sample uncertainties in the correlations

en by | tween 1E and the k, Ky values makes a detailed
 their | classification of predicted promoter strength
ce the dccording  to - sequence homology impossible,
om AE dthough 5 gross classification should work. This

;&tistical uncertainty also implies that no strict
U

t-off in the value of AE (or any other homology
.-ore based solely on sequence data) can exist that

orply separates promoter from non-promoter
S,
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Figure 3. The promoters in the sample, rank-ordered in accord with their diserimination level AE, which is given
below each promoter name. To see the form of the distribution of promoters along the diserimination level co-ordinate,
the promoters have been put into groups for which AE differs by 1 unit. Promoters with half-interger values of 1E at the
put arbitrarily in the group to which they would belong when second decimals are
included in the value of AE. For comparison, the distribution that would be expected if the promoters conform to a
canonical ensemble has also been drawn (continuous line). and is approximated as a Gaussian with variance
A0} = 10-4 as determined from eqn (A32). Since A1~ | for the promoters, in accordance with eqn (A20) this curve
approximately describes also the expected distribution of random activity in the genome at pseudosites with the
discrimination levels indicated. Numbers on the bottom are the predicted in vitro activities, if the correlation observed

(¢) Conclusions from the sequence analysis

The theory requires that the functional DNA
sites have been selected according to some
constraint (e.g. the binding affinity or activity must
be in some useful range), and that this constraint
operates for all sites. Obviously, problems of
interpretation will occur when many sites have been
selected to satisfy other criteria simultaneously, for
example, promoter sites that also bind effector
molecules, etc.

(1) Base-pair independence

As developed and applied above, the theory also
requires that base-pair substitutions act indepen-
dently, so that their contribution to the interaction
free energy is additive. There are physical reasons
to expect that this is not generally true (cf. von
Hippel & Berg, 1986). First, it is likely that
recognition is affected by the secondary effects that
base sequences have on the local DNA structure
and flexibility; since these DNA properties are
determined primarily by interactions between
neighboring base-pairs (Dickerson, 1983), if such
effects dominate the specificity they would be
expected to lead to strong correlations in the base-
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pair usage at neighboring positions. Furthermore,
even if specificity were based solely on the
complementarity of the hydrogen-bond-forming
groups of the functional sites of the protein and
DNA, one might expect that the loss of contiguous
specific contacts will contribute differently from the
loss of non-contiguous ones (cf. Mossing & Record,
1985). However, as we shall discuss below, the
statistics of base-pair usage in the promoter sample
do not indicate that such co-operative effects have a
dominant influence on polymerase recognition.

In principle. the theory can be extended to
include correlations and co-operativity between
different base-pairs (see the Appendix). However,
because of the much larger range of possibilities for
doublets, triplets, etc., more sequence data than is
available at present are required to calculate such
correlations reliably. To estimate the importance of
such correlations in the promoter sample, we have
counted the occurrences of all doublets of neigh-
boring base-pairs and compared them to the
doublet frequencies expected from the single base-
pair frequencies at the two positions in question (cf.
columns f and g of Table 3). The strongest
correlation is at three and two base-pairs upstream
from the TATA box (i.e. positions —16 and —15 as
numbered in Table 3), where T and G, respectively,
are weakly preferred. Here, the doublet T-G occurs
in 28 cases while only 15 to 16 would have been
expected from the singlet occurrences of base T and
base G at the respective positions. This is a highly
significant deviation from individual base-pair
independence, in that it would have occurred at
random with a probability of only 6x 10™*. This
result suggests that when either T or G is
substituted, the choice of base-pair at the neigh-
boring position becomes irrelevant.

A nearest-neighbor correlation like this can come
about in several ways. It could reflect a physical
interaction, i.e. that the polymerase can only make
good contact with the DNA site when both T and G
are present. Alternatively, it could reflect a subset
of promoters requiring T-G as a signal, either for
the binding of the polymerase or for the binding of
some effector. There is a similar (though weaker)
preference for an A-T doublet just upstream at
positions —17 and —16. However, there is no
significant preference for the simultaneous presence
of these doublets, i.e. for the triplet ATG at these
positions. Since neither of these doublets shows
strong correlations with neighboring base-pairs on
either side, it is unlikely that these positions serve
as a signal related to the binding of an effector
molecule other than the polymerase.

Partially overlapping these doublets there is also
a preference for CTC at positions —18 to —16,
which shows up as strong doublet correlations for
C-T and T-C at their respective positions. Out of a
total of nine occurrences of this triplet, five are
found among the 18 rRNA and tRNA promoters.
Thus, this triplet could serve as part of a signal
defining a certain class of promoters. Alternatively,
it could reflect a close relationship, i.e. perhaps

some of these promoters have only recently evolved
from the same common ancestor.

The second strongest doublet correlation occurs
directly downstream from the conserved —1]¢
region. Here (at position —7 and —6) the doublet
G-C occurs 19 times, while only 11 would be
expected from the respective singlet frequencies (see
Table 3). Of these 19 occurrences, however, |4
derive from the 18 rRNA and tRNA promoters in
the sample. This doublet is the first part of the
discriminator region of sequence GCGC that is
required for stringent control of stable RNA
synthesis (Lamond. 1985). It is interesting to note
that this correlation occurs in a region where the
base-pair choice on the singlet level seems random,
thus strengthening the suggestion that this signal is
not directly related to polymerase activity.

There are also two weaker correlations sur-
rounding the conserved —33 region. At positions
—42-—41 and —31-—30 T-A and A-T, respec-
tively, are unfavored while T-T and A-A are
slightly favored in both cases (see Table 3).

Similarly, we have looked at the correlations
between next-nearest and next-next-nearest-
neighbors and find only a few, all of which are
connected with the doublets discussed above. There
is a relatively strong preference for A and G at
positions —9 and —7 with 24 occurrences rather
than the 16 expected from the singlet data. This
correlation disappears when the 18 rRNA and
tRNA promoters are excluded from the sample.
This does not necessarily imply that the A should
be considered as part of the signal in the
discriminator region; possibly, it simply reflects the
fact that most stable RNA promoters that carry
the discriminator signal also are strong promoters,
thus requiring the consensus A at position —9.

To gauge the importance of the doublet correla-
tions observed, we have generated sets of “random
promoter sequences’ on a computer, where at every
position a base-pair has been assigned in proportion
to its frequency of occurrence in the promoter
sample without regard to base-pair assignments at
other positions. This procedure yields sequences
where the single-base-pair occurrences agree
approximately with those in the promoter sample,
but where doublet correlations are due only t0
random small-number fluctuations. This provides &
numerical ‘“‘base-line” against which to assess thf
significance of the correlations found in the. *‘real
promoter sequences.

We find that of the 28 doublet positions includf%d
in our study of the real promoters, only the siX
positions discussed above show significant correla-:
tions above the random variation expected. To
quantify further the statistical significance of the
doublet correlations, we have also calculated the
“doublet information content” (I,) as defined by
equation (A38b) in the Appendix; for the rea
promoters it is /, = 1-6 as compared to about 1-1 0T
1-2 for the randomly generated ones. In contrast,
the primary sequence information that measures
the importance of the individual base-pair choice®
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in the promoter sample is around loq=1T (see
Table 3), while for a similar sample of totally
random sequence it is /., = 0-4 (see Table 1).

Thus, a few significant nearest-neighbor correla-
tions exist in the promoter sequences, and some of
these no doubt derive from co-operativity in the
interactions  between the polymerase and the
individual base-pairs. Others seem to be part of
signals that are not directly related to polymerase
activity and therefore should not be ascribed to co-
operativity. At most positions, however, the
observed doublet correlations are not distin-
guishable above the small-number fluctuations, and
base-pair occurrences seem, indeed, to be largely
independent. This does not prove that the contribu-
tions from different base-pair positions to the
interaction free energies are additive, although it is
an indication that additivity is dominant and a
reasonable first approximation. Apart from the few
cases discussed above, the statistics of doublet
occurrences in the promoter sample do not suggest
any major revision of this assumption. To really
prove independence and additivity would, of
course, require experimental verification by syste-
matic base-pair substitution; the statisties can
suggest where deviations are most likely to ocecur.

It should be noted that the discrimination
energies calculated from the single base-pair
occurrences already include some average of
possible co-operative effects, e.g. a strong co-
operativity between two neighboring base-pairs
that leads to a selection for them as a doublet will
also increase their singlet frequencies, even if they
do not contribute to recognition individually. Thus,
the effects of nearest-neighbor co-operativity will be
to modulate the assigned discrimination energy for
every possible base-pair, depending on its nearest
neighbors in the site as given by equation (A38a) in
the Appendix.

Applied to the promoter sample, this modulation
has a relatively small effect on the assignment of AE
for most promoters. The statistical correlation with
i vitro activity becomes somewhat better than that
depicted in Figure 2, with one glaring exception:
the L305 mutations (no. 9 and no. 24 in Fig. 2) of
the lacUV5 and lacP® promoters are pushed far
away from the least-squares line, to 1K = 16 and

E ~ 17 respectively. This mutant has a single

base-pair deletion just upstream from the —35

egion that presumably realigns a number of base-
s in the relatively unimportant region further
Pstream. The discrepancy for the L305 mutant
hen doublet correlations are included may simply
eflect the fortuitous addition of contributions from

doublets  that  are individually  statistically

NSignificant.

. he i1:iroduction of doublet correlations into the
Serimination calculations increases the statistical
"ICertainties, since it requires the addition of a
8¢ number of imprecise data points. The doublet
rection will be useful mostly when the base-pair
Telations are so large that their presence
Toduces systematic errors that are larger than

the statistical uncertainties in the correction terms.
Thus, it will be more useful to apply the doublet
corrections only to cases where the statistics suggest
that doublets are important. In the case of
promoters, such an application has only a minor
influence on the estimated discrimination energies.

Co-operativity and correlations can also be
included in a systematic and useful way for samples
that are not prohibitively large by using smaller
“alphabets” to reduce the number of possible
combinations. For example, if DNA structure is
determined mostly by purine-pyrimidine (rather
than individual basc-pair) choices (Dickerson, 1983)
one need only consider four possible doublets and
16 triplets, rather than the 16 and 64, respectively,
that apply to the full DNA alphabet when one
utilizes all four base-pairs.

(ii) Functional distribution

The selection of samples may be biased in several
ways. For example. it may be easier experimentally
to identify strong sequences among all those that
are used in the genome. Nature may also be biased
in its choice of real sites among the potentially
useful ones. In principle we cannot, in our analysis,
distinguish between such biases. However, from the
results presented in the second section it can be
expected that such biases will primarily influence
the parameter A, and will leave the basic relation
(eqn (16)) between the discrimination factors and
base-pair utilization frequencies otherwise essen-
tially unchanged. Thus, the correlation between
sequence and discrimination should be largely
invariant, although A cannot be calculated a prior:.

From the sequence analysis of the promoters it is
also possible to determine their distribution g(E)
along the discrimination-level co-ordinate AE. The
promoter list as depicted in Figure 3 can be viewed
as a bar-graph representation of this distribution; it
can be regarded as a distribution over the primary
sequence specificity. The numbers on the bottom
are the predicted in vitro activities that apply if the
correlation found in Figure 2 holds. If the concen-
tration of free polymerase is 3x 1078 M, as it is
suggested to be in wvico (McClure, 1985), the
distribution spans initiation frequencies from about
1s7! to 1h™!, which seems a reasonable range. It
should be stressed. however, that the functional
activities in vivo will be influenced by many other
factors (e.g. supercoiling. activator proteins, etc.)
that could appreciably change the overall form of
the activity distribution.

For comparison, in Figure 3 we have also plotted
the canonical distribution discussed in the
Appendix and approximated as a Gaussian with
mean A(E )., and variance A%0} given by equations
(8) and (A32), respectively. While this construction
forces the means of the observed distribution and
the canonical one to agree via equation (8), it is
interesting to note that the widths of the two
distributions also agree quite well. This may well be
coincidental, but could also reflect some evolu-
tionary advantage in selecting specific sequences
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with a canonical bias. As discussed in the Appendix,
the canonical distribution confers maximal
sequence variability within the constraint set by
the maintenance of a given average discrimination
energy (E)yq. Preliminary calculations (0. G.
Berg, unpublished results) on 117 ribosome initia-
tion sites (Gold et al., 1981) show that these sites
similarly conform to a canonical distribution over
the discrimination level AE. This may be an
indication that sequence variability (or sequence
diversity) is of primary importance in the evolu-
tionary selection of recognition sequences.

(d) Sequence information and overspecification of
binding sites

Schneider et al. (1986) have used information
theory to calculate the sequence information
(defined from the observed base-pair frequencies via
equations (12) and (A34)) for the binding sites of
various recognizer proteins. Their analysis demon-
strates the usefulness of sequence information in
assessing the relative importance of various posi-
tions in the site; notably, it can be used to delineate
those positions within the binding sequence that are
really relevant via equation (A35). However, as
shown above and in the Appendix, it is not the
sequence information per se, but the ratio of base-
pair frequencies that is directly related to the free
energy of binding. While the sequence information
is a measure for the whole set of sites, the
statistical-mechanical sequence analysis can also
provide a quantitative measare of specificity for
individual sites.

(i) Operator sites

Schneider et al. (1986) found, for all the sets of
specific sites investigated by them, that the
sequence information is approximately equal to the
negative logarithm of the probability that a site
chosen at random in the genome is a specific site.
Since the information content is essentially the
negative logarithm of the probability of random
occurrence of a potential site of average binding
strength or greater (cf. eqn (13), one would
conclude that the number of specific sites in the
genome is approximately equal to the expected
number in a random genome of the same size.
However, the reduction factor (the denominator in
eqn (13)) could reduce the estimate of randomly
occurring binding sites by an order of magnitude or
more; thus sequence information alone does not
provide a reliable estimate of this expected
frequency.

It has been argued (von Hippel, 1979) that
specific sites in the genome should be specified in a
way that makes the random occurrence of competi-
tive binding sites (‘‘pseudosites”) unlikely. Without
such “overspecification”, the recognizer protein
would be “soaked up” by binding to a large number
of such pseudosites. In a recent paper (von Hippel

& Berg, 1986) we showed quantitatively how

binding selection can be balanced by sequence

length (site size), discrimination factors and protein
concentration. The amount of overspecification
required is determined primarily by the number of
protein molecules the system can afford to lose by
non-productive binding at pseudosites. We can now
relate this number quantitatively to the sequence
information as follows. From equation (3) of von
Hippel & Berg (1986) we can express the number of
proteins bound at pseudosites as:

mg = 2Ny Fy Z ps(Ey) (25)

z
x+exp (B,—E,)
where the sum is taken over all classes (7) of sites in
the genome. p(E;) is the probability of random
occurrence of a pseudosite with discrimination #,
and ZN1 F, is the total number of available binding
sites in the genome. Ny is the size of the genome in
base-pairs and F, is a reduction factor that
accounts for the fact that only a fraction of the
genome may be available for binding; the rest may
be covered by other proteins or structurally
inaccessible for other reasons. The saturation level z
is defined from the fraction saturation 6, of the
specific  site  (with  discrimination E,) as
x = 0,/(1—-6;). Since py(E;) increases rapidly with
increasing discrimination E;, the sum in equation
(25) is dominated by terms for which
exp (E;—E,) > x. Then one finds:

mg X 2N Fyx exp (B} %
Z ps(E;) exp (— E))
= 2Ny Fpzexp (—I,,). (26)

The sum in equation (26) is the same as was
calculated in equation (14a) and (14b) and the
result holds if A ~ 1 and if = is determined by the
fractional saturation of a specific site with average
discrimination E; = (E),. When the saturation
effects of the pseudosites cannot be neglected, a
correction factor (<1) should be included in
equation (26). However, we find this to make a very
small difference in all examples where we have
summed equation (25) exactly; the non-specific
competition from pseudosites is expected to be
dominated totally by the large number of weak
(unsaturated) sites rather than by a few ‘strong
ones. Thus, the observed sequence information in &
set of binding sites can be related directly to the
expected number of protein molecules wasted by
non-productive binding at pseudosites. This number
is modulated primarily by the saturation level %
required at an average specific site. Therefore, the
relationship between sequence information and the
number of specific sites in the genome is likely to ?e
a complicated function that also involves the detal!s
of the regulatory requirements of the system. This
will be discussed in more detail in a subsequent
paper (0. G. Berg & P. H. von Hippel, unpublish@d
results) in which we analyze the sequence specificity
of the DNA binding sites for the cyclic AMP
receptor protein (de Crombrugghe et al., 1984).
In this connection it is also interesting to no
for the repressor binding sites studied by Schneider
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et al. (1986), that the ones with the smallest
sequence information are, at least in part, co.
operative sites (e.g. sites for arginine repressor and
lambda ¢l repressor) where binding to two
neighboring sites is favored, while the ones with the
lirgest sequence information are mostly indepen-
dent sites (e.g. sites for tryptophan repressor and
lexA protein). Obviously, when regulatory proteins

site to achieve g required binding level. Thus
sequence information can indeed be a useful
measure for specificity, although one should be
awiire that it deals only with an entropic aspect of
the specificity of a whole set of sites and cannot
describe the specificity of individual sites.

(ii) Promoter sites

We can also estimate the number N, of randomly
oceurring promoter sites (pseudopromoters) in the
genome using the promoter sample data:

Ns(<E>seq) = 2NTPs(<E>seq)' (27)

Using equation (13) for the probability Ps(<E>seq) of
random occurrence of a site with discrimination less
than <(E) and data from Table 2 (Lyeq =71,
IE Ygeq =120, 8 = 1-2, site size s = 30, and a
genome  size  of N, = 107),  this gives
N(CEDgeq) = 1000. Accounting for various spacer
lengths with an extra factor 1/ f(Logy) from equation
(A22) gives Ns(<E'>seq)=2000 for the number of
pseudopromoters with discrimination less than the
average in the sample of real promoters. The
number of pseudopromoters with AE < 15, which is
where most, of the real promoters fall (cf. Fig. 3),
would  be somewhat less than a factor
exp ([5—,1<E>s,q) =20 larger (cf, eqn (A17)),
giving  possibly 30,000 pseudopromoters in the
genome. Taken at face value, these numbers would
indicig g significant initiation by RNA polymerase
al non-specific sites in the genome. However, this is
likely to represent an overestimate ag g, measure of
the  number of functional and  accessible
Pseudopromoters.

First, only a traction (perhaps léss than 10%,) of

Ot recognition at any one time, Second, there may
BXist, <nbtle requirements for promoter recognition
Other than the primary sequence specificity con-
Sidered p the present calculation; e.g. higher-order
P¢yond nearest-neighbor) correlations between
ifferen base-pairs or contributions from regions
*Wrrounding the 30 base-pair site size used in the
Malysis  here. Tt is also likely that strong
Peudopromoters are selected against,. However,
mqst of the non-specific activity is expected to
Ve som pseudopromoters with weak homology
Since there are so many more of them. It appears

.8 likely that an effective selection will be
toperating against the large number of weak
‘ .f}?eudOpromoters; this is corroborated by the fact
“hat

Mulligan et al. (1984) find almost exactly as
My (1396) “promoter-like sequences” in plasmid

PBR322 as expected (about 1380) from random
oceurrence, using their particular definition of
promoter-like sequence. Thus, the expected number
of randomly oceurring pseudosites ag given by
equation (27) serves as an interesting reference
point for the specificity requirements,

Since the selection parameter, 4, is equal to unity
in the promoter sample, we can use equation (14b)
directly to estimate the average activity (k, Kp)

rnd
for a random site in the genome:

<k2 I{H>rnd ~ (/CZ Kﬂ)max X
exp (“'(E)scq—lseq)/f{Lopt)' (28)

(The factor 1) S (Lop) = 2 accounts for the different
spacer  lengths ag required by eqn (A22).)
Assuming that the free polymerase concentration in
the cell is 3 x 1078 (McClure, 1985), and using the
other data for the promoter sample as above, this
gives ~ 500 F, initiations per second at random
sites in the genome. (It should be noted that this
estimate  holds even if the maximum activity
(k2 K)oy = 10 M1 g~ 1 g ot attainable since the
total activity at pseudopromoters is dominated by
the  weaker ones.) If it is further assumed
(arbitrarily) that only 59 of the genome is
accessible for RNA polymerase (Fy = 0-05) and
that a random transeript is only ~200 bages long
(i.e. the transcript would take approximately 4 s to
complete), the total number of polymerase mole-
cules active in random transcription would be
~100. This is about 3% of the total number of
actively transcribing polymerase  molecules
(McCluare, 1985). Tt does not appear likely that g
much larger fraction would be allowed, and
probably the fraction should be even smaller. This
calculation is intended primarily to illustrate the
possible consequences of the specificity require-
ments. [t seems clear, however, that if random
initiations do occur it is crucial that the transeripts
started at these loci be rapidly terminated.

On the basis of primary sequence specificity the
promoters do not appear to be overspecified; their
numbers are not in large excess over that which
would be expected from random appearance in the
genome. Instead, efficient discrimination from
pseudopromoters may be achieved by keeping the
control regions more accessible than the average
DNA. For instance, control regions could have
sequence characteristies that make them unlikely to
be covered by structural proteins. Such secondary
sequence specificity (von Hippel & Berg, 1986)
could reside in a sequence choice that subtly
changes the DNA helix parameter over larger
stretches of DNA (Drew & Travers, 1984) or it
could reside in a combination of effects from the
various recognition sites that make up the control
region. Furthermore, a random RNA transcript is
not likely to be translated and could therefore be
quickly terminated by, for example, rho-dependent
transcription termination (von Hippel et al., 1984;
Platt, 1986). Thus, part of the effective promoter
specificity may reside in a close coupling with
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ribosome initiation sites. In contrast, operator sites
that rely on an equilibrium selection cannot show
such kinetic discrimination and may therefore
require more  overspecification  for  optimal
specificity.

4. Evolutionary Selection of Binding Sites

The theory described here relies on the assump-
tion that specific sequences have been positively
selected to provide a certain binding affinity or
biological activity. Opposing this specific selection
is the mutational drift towards randomness. To
weigh the importance of certain sequence choices it
is necessary to know, as a base-line, what the
random base-pair choice is: for this we have simply
used the average base-pair composition of the
genome. This is a natural assumption, although not
necessary. Operationally, the random choice could
be represented by the composition of a part of the
genome that is under no selection pressure
whatever.

While we do not yet understand the significance
of the particular distribution of specificity found for
the promoter sites shown in Figure 3, it is
interesting to discuss some of the factors that can
influence and shape such a distribution. Although
the specificity must reflect the functional require-
ment for specific activity at individual sites, it is
likely to be further influenced by the particular
properties of sequence drift and selection.

The evolutionary constraint will work both on
the recognizer protein (affecting the discrimination
energies &) and on the binding sequences {B}
actually used. A minimal requirement for effective
binding selection in the living cell would be that
sequences and discrimination factors are both
chosen large enough to reduce the competitive
binding to strong pseudosites in the genome to
appropriate levels. In this way the investment in
protein can be kept low. A larger site size can allow
weaker discrimination factors without losing effec-
tiveness in binding selection. This would also permit
a much larger variability in the specific binding
sequences actually used.

Alternatively, if the discrimination factors are
very large, the specific sites could be defined using a
minimum number of base-pairs, but would also
allow a minimal variability in the binding
sequences; large discrimination factors require a
very precise protein-DDNA interaction that does not
permit much variability either in the protein
sequence or in the DNA sequences. In a sense, this
approach would correspond to a maximization of
specificity.

Maximizing specificity by decreasing site size to a
minimum and increasing the discrimination factors
may lead to some reduction in the investment in
protein that is required for a suitable binding level.
This might well represent some gain in efficiency
and evolutionary fitness. However, this gain is
probably not sufficient to counteract totally the
continuous drift towards disorder. That is, there are

—_

always many more sequences (DNA and protein)
that can support weak binding interactions.
A balance will be reached when the entropice drif
towards smaller discrimination factors and lesg
perfection requires too heavy an investment ip
protein to permit sufficient binding. The natura)
fluctuations of protein numbers in the living col),
which can be very large (Berg, 1978), set another
limit to how good specificity can usefully be. Ag
discussed previously (von Hippel & Berg, 1986), 4
regulatory system with too-high specificity would
be very sensitive to the removal of even a single
protein molecule by fluctuation in  protein
concentration.

A larger site size requires a larger prote;n to
recognize it. Such enlargements can be achieved by
the formation of dimers (or of larger multimers) of
the protein. An effective increase in site size can
also be achieved by co-operative binding of the
same protein to two neighboring binding sites, so
that the effective recognition sequence consists of
the two sites taken together. Apart from the fact
that co-operative binding can have difiirent
regulatory sensitivities, there may also be a
substantial gain in specificity in such an arrange-
ment; although more protein is required for specific
binding, the reduction in the number of competitive
pseudosites will be very large, so that the protein
“wasted” by non-productive binding can be
substantially reduced.

As the whole system grows more complicated, it
can also make use of combinations of specific
processes and thereby relax the specificity require-
ments in the individual reactions. Some examples of
this possibility were discussed above in connection
with the apparent lack of overspecification for the
promoter sites. As a corollary of this, it can be
expected that more primitive systems have higher
requirements for primary sequence specificity.

The large variability observed for the real sites
implies that specificity has not been maximized in
evolution. This is also corroborated by the fact that
the best binding sequences seemingly are not
utilized either for the promoter sequences discussed
above or for the lac operator (Sadler et al., 1983;
Simons et al., 1984). In the picture developed above,
this is understandable in terms of the fact that,
whenever possible, sequence drift would tend
towards weaker sites since there are so many more
of them. The large variability could reflect the real
difficulty of designing a protein with very large
discrimination factors, i.e. one with a very precisé
recognition surface for DNA binding. Howevel
even if specificity could be absolute, there may’b
advantages to using many small discrimination
factors rather than a few strong ones. Thus the us®
of some weaker discrimination factors permits & ﬁ":
tuning or modulation of the binding (or activity) &
different specific sites.

However, the observed sequence
seems to go beyond such requirements for
tuning. It appears very likely that the choice 0
discrimination factors (and thereby the permitteQ
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iteractions,
ropic drift

—\\_

variability in Sequences)  will opq towards
situation that ig Most stahle in 4n evolutionary
sense. Such a situation will b reached whep most
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be a Property that is not strongly selected for. Since
many  more sequences with Jow stability  are
expected to exist, the natural tendency would pe

and  lesg mutations, in either the Protein or the specifi DNA  for proteins to show only the minima) necessary
stment, i sites, have only a smail influence and are not singly  thermal stability. Again this js Consistent with the
he natural lethal. This js consistent, with the notion that, many experimental ﬁndings (e.g. for T4 lysozyme: John
hiving cell, small discrimination factors are better than g few Schellman ¢ al.,  personal Communication)
¢t anothep strong ones. Furtherm()r(*, one  would expect g indicating that most amino acid substitutiong result
dly be. Ag' mutationally stahle situation ¢ provide many  jp only small increases or decreases i thermal
g, 1986), 4 pathways for revertants that can restore binding or stability.

ity would activity. This would imply that neither the protein

- a single nor the specific sequences used are he best binders, . .

I protein but rather that they incorporate many positiong 5. Discussion

protein to

g sites, so
=onsists of

where a mutation could lead to better binding ag
well as to weaker interactions. Indeed, both

cules and operator sites.
Fiexible and imperfect recognition of thig sort,

selection model
provides g physical basis for the sequence analysis

‘hieved by Tepressor mutations (Nelson & Sauer, 1985) and of specific DNA sites. |t includes the information-
{timers) of operator mutationg (Sadler al., 1983; Simong et theoretic description (Schneider ot ¢ 1986) as 4
e size can al., 1984) have beep found that show increased limiting cage when only entropy is considered The
ng of the binding affinitieg over the wild-type protein mole- theory not only predicts the correlations between

promoter activity anq “homology score proposed
by Mulligan ef o (1984), but also accounts for the

Properties. Again, stability  would argue
he recognizer protein is ngt designed for
i the optimum will
where most, substitutions have a smaj) effect,
Some leading to increased and others to
eCreased specificity. Thus, the natural tendency
«d abovey Yill be towards lower specificity and higher
et th&%i disorder, simply because there are many more
+id  teng quences (DNA and protein) that can fit 5 lower
i Pecificity Tequirement. While there is little adva-
88e in (ang therefore little selection for) maximum
ity, there will be a strong selection against
0 low 4 Specificity.
U8, rather than maximizing specificity, evolu-
Will tend to minimize the maximum loss of
ty. In fact, one can expect the same
0 hold for the design of protein molecules
if specificity s replaced by specific
1S agrees with the effects found for
o acid substitutiong in some enzymes
ophage T4 lysozyme; Tom Alber, Brian
! ! al., unpublished results) where most
£ Stitution have small effects and some lead to
iCTease | activity. Similarly, thermal stability may

.imized in’

II.l. 5 ’

n the fact may also favor independent, rather than c¢o. observed deviations in terms of the expected
diiterent operative, base-pair interactions, since co-opera- statistical Uncertainty. Actually, rather than being
Iso be a tivity would imply that many  base-pair intep- a “blemish” the observed scatter in the correlation
0 arrange- actions can be lost ag & consequence of g single  Jends further Support to the theory.
for specific mutational event, Such a flexible recognition In essence, the theory presented above consistg of
ympetitive - interaction wouyld be most stable not only with gy, parts. The statistical-mechanica| sequence
he protein respect to DNA mutations, but als with respect to analysis enables yug to predict the influence on
can be translational errorsg in  the recognizer protein Specificity of individual base-pair choices. This part,
\ molecules. From the level of translational errorg which carries 5 Very large statistical uncertainty,
divated, it - observed, one can infer that, particular protein can be combined with (or Superceded by) actyal
" specific « Molecules should he viewed as membeps of a family measurements of base-sequence»dependent changes
v require- :where some entities can have slightly different in activity (or affinity). The second part assumes
vamples of Properties depending on which and how many  that the discrimination factors for individual hage.
-onnection amino acid substitutions have been incorporated, pairs are known and calculates the effective
on for the i Tather than g identical unit (Ehrenberg & specificity in terms of competition from pseudosites,
it can be Kurland, 1984). Although Some amino acid gyb. etc. Taken together, the two parts enable us to
v higher i Stitutions ne doubt will lead o & non-functiona] make quantitative Predictions about (je Speeifieity
R o : most will just resuly, i slightly changed  of particular DNA Sequences, as well a5 put
roal si

statistical measures (notably sequence inf‘ormation)
into the context of the regulatory requirements of
the living cell.

We have derived from first, principles a relatjon
between DNA Sequence variability in the binding

sites and the binding affinity (or activity) for tha

particular protein that recognizes these siteg. As

same specific affinity (or activity) and the indepen-
dence of individual base-pair contributions) can pe
strictly true in general. In the analysis of the
promoter sample we identified some deviations from
both assumptions, HOWever, these are not
dominant effects ang the results of the analysig
(being within or cloge the expected statistical
uncertainties) provide no justification for revision
or refinements of the basic assumptions at this time
As more Séquence data accumulate and as more
binding (or activity) constantg are measured, some
such refinements wij| no doubt he required, thus
providing more information on Physical and
evolutionary constraints  for regulatory  gjte
function.
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In essense a sequence analysis of this sort mixes
all of the sequences, and then extracts binding
information from the patterns of base-pair utiliza-
tion frequencies. Although this procedure obviously
must lead to large statistical uncertainties, one
advantage is that sequence requirements that are
not shared by many of the sites (e.g. for effector
binding) will be averaged out. In contrast, when
many sites in the sample share constraints not
related to primary protein recognition, the equi-
probability assumption is invalid and the results
will be skewed, signalling the need to look for
additional constraints.

Similarly, the interpretations could be skewed if
many sites in the sample are derived from the same
basic sequence, as would be the case if they had
recently evolved from some common ancestor.
While refinements such as introducing higher-order
base-pair correlations or using a different weighting
scheme for the selection constraint can be intro-
duced, the approach presented here should provide
the essentials of what one can do with sequence
data alone. The usefulness of this analysis can only
be judged by its success in predicting binding or
activity for specified sequences. Again, large
discrepancies would be an indication of selection
constraints other than binding affinity, and couid
possibly be used to help identify such additional
constraints.

Although the evolutionary selection of binding
sites take place in vivo, one expects the detailed
correlations between sequence and binding (or
activity) to show up in vitro where the differential
influence of effectors other than DNA sequence can
be kept to a minimum. The main requirement is
that the property selected for in vivo be the same as
that studied ¢n vitro. To the extent that sequence is
important for specificity, some selection constraint
will be operating even if in wvivo activities are
strongly influenced by other effects as well; such
constraints will then show up in the relations for in
vitro activity, where sequence can be made to play
an even more dominant role.

The theory developed above also puts in context
the various levels of selection that determine the
observed sequences. The binding selection by the
protein is based directly on the discrimination
factors. The evolutionary selection of specific
sequences is constrained by the binding selection,
but could be biased in various ways. Also sample
selection of the sites that have been identified and
sequenced may be biased. In principle, we cannot
distinguish these sources of bias. However, the
theory works for an average selection constraint
and is not much influenced by variations or bias
around this average.

Although developed in terms of binding affinity
(or activity for the promoters), the theory is valid
when selection is based on any property for which
the contributions from individual base-pairs can be
considered additive. The theory should be appli-
cable not only to protein—DNA specificity, but also
to protein-RNA specificity and possibly to inter-

actions between nucleic acids as well (e.g. the
ribosome binding sites; Gold et al., 1981). However,
the application to these other systems may be legg
useful, since interactions involving single-stranded
nucleic acids may be less linearly constraineq,
allowing effective “‘rearrangements” of the sequi:nce
simply by the extrusion of non-complementary
sections of the RNA (or the single-stranded DNA)
from the binding interaction.
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APPENDIX

Statistical Ensembles for Sequence Variability

Otto G. Berg

We shall start by considering the set of all
potential sites; i.e. all sequences that could possibly
work as specific binding sites for particular
recognizer protein. Whether g sequence is a
potential site or not is determined by its binding
affinity. For simplicity, it is assumed that each
base-pair in the binding sequence contributes
independently to the binding free energy. This
independence assumption implies that each possible
base-pair at each position in the binding sequence
can be assigned a unique discrimination energy
¢> 0. defined as the difference between the binding
free energies for a sequence with the best binding
(cognate) base-pair at this position and the one with
the actual base-pair under consideration. It also
implies that there exists a best binding sequence
(with maximum binding affinity) to which ali other
Séquences can be uniquely related.

(a) The cut-off distribution
(i} Base-pair choice

First we shall assume that there exists a
threshold in binding affinity so that sites with
Weaker binding are not acceptable as specific sites.

0 the simplest case, each non-cognate base-pair in

® sequence decreases the binding affinity by the
%ame aniount, ¢ (this is here defined as a free-energy
differen e in units of kT). If the total binding
Mlnity can be reduced from the maximum affinity

Y at most £, if a site is to be potentially useful as a

Specific site, we can easily derive the variability in
.o Sequence distribution of all potential specific

Sites. Out of a total of 4* different sites of length s,

® Bumber of potential binding sites with j base

‘ons is given by (cf. eqn (6) of von Hippel
erg, 1986):

. {(;)3;'; for j < E.Je

Al
Po0; forj>E e (an)

ba'Se-pairs are a priori equiprobable. Thus, the
a)

I number of potential binding sites of length s

is given by:
J
Wik =Y (3 ~ (3’
0

N (3s/J —3)
T 2nI(1=Js) (1 —J/s)®

where J = Int(K_fe) is the maximum number of
substitutions that leave the binding affinity within
£ from the maximum one. The first approximation
replaces the sum in equation (A2) with its maximum
term, which is reasonable as N; of equation (A1)
increases rapidly with J- The second approximation
step uses Stirling’s formula,
(In (n!) ~ n(ln n— 1)+(1/2) In (27n)] for the fac-
torials in the binomial coefficient and is given here
for later use below.

Among the W (E,) potential binding sites,
J-1 )
3 (748
j=o

will have a base-pair substitution at any particular
position in the site. Thus, the fraction of potential
sites that have a substitution at a certain position [
in the site is:

(A2)

J=1 .
bi=3 ) CiO)3IWUE,)
i=o

~ Jls = {(Bofe)—(1/2)} /s, (A3a)
where the first approximation is the same as in
equation (A2), i.e. we replace the sums by their
respective maximum term. The second approxima-
tion replaces the integer function J = Int(E, /) with
its continuous approximation J ~ E.[e—1/2. In this
simple case, the frequencies of base utilization
among the potential sites is:

Jo=1=b=1-Jys, (A3b)
for the cognate base-pair (B = 0), and:
Jip =6,/3 = J/3s, (A3c)

for each of the three non-cognate ones (B =1, 2, 3)
at each position [.

-
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In a more general case, the recognizer protein can
be characterized by a set of discrimination energies
{e;g} where gghT is the reduction in binding free
energy when the non-cognate base-pair B replaces
the cognate one at position [ in the site. In this way,
the contributions from all positions are assumed
independent. With these discrimination energies,
what would the frequencies of base utilization be
for potential binding sites whose binding affinities
differ at most by K. from the maximum binding
one?

Consider position [ in a site of length s and the
subset of sites of length s — 1. where the interactions
at position [ have been excluded. Denote the
number of sites in this subset that have a binding
affinity within £ from the maximum binder as
W& (E). Then in the set of potential binding sites
of length s, base-pair £ at position { will occur once
for every member in the subset of sequences of
length s—1 that has discrimination less than
E.—¢. Thus, the frequency of using base-pair B
with discrimination ¢ at position [ is:

le = ngl I(Ec_slﬂ)/ VVS(EC)' (A4)

Thus, the ratio of the frequencies f; for base-pair B
with discrimination gy and for the cognate base-
pair (B = 0 and discrimination ¢, = 0) at position [
is:

Jislfro = Wﬁ”— (B —ep)/ Wg)—x(l’]c)- (A5)

In this way position | is described separately
against a background of all the other s—1 positions.
Equations (A4) and (A5) are exact relations within
the model and will serve as a basis for the
calculations below.

Taking the logarithm of both sides in equation
(A5) and expanding the right-hand-side in powers of
&g (of the form F(E—¢) = F(£) —¢(dF|dE), - o+ O(?)
gives, to a first-order approximation:

In (fislfro) = — Artep. (A6)
where we have defined:

din W8 (£

iz, : (AT)
The expansion in equation (A6) is valid when
&pldA,/dE | « 4, which, as we shall see below, holds
when &5 < E., ie. it holds for all base-pair
substitutions except those that would singly
transform the maximum binding sequence to a non-
binding one. From equation (A6) and the
normalization condition

3
Z fm =1,
B=0

1= *

one finds:
Sfip = exp (— A65)/4q,, (A8a)
where:
g = [14+exp (—Ag,) +exp (—Ag,)+
exp (—Aies) |4 (A8b)

general set of discrimination energies |

has been introduced in analogy with a partition
function from statistical mechanics. Then from
equation (A4) one finds:

WE.)=4qW" (E,). (\9)

As in equation (A7), we can define the parametir 4
for the whole set of potential sites as:

_dIn WyE,) ds,
A= T E Y S e (A
where:
Al
dIng 3.
e =~ a2, :n; Jistis Al :
is the average discrimination energy from position | b
among all potential sites. Thus, as long ag d

{epldA/dE | « 4y, 4, is largely independent of [ and
the last approximation step in equation (A10),
4~ 4, holds under a similar (though weaker)
condition to that required for the expansion in
equation (A6); it can now be verified as folloy. «.

In the simple limit where all g5 =¢. i can be

calculated by taking the required derivative of Tl
In W, from equation (A2). One finds: nu
eq

A= 1In (3s¢/E.—3)/e (A12) 0?

E .

as the dominant contribution, in agreement with
equation (4). Thus, A(E.) is a function varying
slowly with B and g(dA/dE,) ~ —1/E,, so tiwt the
condition for equation (A6) can be shown to hold in
most cases.

These results have been checked on the computer
in the general case by entering various sets of
discrimination energies {¢;5} and cut-off limits E.,
and counting all the potential sites. We find that

equation (Al2) holds well if ¢ is replaced hyv the bec,
average local discrimination energy: the
1 s 3 €Xp:
£=— Z Z &p- (AIB) ener(«

3s /=1 55 and

As seen in Figure 1 of the main text, the basic result and
also holds well except when ¢y approaches K. accui
Obviously we cannot expect perfect agreement Hot.l
since W(E,) by necessity varies in discrete steps Sll_‘
when the cut-off energy E, is varied: in the affin:
derivations above, however, WK ) is treated as @ Sequ.
continuous function. a8 d
18 (d/
(ii) Random site distribution equ:;

o

We now estimate the number W (E,) of potential bing.,
sites among the 4° possible sequences of length 8-
From equation (A9) one finds the relation with the
number W®_ (E,) of potential sites of lenuth s—1
(where the interaction at position [ has beel
removed). Thus for any position [ that is romfwe '
the number of potential sites decreases by a factor
1/4q; = fio, equal to the frequency of cognate base-
pair utilization at this position. This implies t &

LB 4 a
the number of potential sites characterized by .
g0 can
Eigi ¥ :
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expressed as:

Wik) =k, & Z {(4q)), (A14)

=]
where G, is largely independent of (he details of the
discrimination. Thus, @, can he calculated for the
particular case when al| discrimination energies are
the same and WJE,) is known from equation (A2).
Using equations (A2), (A3b) and (A12) with equal
discrimination energies &, = Z one finds:

Cs = [20J (1 = )| ¥(35/) 3. (A1s)
where J =~ B [5— 1/2 is the average numher of
substitutions allowed. From equations (A3b), (A3c)
and (A12) the factor (3s/J ~3)! = exp [A(E ~5/2)]
= exp (lE'c)/(38§/Ec—3)* 80 that finally the proba-
bility of random oceurrence of a site of slze 8 with
discrimination less than K is:

PB.) = W(E,)/4s
= exp (AE,)[6mns(1 —&/2E )(1 - E jsg)? |1«

s

[Ta (a6
=1

This relation can also be used to estimate the
number of random pseudosites in the genome; see
equation (13). Once P(E,) is known for some value
of E,, it can be estimated also for some other cut-off

E as:

E
P(E) = P(E,) exp [ ) ldE’]

E,
~ P(E,) exp [A(EM—&H

di
dr

1
S (E—E)?
5 ( o)

], (A17)
£,

he second part of the equation above, 1 has been

sexpanded as g function of the discrimination

tnergy. We have tested these relations {eqns (A16)
) on the computer-generated sequences
em to hold quite well. For reasonable
8ccuracy (within ~50%), equation (A17) should
t be extended beyond £ > 25,
Similarly, one can caleulate the distribution of
nity (or specific activity) in a sample of random
i °quences. The probability that a random sequence
S discrimination in a small interval AK around K
[dP/dE)AE = ME)P(E)AE, with L defined by
#quation (A16). Each such site  hasg affinity

dng (cognate) site. Thus, the distribution of
ty

Mty jg:
VE) = Koexp (~B)AB)P).  (arg)
] binding situation at low saturation, (&) is

BOCXD (— B where K, is the affinity of the best

Expanding  Iny
approximately:

V() = Y(B,) exp [;(E—Em)z -‘-Jf—}/ J (A20)
2 dr|,
Thus, the random affinity distribution js ApProxi-
mated by a Gaussian with its maximum a( the
discrimination E,, for which ME,) ~ 1. and with
variance a,f,:-—l/(dl/d[y’),jm‘ The average affinity
of a random sequence can be calculated as the
integral over equation (A20), and the result agrees
approximately with the exact result from equation
(14a), thus validating the series of approximations
used to derive the distribution (eqn (A20)).

Since the number of potential sites increases very
rapidly with increasing cut-off energy, the proper-
ties of the distribution are determined primaril y by
the sequences close to the cut-off, ie. by sequences
with discrimination energy in some small energy
interval A below E.. Thus, it is not surprising that
the base-pair utilization frequencies of the cut-off
distribution agree approximately with those given
in the second section of the main text, as applying
to a small energy range. Similarly, one can proceed
to calculate the expected base frequencies for a set
of binding sites that conform to some more general
discrimination requirements, as carried out in that
section,

around  f_ - finds

(i) Influence of spacer region

The promoter sites consist of two well-defined
regions, the —10 and the =35 regions, where hage.
pairs are highly conserved. These regions are
separated by a spacer where individual base-pairs
are variable, while itg length can only have a fow
values. A similar situation occurs for some operator
sites as well as for the ribosome initiation sites on
mRNA (Gold ef al., 1981). If the spacer length s
fixed, its presence will not change any of the
calculations given above; however, the base-pairs of
the spacer should not be counted as part of the site
size. ,

We assume that the spacer contributes indepen
dently to the binding affinity (or specific activity) of
every site, so that itg contribution is the same
regardless of what particular specific interactions
are present in the conserved regions. This seems to
hold for the promoters for which it has been tested
(Stefano & Gralla, 1982; Mulligan o al., 1985). We
can assume further than every possible spacer
length L increases the discrimination by ¢ over
that for the optimal spacer length. Thus, the
optimal spacer length has &, = 0 and spacers that
are not possible correspond to &L =00, We want t
calculate the probability of random ocecurrence of
potential site (with discrimination less than £ )
determined by s-specific base-pairs and an inter-
vening spacer of arbitrary length L. Whey, the
spacer is of optimal length (i.e. not contributing to
the discrimination energy) this probability g
exactly the same as caleulated above, P (k) from
equation (Al16). Similarly, the probability  of
random occurrence of g potential site (i.c. with
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discrimination less than £_) with some other spacer
length L is given by P(K_ —¢;). Thus, the frequency
of occurrence f(L) of spacer length L among all the
potential sites is determined by:
Sy _ PyE.—e)
= X - 1
g PAE.) exp (—Aey)  (A21)

in accordance with equations (A5), (A6) and (A10).
This relation enables us to estimate the spacer
contribution from the utilization frequencies just as
was the case for the single base-pair contributions
discussed above.

Normalizing the frequencies of occurrence of
various spacer lengths, Y f(L) = 1, gives:

L

l/f(l’opt) = ; exp ( - AEL)

from equation (A21). Thus, the total probability of
random occurrence of a potential site with an
arbitrary spacer length is the sum:

; PAE.—¢) = PyE,) ; exp (—4g,)

= PyE)/f(Lo). (A22)

The possible spacer choices increase the probability
of random occurrence of a potential site by a factor
equal to the inverse of the utilization frequency of
the optimal spacer. Introduced in this way, the
spacer will not contribute to the calculated
sequence information defined from the specific base-
pair choices as given in equation (12). Instead the
permitted spacer variations will contribute a
multiplicative factor as given by equation (A22) to
the probability of random occurrence of a potential
site in equations (A16) and (14). (For a further
discussion of the statistical effects of “spacers”
within specific protein binding sites, see von Hippel
(1979).)

To count the number of occurrences of various
spacer lengths in a sample of sites requires that the
edges of the specific regions for every site are so well
defined that only one alignment with the consensus
sequence is possible. If this is not the case for most
of the sequences in the sample our theory cannot be
applied without revision.

(b) Information theory and the canonical distribution

(i) Information theory

One more complication can easily be incorporated
in the present formalism. In the derivations above
it has been tacitly assumed that the four base-pairs
have equal a priori probabilities of being chosen at
random. In a general case, the base-pairs do not
oceur in the genome with equal frequencies. Assume
that base-pair B occurs with frequence p°(B). Then
the a priori probability for a certain sequence
{B/}3_, in a random set is:

P{B}) = ’I___Il p°(By). (A23)

If a potential site is chosen according to the
criterion that its discrimination energy cannot,
exceed some maximum value K, the probability of
occurrence P({B}) of a certain sequence in the set,
of randomly constructed potential binding sites
would be (i.e. the cut-off distribution):

o f -
P = {I ((B'})”Af

E <E,
0

E>E,;
Thus, the probability that a random sequence is an
acceptable potential binding site is:

Pa=) P({B}), (A25)

acc

(A24)

where the sum is taken over all acceptable potentia)
binding sites.

The information content of the potential binding
sites relative to the random a priori distribution ean
be defined as (e.g. see Hobson, 1971):

Iy= Fﬁ P{B) In |[P{BHIP°({B})]. (A26)
scquaences
From this definition and equation (A24), the
probability of occurrence of a potential binding site
in a random set is given by the information content
as:

Py =exp (—1,). (A27)

Thus, for the cut-off distribution, the information
content is simply the negative logarithm of the
probability that a random sequence is also a
potential site. It should be noted that the
assignment of the probability as in equation (A24)
can be shown to give /, its smallest possible value
under the cut-off constraint; this is consequently
the least biased assignment one could make with
this constraint (i.e. it is the maximum-entropy
assignment; Jaynes, 1978).

For a general sequence distribution of potential
sites, equation (A27) holds on the average in the
following way. With a large number N of random
sequences with a priort probabilities P°({B,}), the
probability P’ that these N sequences conform to &
certain distribution P({B;}) = n({B,})/N is:

Pr=Nt [T (PEBHI (B (A28)
all -
sequences

Then, one finds In P’ = — N1, from equation (A26)
and Stirling’s approximation (in its simplest form
InN'~ Nin N-N for the factorials). Thus
Py = (P')'"N = exp (—1,) is the average probablllty
for each of the V random sites that, taken together;
they conform to the distribution P({B}).

(i1) Canonical distribution _

When the functional requirements for the specific
sites are not known, the simplest assumption from’:
statistical-mechanical point of view would be th”’e
the discrimination energy distribution is t,lqe on
that is most probable under the constraint o
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having a certain average (E); this would corres-
pond to a canonical ensemble. In the information-
theoretic approach to statistical mechanics (e.g. see
Hobson, 1971), the canonical distribution can be
derived by minimizing the information content,
Thux. for a canonical distribution of specific sites we
minimize [, from equation (A26) under the
constraints that the average discrimination energy:

<E>scq = ; [P({Bl}) ‘_Zl 8131] (A29)
scq:ences -
is @ given quantity and that the sequence

pr--habilities sum to unity., Using equation (A23) for
the « priori probability and standard methods for
the minimization procedure, one finds the indivi-
dual base utilization frequencies:

Jis = p°(B) exp (— deyp)/g, (A30a)

and the corresponding local partition function is
chosint so that the values of Jip sum to unity at
position [:
3
U= 2 P°(B)exp(~Asy).  (A30)

In these calculations, 4 is introduced as a Lagrange
parameter to satisfy the constraint (eqn (A29)).
This gives the same relation as in equation (8), so
that / is the same as in previous sections, (Actually,
the «anonical distribution here is the only case
where 2 s strictly independent of &p; in the
previous  situations discussed, this was only
approximately true.)

The probability that a certain sequence {B,} is
used as a specific site is found to be the product:

s
P()‘ H(}) = II—_Il fm,

=exp (=AB(BI) ¥ (5 Bojad (a31)

so that P is built up by independent contributions
from the individual base-pair utilization frequencies
& every position. This is a consequence of the
derivation as giving the most probable distribution
Within the constraint. The result also implies a
selectio: bias for every sequence proportional to
Xpi-2E({B})] favoring the stronger binding
Sequences, Owing to these special properties of the
Canonical distribution, it is particularly simple to

Work with.

In the particular case when A = 1, equation (A31)

that individual specific sites have been
in direct proportion to their binding
exp (— ). Thus in this case, the distribu-
pecific sites g(K) along the discrimination
£ is directly proportional to the binding
Stribution Y(E) for a set of random sites at low
Wration from equations (A18) to (A20). A related
Sult is that the canonical distribution with 1 =~ 1
be  shown approximately to minimize the
Omation content under the constraint of keeping

Selecto)

on o}
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the average affinity <exp (— £)> constant (rather
than keeping (K> fixed as required for equation
(A31)).

The variance of the sequence distribution over
the discrimination energy can easily be calculated
from equation (A31), giving the formal expressions:

d<#>

di

s 3 3 2
= [Z} [BZ ./‘IBEIZB“(BE‘ _/}3813) ] (A32)

Of = ((E) — ()2 =

=1

Thus. for a canonical distribution of sequence
specificity. the variance can be calculated as the
sum of the corresponding variances from the bage-
pair frequencies at individual position in the sites.
This implies a total independence of all base-pair
choices in all sites. Equation (A32) gives the width
of the discriv‘nixmti()n~energy distribution g(E) for
the specific sites from the observed base-pair
frequencies, if they conform to a canonical
ensemble. At this point, however, there is no reason
to expect that the functional requirements for the
specific sites should make the distribution resemble
& canonical ensemble in any way. Nonetheless, ag
seen in Figure 3 in the main text, the promoter sites
seem to conform to a canonical distribution.

The importance of the canonical ensemble is that
it permits a simple calculation of the base-pair
utilization frequencies also for more complex
situations. As discussed in the second section of the
main text, the base-pair frequencies are determined
primarily by the average discrimination and are not
very sensitive to the distribution around this
average. Thus. equations (A30a) and (A30b)
constitute a generalization of equations (1) and (2)
for the case when base-pairs do not occur with
equal frequency in the genome, and this should be
valid even if the distribution is not canonical.
However. equation (A31) for the probability that a
certain sequence is used as a specific site holds true
only for the canonical distribution and will not be
applicable for the other situations discussed above.

The average specific binding constant for a
random site. Kg. can be calculated as the average
over all sequence combinations {B,}:

)

all
sequences

Ku=Ko 3 PUBY [T exp (=)

i

Ko U [ ; p°(B) exp ( —sm)] (A33a)

i

Kollud=1),

where K is the specific binding constant for the
cognate sequence. Thus, if 1 =1 for the specific
sites, the statistics of the specific sequences can be
used directly to estimate the discrimination for a
random site and equation (14b) holds. Actually,
even if 1 is different from 1 = 1, equation (14b)
holds within a first-order approximation. This can

o
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be seen from a series expansion as follows:

In (Ky/Ko) = Z In[q(4=1)]

d
zzl:l" @A) +(1-1) d_,t;ln &

(A33b)

+| 1 izdz |
2‘( —4) (HEZ ng

1 L, d
= —[seq - <lf‘>scq - é (] A't)z (l;. <E>seq'
In this calculation, equation (12b) and the identity
(EB)geq = —(d]dA) Y Ing
T

from equation (A30b) have been used.

In the canonical ensemble the information
content of the specific sites from equation (A26) can
also be simplified. Inserting the explicit expression
for the probabilities from equation (A31), one finds
that the information content is equal to the
sequence information as given in equation (12a).
Thus, the sequence information of the specific sites
is equal to their information content only if they
conform to a canonical ensemble. Since the
canonical distribution was chosen explicitly to
minimize I,, it can be expected that the sequence
information will provide a lower limit for the true
information content of a general distribution of
specific sites.

The sequence information in equation (12) can be
expressed as I,., = ) I, where:

=1

3
I = Z SisIn{ fig/p°(B)]
B=0

is the contribution from each individual position !
in the site. As in equation (A28) it can be shown
that:

(A34)

P, =exp(—NI) (A35)

is a measure (although not exact) of the probability
of generating the base-pair utilization frequencies
fis in a random sample of size N. Thus it gives a
measure of the functional significance of the
observed base-pair utilizations within a set of
specific binding sites.

It should be noted that the sequence information
(or the information content in a more general case)
only deals with an entropic aspect of specificity;
although it can be used to assess the importance of
various base-pair choices in a specific site
(Schneider et al., 1986), the connection between
base-pair variability and discrimination energy
must be determined from a statistical-mechanical
model.

(iii) Doublet correlations

The canonical ensemble also suggests a way of
taking into account the possibility that certain
base-pair combinations may not contribute
independently to the binding affinity. There are
physical reasons to expect that protein recognition

may be sensitive not only to the primary DNA
sequence wig specific and independent base-pajp
contacts, but sensitive also to the simultancous
presence (or absence) of certain base-pairs gt
different positions in a site. Such possible binding
preferences for certain base-pair combinut: ng
would introduce correlations between
choices in the set of binding sites.

Such correlations are most likely to appear
between neighboring base-pairs in the site. If only
nearest neighbors contribute, the probability for 4
certain bage-pair sequence {3} in a canonical
ensemble would be:

P({B}) = fig, ,Ijz' fo(BdB,_ )

= Const x |exp (—4E)]. (A36)

base pair

The conditional probability that the base-pair B,
follows base-pair B,_, is:

BB

JlBilB,;-1) =f2(—li"l*)r

S B,

where f,(B;_,B;) is the (normalized) frequency of
occurrence of the base-pair doublet B,_, B, at
positions I—1 and I; fp, and f_,, are the
corresponding singlet frequencies as before. Thus,
the modulation in discrimination energy due to the
possible doublet preferences would be:

S

=2 1—1.3‘..fm,
which should be added to the estimate based on
independent contributions as in equation (l1).
When doublet occurrences are exactly as expected
from the singlet frequencies, i.e. independent, this
contribution is zero. With this doublet correction,
the discrimination energy is not necessarily zero for
the consensus sequence but the best Pinding
sequence would still have the lowest discrimination
energy.

As a measure of the importance of the doublet

correlations we can use the “doublet information
content’”’ defined as:

I,= ’iz Z ZfZ(Bl—le)x

'A37)

Bl~l B
£ 2(31_:\5!1J, (A38b)
I‘I.B,v,lel

This expression is the average of equation (A38a) .
over all sequences in the sample. Just as the
sequence information measures the importance 0
the divergence from equiprobability in the choice 0
individual base-pairs, the doublet information
measures the importance of the divergenet frorré
nearest-neighbor  independence.  The doublﬁ
information is related to the probability that the
observed correlations have appeared at random ‘3
the same way as the sequence information is relate
to the probability that the individual base—cpa 3
choices have occurred at random (cf. eqn. (8% )-8
Thus, each term for ! in equation (A38b) can
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VA taken as a measure of the average nearest-neighbor
Ar co-operativity at positions [—1 and /.
b
at Lo
" (c) Small-sample statistics
as The specific sites that have been identificd and
ur sequenced can be expected to form a very small
subset of all sequences that could possibly have
rar been used in vivo within the functional constraints.
nly From the observed base-pair frequences in the
ra sequenced sites we must estimate the basc-pair
cal frequencies in the potential sites. The simplest
assumption would be that they are the same as the
oncs observed in the sample. However, we can do a
little better by wusing Bayes’ theorem. which
provides a basis for estimating the underlying
36) probabilities from observed frequencies in a small
B sample (e.g. see Jaynes, 1978). If, in a sample of N
! sites, the number of occurrences of base-pair
B(B =0, 1, 2, 3) at position [ is n,5, Bayes' theorem
1) would give the multivariate beta distribution:
37
(N +3)!
of pilfins fizs fia) = m!”ls i
at
the SR —fu—fa—fis)™  (A39)
hus, as the probability density for the best estimate for
the the frequencies of occurrence f;z of base-pair B at
position ! in the potential sites from which the
sample was drawn. (Equation (A39) is a straight-
18a) forward generalization for 4 possible outcomes of
the 2-state formula given, e.g. in eqn (A5) of Jaynes
i on (1978).) Thus, our best estimate for the base-pair
. utilization probabilities of the potential sites would
cted be the average from equation (A39):
this
on. s = H f Fuor fyy dfiz df
)y for
i{ng = (mp+ 1)/(N+4). (A40)
o
‘ (This result is also known as Laplace’s Law of
Blet Succession.) Compared to the simplest assumption
(tion (i.e. using the same frequencies among the potential
sites as the observed ones; Jis = nip/N), equation
(A40) will smooth out differences somewhat,
Particularly when np is small. Equation (A40) also
Provides a rationale for assigning finite discrimina-
tion factors to base-pairs that have not been
38b) observed in the sample of sequenced sites. Further-
-Thore, when we generate potential sites randomly on
\38a) ¢ computer (with given discrimination energies
the 0d cut-off £) we do find slightly better agreement,
e of ¥ith equation (A40) than when fjg = n,p/N is used.
ce of OWever, the results are not strongly dependent on

&1 .
v this application of Bayes’ theorem.

¢ To estimate the various quantities needed for the
®quence analysis (e.g. ey = In (fio/fip), ete.) it
Yould ip principle be better to take the required
:'erage over the distribution in equation (A39)
Nch that, Agig = {In (fip/fig)>. However, these
tegrations lead to more complicated integrals and,
a first approximation, we use instead
28 =1n ((fio)/(fig)), and similarly for other

quantities. We have tested this approximation by
taking the proper averages and integrating numeri-
cally over the distribution (A39) and find that it is
of little consequence for the cases considered in this
paper. We will describe these small sample
corrections in more detail elsewhere (0. Gi. Berg &
P. H. von Hippel, unpublished results) together
with an analysis of the specificity of the binding
sites for the cyclic AMP receptor protein (CRP)
where only 17 sequences are known (de
Crombrugghe ef al., 1984).

For a given sequence {B/}i.,, the total dis
crimination energy E({Bj}) is given by equation
(19). Uncertainties in the correlation between
discrimination energy and base-pair frequencies
appear at several levels. First, the correlation would
not be perfect even if we had the statistics for all
potential sites (cf. Fig. 1). Second, the small sample
of actual sequences introduces uncertainties as to
what the real base-pair frequencies should be. In
particular, the choice of cognate base-pair (i.e. the
best binding one) at each position as always being
the consensus base-pair (i.e. the most common one)
can introduce a large uncertainty. With this choice.
random fluctuations in bage-pair frequencies at
indifferent positions, i.e. those without discrimina-
ting interactions, would always be assumed to
contribute discrimination energy

Agg = In {(mp+1)/(myp+1)] > 0.

Thus, the discrimination energy would always
increase when more and more indifferent positions
are included in the site size. This systematic bias
needs to be accounted for. To this end we have
simulated random base-pair assignments on the
computer for a large number of samples of various
values of N. From the simulations one can calculate
the expectation value

3
Kedg = < 21 Jis1n (fiol fi5) > R

B=

for the apparent discrimination energy for each
indifferent position in a random sample of size V.
These have been listed in Table 1 (main text). Thus.
to correct for the systematic bias in the choice of
consensus base-pair, we should subtract by A{e)g
for each indifferent position included in the site size.
However, this just shifts the absolute scale without
changing the relations between different sequences.
Apart from this systematic bias, there is the
uncertainty in the assignment of base-pair proba-
bilities fjp from their number of occurrence ny in
the sample. From the distribution, equation (A39).
the expected variance in the assignment for f,, is:

_ 2 _ (g +)(N—mp+1)
o?B"‘(.ﬁ%>—</lB> = (N+4)2(N+5)

after n;p observations of base-pair B at position £ in
a sample of size N. We can take this as a measure of
the uncertainty in the base-pair preference due to
the small sample size (see Table 1, main text). In
contrast to the systematic bias, this uncertainty

(A41)
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can contribute both positively and negatively to the
estimates of the overall discrimination energies.
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