
Ever since computers were first networked
together, people have used them for com-

munication. From email—one of the first network
applications—to the original MIT Zephyr notification
system1 to the now-popular AOL Instant Messenger Sys-
tem, people use computers to break down physical dis-
tances and provide a sense of awareness about another
person in another place.

Beyond basic text interaction,
research—such as the Portholes
project at Xerox PARC—has strived
to bring people together by giving
them the ability to, for example,
share snapshots or videos of them-
selves in remote places.2 Although
these systems use still shots or video,
they still required the human to per-
form intelligent processing to deter-
mine whether people were present,
busy, or available to talk.

As interaction with computers
moves away from the traditional
domain of a fixed keyboard and
mouse moving a pointer on a screen,
it becomes possible for the comput-
er itself to determine a person’s state

using perceptive presence applications. This state could
include basic information, such as location and head
pose, but also more useful information such as whether
the person is present or busy. These applications are per-
ceptive because they provide an alternative to the tra-
ditional screen-based GUI, using physical presence and
gestures to replace the traditional keyboard and mouse.
They are also presence applications because they seek to
share information about a person or location across
some distance. For example, perceptive presence appli-
cations can share information about the number of peo-
ple in an area as well as their location, activity level, or
line of site (where they are looking). Applications involv-
ing communication, interaction with objects—such as
light switches, telephones, or selections on a screen—
in a room, or security can use this information.

Currently, many approaches in this domain offer
tightly integrated systems that receive information from
sensors and process it internally in the application. This
approach requires developing new vision modules, inte-
gration languages, and architectures for each new appli-
cation. If multiple applications need to run at once,
computation will be redundant, as each application
would have to process the raw data from the camera into
its own representations. A general approach with a com-
mon interface and reusable processing units would
greatly reduce computational redundancy, allow for
easy integration, and simplify the use of vision inter-
faces to the level of today’s GUIs.

We present a general XML-based interface for per-
ceptive presence applications and a set of widgets that
use this interface to infer activity information about a
place. The interface connects any number of computer
vision modules to perceptually aware applications.
Figure 1 shows the implementation’s architecture.
Although we’ve interfaced our system only to comput-
er vision widgets, there is no limitation to having other
sensing technologies provide information to the widget
layer through the interface. Examples could include
microphones or touch sensors for locating activity areas.

Scenarios
Perceptive presence applications embody a shift away

from traditional modes of interaction with a computer.
These perceptual-user-interface-based applications3 take
input initiated by and natural gestures untethered by
input devices , location clues, speech, and other modal-
ities. Consider two coworkers, John and Mary, who com-
municate frequently throughout the course of a day.
John’s office is located on one side of a large office build-
ing and Mary’s office is on the other side. Often Mary
walks to John’s office and finds that he is not present.
Mary doesn’t like to telephone John each time she wants
to ask him something; she doesn’t want to interrupt his
train of thought or call in the middle of a busy meeting.

The Perceptive Presence Lamp (shown in Figure 2) is
a perceptive presence application that could help in this
scenario. The lamp connects two physically separated
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places by signaling information about the activity at one
location to the other. This provides a sense of awareness
and connection between the people at the two locations,
letting them know when someone is free, or just pro-
viding reassurance that a person is where they are
expected. Our hope is that this connection will stimu-
late communication or collaboration and bring people
more in tune with the schedules of those around them.

Perceptive presence information can also help appli-
cations understand peoples’ activities occurring in a
space. To study this idea, we created a scenario that uses
activity information in a context-aware environment.
Consider, for example, John and Mary in a context-
aware office: In the morning Mary arrives at work and
enters her office. The room lights turn on automatical-
ly and the computer screen starts up when she sits down
at her desk. While organizing her day and reading her
emails, the room turns on the radio, tuning in the morn-
ing news. Later that day John walks by Mary’s office.
Seeing Mary working on her computer reminds him
about a presentation that they need to give next week.
John opens the door and greets her. Mary swivels her
chair around and welcomes him. The volume of her
radio goes down and after some small talk they decide
to look over the last presentation that they gave on the
topic. John sits down in the chair next to Mary’s desk
and the ambient light in the room increases. Mary asks
the room to display the presentation information so that
both she and John can see it, and the presentation slides
appear on the wall display between them. They then
start to work on their presentation. After a short time,
the calendar system reminds Mary about a weekly staff
meeting, and it informs her that she has one voice mail
that was recorded during her meeting.

In each of the transitions in this scenario, information
about Mary’s activity as expressed through her position,
pose, and/or motion are relevant context for environ-
mental controls. We can thus define an activity widget
sensitive to patterns observed about Mary’s state, which
can signal the activity most likely to occur so that wid-
gets governing the environmental controls can react
accordingly.

These scenarios have motivated us to create a platform
for flexible perceptive presence widgets that we can reuse
in a variety of context-aware application contexts.

Presence and awareness in context-
aware spaces

Researchers have written many papers on both pres-
ence and awareness and each provides a slightly differ-
ent definition. Researchers have long used the terms
telepresence and remote presence to describe a system
that allowed a user to see and feel a remote location.
The terms’ use continued over the years to describe var-
ious computer simulations as well as television, radio,
and other media. In 1997, Lombard and Ditton per-
formed an extensive survey of presence.4,5 Their results
showed six main dimensions of presence: 

� Social richness describes the degree of social warmth
or intimacy conducted by the medium. Does the
medium invite interaction?

� Realism focuses on the perceived reality of the expe-
rience that the system provides. Is the user experi-
ence similar to a truly present experience?

� Transportation signifies that users can feel that they
are in an environment and can suspend their disbe-
lief to interact in this created space.

� Immersion relates to the feelings coming from a space.
Does a person feel involved and engrossed in this
space?

� Social actor within medium indicates the creation of
inappropriate or illogical responses to a medium, such
as talking to your television set.

� Medium as social actor refers to users thinking that the
medium itself is in some way capable of interaction,
or is in some way human like.

In our system, we try to create a sense of social rich-
ness and realism. We hope that users will feel as if they
are interacting directly with the user on the other side of
the system (realism), and that the users will interact as
they would with an office mate by responding to signals
about presence (social richness). Steinfield, Jang, and
Pfaff split awareness into five distinct groups. Each
group touches on a different aspect of awareness.6

Activity awareness is knowing what actions others are
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taking at any given moment. This type of awareness is
especially important in computer-supported collabora-
tive work (CSCW) applications where multiple people
work together to produce a document or piece of code.
Knowing what files others are viewing or editing would
be examples of activity awareness.

Availability awareness is the availability of people and
their social awareness of each other. Availability aware-
ness is important in knowing whether people are avail-
able to talk. This can be important in supporting
distance communication and collaboration where the
distance makes it impossible to drop in on a colleague to
talk, but one user would not wish to interrupt someone
while he or she is in a meeting or otherwise occupied.
Some systems provide information similar to what you
would see walking by an open door, for example, AOL
Instant Messenger, ICQ, and EuroPARC’s Ravenscroft
Audio Video Environment (RAVE).

Process awareness gives people a sense of where their
pieces fit into the whole picture, what the next step is,
and what needs to occur to move the process along. This
form of awareness is useful in applications suited for
large group use and managing large projects and was
the key to most CSCW projects in the 1990s.

Perspective awareness gives group members informa-
tion helpful for making sense of others’ actions, such as
background on team member beliefs and knowledge.
Perspective awareness lets people gain information
about others’ experience. Individuals can provide infor-
mation on their own work and background so that oth-
ers can seek their advice or know which tasks to assign
to them. This can work as an enhanced phone-book-type
system or as a part of a larger system.

Environmental awareness focuses on events occurring
outside the immediate workspace that might affect
group activity. Environmental awareness is important
for applications that provide external information such
as news or economic conditions that could impact peo-
ple’s decisions.

In our work, we focus on the areas of activity and
availability awareness, as we feel these are the most rel-
evant in conveying information on presence. Knowing
when people are in, or when they are busy (for exam-
ple in a meeting) can convey their state for the purpos-
es of communication. 

The “Related Work” sidebar discusses some other
recent approaches.

Perceptive presence architecture
A perceptive presence system requires a specific style

of program, which differs radically from a GUI-based
program in several fundamental ways. First, instead of
dealing with discrete and rather precise input, a per-
ceptive presence system needs to deal with input that

� comes from advanced, complex vision/sensory sys-
tems that might have many parameters to set,

� contains noisy data due to external factors, and
� could provide data that’s far more detailed than what

a specific application might need—that is, a 6-
degrees-of-freedom (DOF) head tracker providing
data for head nod detection.

Due to the complexity of such a system, it’s often nec-
essary to run processes in a distributed manner where
the input device and the application run on different
machines. A perceptive presence architecture should
not be bound to a particular perceptive technique, but
instead should abstract the required functionality into a
set of reusable software components—that is, a widget
set for building a perceptive presence system. This wid-
get system should

� receive and filter data from perceptive technology
systems,

� infer information from the perceptually grounded
information into abstractions that are easier and more
convenient to use than the raw perception data (that
is, detecting when a person is present), and

� allow for many different and autonomous perceptive
technologies trackers that each deal with a specific
modality (that is, computer vision systems).

Widgets are the heart of the perceptive presence sys-
tem. They turn observations passed through the com-
puter vision interface into useful contextual concepts
that an application can understand and work with. For
example, a widget could indicate the presence of peo-
ple, their locations, and their movement velocities in a
given area. It could communicate that one person is
looking at the camera or at an area 2 feet to the left of the
camera. The widget could even show a person selecting
a virtual object by moving into a given area. Further
abstracting the data from the interface makes all these
examples possible. To provide a platform-independent
widget framework usable in a distributed environment
across several devices, we embedded an XML-based
communication layer in the widget set. This layer lets
widgets request particular data such as the location and
velocity of flesh-colored blobs (that is, people) and to
receive XML messages with the desired information
multiple times per second.

Widgets can feed data back into the computer vision
system through the XML interface. For example, a wid-
get could only request face identity information (assum-
ing a face recognition system was available) if it knew
that a person was present. Widgets can also pass infor-
mative messages back to the computer vision systems
to help them run more efficiently. For example, a widget
could pass a message back to a person tracker device
when it has reason to assume that no one is present,
allowing the vision module to reinitialize or update its
world model.

We implemented these widgets as Java classes that
extend a common abstract widget class. The abstract
class provides for common functionality, such as con-
necting with the interface layer and parsing the received
XML packets into a more usable data structure. The sys-
tem also has a mechanism for widgets to inform other
widgets or applications about each other. Widgets or
applications can subscribe to other widgets and receive
information each time their state changes. This state
update occurs via an XML text message sent from the
widget to all of its listeners. It’s not necessary to write
widgets in Java, we could just as easily write them in
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C++ or any other language that supports sending or
receiving user datagram protocol packets.

Because particular areas of a room often have differ-
ent contextual meaning, our widgets operate on partic-
ular regions of space. We define an area as a 3D region
with a particular, or at least a main, use. For example,
the desk and couch areas are usually separate in space
and use. Detecting human bodies in different regions—

for example, sitting at your desk or on a couch—is a
vision-based tracker’s primary task. The amount of time
that a person spends in a certain area is also a useful
piece of information.

Our system can manually define spatial regions, or it
can learn them by observation. We developed an activ-
ity widget that incorporates algorithms for learning an
environment’s activity map. Finding spatial clusters of
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Related Work
In the past five years, several groups have developed

intelligent spaces, or environments that are context
aware—that is, they know the activities occurring within
them. In general, these intelligent spaces combine multiple
sensor modes and are based on agent or widget oriented
frameworks where the agents or widgets cooperate with
each other to share state information about the
environment and to act appropriately.1,2 Systems like the
EasyLiving project at Microsoft integrate input from
computer vision, fingerprint readers, and other sensors to
provide a large context-aware environment.3

The Aware Home project at the Georgia Institute of
Technology4 built a shared widget set that focuses on
providing perceptual information. The widgets in our
system are much in the spirit of these context widgets and
provide many of the same functions, such as determining
whether a person is present or moving. However, our
widgets go further in providing a general interface and
application-level GUI-like tools such as selection based on
computer vision techniques. The Digital Family Portraits
project5 conveys awareness information through a digital
picture frame that illustrates information about elderly
relatives such as whether they ate, socialized, or slept in
regular patterns over time. Icons around the actual photo of
the monitored person conveyed this information.

Tollmar and Persson’s work on the 6th Sense project is a
complete application that uses light to signify remote
presence.6 The implemented and field tested version uses
motion sensing to determine whether a person is around a
lamp. Its structure is similar to our Perceptive Presence
Lamp in that there are two lamps connected through a
network. If there is motion in one area, the other lamp will
glow. This resembles the first half of our initial prototype for
the Perceptive Presence Lamp. Tollmar and Persson further
field tested the lamp concept and found users received it
better than expected.6 The authors’ attribute this to the
warm feeling of the light and its nonintrusive nature.

The work on media spaces in the 1990s took the idea of
instant messaging beyond text and into the realm of sharing
pictures and video. In these systems, people could literally
see others and what they were doing, and in most cases
determine for themselves whether that person was available.

The Ravenscroft Audio Video Environment (RAVE) at
Xerox EuroPARC is a prototypical example of a media
space.7 RAVE placed cameras and monitors at people’s work
places and allowed them five modes of interaction. First, a
user could sweep all other locations, or a subset of locations.
Sweep let a user peer in on others workplaces for 1-second
intervals. The second function was glance, which gave users
a 3-second view of a workplace, similar to the effect of

walking past an open door and glancing in. The office share
mode allowed for an always-on connection between two
locations—as if the users were sharing an office. Finally,
vphone enabled conversation between two nodes and
usually followed a glance to see if a person was available.
Again, in this system it was up to the user to determine
whether a person was available based on looking at a live
scene of a remote location.

A recent entry into this area is the IBM BlueSpace
project.8 It creates an office space that has a large light
hanging above it. The user manually controls this status
light via a touch screen. It turns red when users are busy
and green when they are available. This application
illustrates using color to convey presence information
through lights. User studies showed that people employ the
color information when deciding if someone is free or not
to bother the person. The system also provided icons
showing a user’s state based on sensors and active badges
(sitting in front of the computer, standing, or not present).
Users preferred these automatic means of obtaining
awareness information over time and chose not to manually
change their lights as often during a four-week user study.
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motion and position features—which tend to corre-
spond to different activities performed in the environ-
ment—helps compute an activity map.

Using this framework makes it possible to create many
types of widgets. We discuss three of them here. These
widgets include a spatial selection widget that lets a user
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Vision Tracking
We have developed a set of tracking algorithms that use

multiple cameras to observe people and estimate their
position and pose in an environment. Our algorithms can
provide such information as the number of persons in the
space as well as a set of data (location, height, hand position,
face pose, and so on) corresponding to each person.

While there have been many approaches to tracking
people, including several successful monocular approaches,
we focus on multicamera systems due to their speed and
accuracy. A room tracking system with multiple cameras
can perform dense, fast, range-based tracking with modest
computational complexity. We can estimate foreground
points by comparing estimated stereo images to a stereo
model of the background of the scene (see Figure A). When
tracking multiple people, we have found that rendering an
orthographic vertical projection of detected foreground
pixels is a useful representation. A plan view image
facilitates correspondence in time since only a 2D search is
required. Our approach merges plan-view images for each
view when using multiple stereo cameras.

Over time, we compute a 3D spatio-temporal plan-view
volume. Each independently moving object (person) in the
scene generates a continuous volume in the spatio-
temporal plan-view volume. When the trajectories of
moving objects don’t overlap, the trajectory estimation is
easily computed by connected-component analysis in the
spatio-temporal volume (each component is then a
trajectory). When the trajectories of moving objects overlap
(for example, two people crossing), we build a graph from
a piecewise connected-component analysis where nodes
correspond to trajectory crossing and branches to
nonambiguous trajectories between two crossings. A color
histogram is then estimated for each branch of the graph
(using all images associated with this branch). We estimate
trajectories by finding in the graph the paths consisting of
branches having the most similar color histograms. By

tracking people in a space for a long period of time, we can
gather a dense set of observed location features fi (x, y).

We define an activity zone as a connected region where
observed location features fi (x, y) have similar values. An
activity zone Zk is defined by a connected region Rk in the
2D space defined by (x, y) and a characteristic feature 
Fk = (h, v, vlt) representing the typical activity in this area.
Since different activities can happen at the same location 
(x, y), activity zones might overlap as well. (We give further
details on this algorithm and describe estimating activity
maps in the main body of this article.1) 

We can use this algorithm to estimate people’s location;
we can also find the location and orientation of face and
hand features. We exploit the fact that different people’s
faces and hands have a relatively similar appearance. In
recent years, we’ve seen extensive research on human skin
color and facial appearance detection. All human skin color
has an invariant chromatic component that a system can
easily learn and detect using a color classifier. A system can
learn a discriminative model of frontal face appearance
from sets of examples using machine learning techniques
(neural networks, support vector machines, boosting, and
so on). Such face detectors can find frontal-view faces in
images in real time.2

We can construct a simple face/hands tracker using
human skin color, face detectors, and stereo depth
estimates. We find face and hands by first detecting in the
image ellipsoidal blobs corresponding to human skin color.
Then the detector performs an altering step, rejecting blobs
of unusual sizes and shapes (corresponding to misdetected
faces and hands). The face detector distinguishes faces from
hands. Finally, an image motion analysis step lets us track
faces and hands by matching the blobs to blobs detected in
previous frames.

We can estimate face orientation approximating the
observed rigid motion between subsequent frames, using
the frame detected as frontal pose to initialize tracking.
Using a scheme to reduce motion-tracking error by
comparing new observations to multiple base frames, face
pose tracking with stereo depth can be accurate despite
large motions and illumination change.3
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select actions based on their physical 3D position, a head
gaze selection widget that performs a similar task based
on position and head angle, and an activity widget that
automatically determines areas of certain activities and
identifies when a person is in a particular activity region.

Spatial selection widget
The spatial selection widget is a general interface com-

ponent that can help implement spatial selection tasks.
Given a set of areas, this widget will inform its listeners
when people enter or leave any of the areas of interest.

We use a depth and color tracking system to detect
the presence of people. The “Vision Tracking” sidebar
gives details about this system. The user provides a num-
ber of areas and the widget looks to see if faces or hands
are present in each region, given the data received over
the XML interface. When a person enters or leaves a
given area, the widget sends an XML message to its lis-
teners, indicating the current state of all areas of inter-
est. Figure 3 shows an example of such a message for
areas labeled desk, door, and couch.

We built a simple test application that used this wid-
get to select between four squares arranged in a square
on a computer screen. The four areas defined were the

� left half of the camera’s field of view with a depth from
0 to 3 feet,

� left half of the camera’s field of view with a depth from
3 feet to infinity,

� right half of the camera’s field of view with a depth
from 0 to 3 feet, and

� right half of the camera’s field of view with a depth
from 3 feet to infinity.

This application demonstrated that the effort for inte-
grating a perceptive presence widget into an application
is similar to that of adding a GUI component. The appli-
cation also demonstrated the power of the widget set in
a visual way.

To analyze this widget’s effectiveness, we conducted
experiments where seven people of varying age, skin
color, and gender performed tasks in a work area. We
split the camera range into two regions. Area A covered
the left half of the field of view and was approximately
2 meters deep. Area B encompassed the rest of the field
of view. We instructed participants to enter the work
area, sit down in front of a computer (area A), read a
news story of their choice from CNN.com, move away
from the desk (into area B), return to the desk, and then
leave. We collected data about average position, aver-
age velocity, number of flesh-colored blobs detected,
and when the widget thought participants were in area
A or B or not present at all.

Table 1 shows the average results from these experi-
ments. Note that with the use of position and velocity
information, the widget can declare quite quickly (mean
0.61 second, median 0.4 second) if someone has left.

We tested a version of this widget in two offices for
the period of one day in each office. We used two offices
that were quite different to get a sense of how this wid-
get might work in varying environments. Office 1 was
in a common space but with a desk used solely by the

participant, although other people
worked within the camera’s range
and people walked past the camera
throughout the day. Office 2 was a
two-person shared office where the
nonparticipant was always within
the camera’s field of view. In both
cases we asked participants to man-
ually log the times that they con-
sidered themselves to be present
and away.

The widget performed well in
both situations by using areas that
were limited in depth to only log a person sitting at the
desk located closest to the camera when determining if
that person was present. Table 2 shows the results of the
two-day study. We determined accuracy by the per-
centage of the total seconds that the system was incor-
rect in determining if a person was present at their desk.
We calculated the average accuracy as the average over
all time for all participants.

Common errors included declaring someone had left
for a minute or two while a person was on the phone or
otherwise looking away from the camera (no flesh color
in view). All these errors were rare, as shown by the total
system accuracy of 91.7 percent. We later extended this
widget to have a short delay before stating that a person
had left, allowing for times when the person was just
looking away or gone for a few seconds. This enhanced
widget had an accuracy of 95.6 percent on the same data.

Gaze selection widget
The gaze selection widget is another example of an

application-centric widget. It’s similar to the spatial
selection widget, except it uses head pose to select where
a person is looking. This widget suits applications that
require navigating via head gestures such as looking at
objects to activate them (for example, a light switch or
a heating control) or in certain directions to prompt
computer interfaces.

The gaze selection widget uses a 6 DOF head-pose
tracker.7 We implemented our tracker using a rigid
stereo-motion algorithm, which can estimate the trans-

IEEE Computer Graphics and Applications 31

<xml>
<SpatialSelection>

<desk>true</desk>
<door>false</door>
<couch>true</couch>

</SpatialSelection>
</xml>

Table 1. Average results of the spatial selection widget experiment
(more than 35 trials for seven users of varying age, skin color, and
gender).

Mean Time Median Time Standard Error
Task (seconds) (seconds) (seconds)

Entering 1.43 0.8 0.40
Leaving 0.61 0.4 0.15

Table 2. Results from a study of the spatial selection widget. 

Office Accuracy (%) Enhanced Widget Accuracy (%)

1 92.5 95.4
2 90.6 95.9

Average 91.7 95.6

3 Example data sent to listeners of
a spatial selection widget for a
room where a person is at a desk
and someone is on the couch.



lation and rotation of objects moving in space (includ-
ing heads, which are rigid except for expression
change.) We developed an algorithm that can build a
model of object appearance while it tracks, so that long-
term accurate tracking is possible without error accu-
mulation (see the “Vision Tracking” sidebar for details).

A gaze selection widget listens to data about head
pose through the vision interface. Just as with the spa-
tial selection widget, the user provides the areas. Every
time the widget receives new blob information, it cal-
culates the vector from the blob in the direction of the
head pose. The widget then determines if this vector
enters any of the areas of interest and returns an XML
message to all of its listeners.

Activity widget
Simply considering the instantaneous 3D location of

users is useful, but sometimes alone is insufficient as
context information. Applications must generalize con-
text information from previous experience, and there-
fore, an application writer might like to access
categorical context information, such as what activity a
user is performing. While location cues alone can’t fully
determine which objects or tasks are used during a par-
ticular activity, we found that activities are often corre-
lated with location cues. By defining an activity
map—which divides a physical space into regions cor-
responding to activities—we can infer activity behavior

by looking for patterns in these locations. While the pre-
vious widgets have partitioned space based on simple
proximity or relied on user-specified maps for regions,
the activity widget learns location regions from
observed activity, including motion and shape cues as
well as position.

Figure 4 shows a conceptual example of an activity
map for an office floor plan. We would ideally find the
zones shown on the right: zone 1 is a region in which
someone stands. Activity zone 4 shows a person mov-
ing—for example, a user walking between regions of a
room. Finally, activity zones 2 and 3 illustrate a person
sitting in a relatively still position—for example, reading
or writing at a desk. Since a person can perform differ-
ent activities that might require different movement at
the same location, zones might overlap.

Based on 3D person tracking techniques, our algo-
rithm generates an activity map by clustering spatio-
temporal data gathered using a 3D person tracker.8 Later
we use the activity map to determine the user’s location
context. The widget packages the identified activity as
an event for the application (that is, working can repre-
sent the state when a single person is sitting by a desk
and typing on a computer, or meeting can describe the
state when two people are in one specific area of the
room and talk for more than five minutes). Many appli-
cations can take advantage of this activity information
including the Perceptive Presence Lamp or, for exam-
ple, a simple desk lamp that would automatically turn on
when a person is working at his or her desk.

Example applications
We implemented and evaluated two example appli-

cations. These applications use the widget architecture
to easily monitor perceptual data.

Perceptive Presence Lamp
The Perceptive Presence Lamp is a set of two lamps

and cameras that virtually connect two places by con-
veying awareness information about each location.

This lamp, as shown in Figure 5, changes color
depending on the state of the person or people at the
remote location. If the lamp is off, no one is present. If
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4 Conceptual
example of an
activity map.
Regions num-
bered 1 to 4
represent activi-
ty zones.

5 States of the
Perceptive
Presence Lamp:
(a) present, 
(b) busy, 
(c) interacting,
and (d) away.

(a) (b) (c) (d)



it’s green, someone is present and working at his or her
desk. When guests are present, the lamp turns red to sig-
nify that the user is busy. Finally, when the user moves
directly in front of his or her lamp, the other lamp turns
blue signifying that the user wishes to get the remote
user’s attention. Table 3 summarizes these states.

The color changing in our system is similar to the sta-
tus lights in the BlueSpace/myTeam system,9 which turn
green when a user sets his or her state to available and
red when the state is set to busy. However, this system
automatically computes all awareness information, and
it requires no user interaction. 

The Perceptive Presence Lamp is a software applica-
tion using perceptive presence widgets, so the user could
override the automatic sensing from the widgets. The
user could set the lamp application with a manual over-
ride switch to explicitly set his or her state to busy, or to
turn off the lamp’s sensing for privacy. Ultimately, the
application itself determines how to act on the inputs
received from the presence widgets.

Implementation. We implemented the Perceptive
Presence Lamp using the spatial selection widget. This
widget defines three areas: 

� The desk region consists of the space directly in front
of a person’s desk where the user would sit while
working. 

� The visitor area consists of all the other space in the
office that the camera can view. 

� The interacting area consists of the space directly in
front of the camera/lamp and is where the user goes
to interact with the lamp to get the remote user’s
attention. 

The spatial selection widget determines whether a per-
son (or multiple people) is present in a given area over
time and passes this information to the application each
time a person enters or leaves an area.

The lamp’s vision processing software runs on a PC
hidden under the desk and sends XML messages to
the remote lamp’s computer every time the state
changes. Table 3 shows the messages sent. The appli-
cation assumes that a given state exists until it
receives a new state.

When a lamp application receives a message, it
updates the color of its lamp accordingly. We use Color
Kinetics color-changing light-emitting diode lights and
place them into the body of a lamp bought from IKEA
and control it through a Color Kinetics Smart Jack USB
interface. A color square on a liquid crystal display

monitor shows feedback on the local user’s state, but
we could easily integrate this into the lamp in the form
of an LED. The feedback lets the user see what the
other person is seeing to help relieve some privacy
concerns.

Evaluation. Since the Perceptive Presence Lamp
uses the spatial selection widget, its technical perfor-
mance is identical to this widget’s performance, includ-
ing the time it takes to identify that a person is present
or has left.

We performed a series of user studies involving six
people over one or two days each. We collected more
than 46 hours of data from varying office conditions
including shared work areas, shared offices, and areas
where only the user was visible in the camera’s field of
view. For each space, we manually defined a set of areas
to explicitly mark off the work, visitor, and interaction
areas in three dimensions. Table 4 summarizes the
results and shows an average accuracy of 97.6 percent.
Accuracy is the percentage of time the state of the lamp
agreed with the state of the user.

Errors tended to be more false negatives than false
positives. Some common errors included people con-
sidering themselves present when they were outside of
their immediate work area (sitting on a couch or getting
coffee), and the lamp stating that a person had left after
the person had his or her back to the camera for more
than a minute (no flesh-colored regions showing). We
can improve on the first error by having more complex
areas or by learning areas through a system like the
activity widget and associating certain areas as present,
away, busy, and interacting. We can improve the second
error by having multiple cameras or a model other than
flesh color for identifying people.

Overall, the users liked the concept of the lamp and
used it to judge the availability of the other person. They
frequently used the lamp to determine when a person
returned from a meeting or lunch and saved wasted trips
down the hall to check if he or she had returned. Most
importantly, it served as a successful test of an applica-
tion using the spatial selection widget.
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Table 3. States of the widget-based Perceptive Presence Lamp and XML messages for updating the state.

Color Change or 
State Lamp Action XML Message

Person present at his or her desk Green <xml><update>present</update></xml>
Multiple people present; the person is busy Red <xml><update>busy</update></xml>
Person interacting with his lamp, 

trying to get the user’s attention Blue <xml><update>interact</update></xml>
No one present Off <xml><update>away</update></xml>

Table 4. Results from a Perceptive Presence Lamp study. 

Office Lamp Accuracy (%) Usage Length (hours)

1 95.4 7
2 95.9 7
3 97.8 16
4 99.0 16



Generalization. We can generalize the concept of
the Perceptive Presence Lamp to other devices.

Our perceptive presence display uses a projector to
shine images onto a wall, table, or divider. The user can
configure different images to correspond to different
states, or even different users that might use the lamp.
A small bar on the bottom of the image displays the cur-
rent local state as viewed at the remote location(s).

Another version of the lamp, the Perceptive Presence
Beacon, uses the same color-changing light used in the
lamp, but instead shines it onto a wall, corner, or work-
space. This might create more of an effect of being
involved with the person on the other side of the con-
nection as the light will cover a larger area and is not
confined to a physical device.

Finally, this concept can be applied to traditional,

screen-based awareness applications to create an AOL
Instant-Messenger-style application that automatically
updates when people enter, leave, or are busy.

Context-aware environments
In addition to experimenting with the automatic gen-

eration of activity zones, we have begun testing our sys-
tem in an intelligent environment. We created a simple
scenario (mentioned in the “Scenarios” section) that
illustrates a context-aware environment. We used this
scenario to implement a prototype application. Previ-
ous work on activity zones, in particular private and
public zones, inform these scenarios.10

Our prototype application focuses on three tasks: con-
trol of light and audio, and display of information in an
office. 

Implementation. We created an application for
these tasks using our activity widget to generate an activ-
ity map for an office. The application attached preferred
lighting and audio settings to particular activity zones.
It then used the widget to gather context information for
people working in the offices and to receive notification
of when particular activities were taking place.

We can compute an estimation of an activity as follows.
The person tracker provides a history of 3D information
for each person in the observed space (see the “Vision
Tracking” sidebar). The activity widget receives the infor-
mation about each person’s location, velocity, and height
from the person tracker through the XML interface.
Tracking people in a space for a long period of time helps
gather a dense set of observed location features. We then
create activity zones representing regions of a physical
space in which observed activity features—location,
motion (represented as velocity), and shape (represent-
ed as height)—have similar values. Ideally, each zone cor-
responds to a region in which a person is likely to engage
in similar activities. A relatively still person sitting at a
particular location, for example, might be reading, writ-
ing, or typing. Finally, we match the activity map and the
real-time data from the person tracker to estimate a per-
son’s activity, and the widget provides location context
for applications in a pervasive computing environment—
in our case, for the control of lamps, audio, and displays
in a room.

Evaluation. We conducted two experiments in
which our system automatically generated activity maps
for different environments.

In a one-person office we created two furniture con-
figurations. We equipped the office with a single stereo
camera mounted on the wall in a standard surveillance
camera configuration. For each experiment, we record-
ed tracking data over a long period of time and esti-
mated activity maps offline using the approach
described in the “Activity widget” section (due to the
high number of data points, the segmentation algorithm
took several minutes to run). In all of the experiments,
we set the initial number of classes, N, for the cluster-
ing step  to 15, and at the end of clustering the observed
heights and velocities, we removed regions corre-
sponding to small numbers of location features.
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6 First experimental office configuration, with a desk, meeting table, and
reading area (here the door is closed). The workspace is shown from the
camera’s perspective, overlaid with clustered tracker data for the three
zones; labels are user supplied.

7 Second experimental office configuration. The two tables are joined to
form a large desk and the door is open. The workspace is shown from the
camera’s perspective, overlaid with clustered tracker data for three zones;
labels are user supplied.



Figures 6 and 7 show results of the two setups. In
each experiment, the automatically generated activity
maps segment the space into zones related to structures
in the environment (chairs, desk, file cabinet, corridors,
and so on).

After estimating activity in the first configuration, we
found activity areas. The meeting table zone is the union
of smaller zones that the tracker identified around the
stools. The tracker found a total of 11 zones, which rep-
resent four functionally separate areas. The four activi-
ty areas include the zones around the desk, meeting
table, and lounge chairs (shown in Figure 6), plus an
access corridor through the middle of the room. 

Figure 7 also contains four major activity zones. Zone
1 corresponds to the access and walking context, zone
2 corresponds to the working context (desk), and zones
3 and 4 correspond to the reading and informal meeting
context. As in Figure 6, Figure 7 doesn’t show the access
zone. These figures also don’t show the location features
(velocity and height) corresponding to the different
zones. However, we observed that they correspond to
their expected values—that is, regular standing heights
in door and access zones, low heights in desk and lounge
zones. Velocities were large in the access zone, medium
in the door zone, and small in desk and lounge zones.

Figure 8 shows two scenes of our prototype system in
use. Figure 8a illustrates the light automatically turn-
ing on when someone is working in zone 2. Figure 8b
shows the automatic choice of display (computer screen
or projector) at the meeting table.

We informally observed people working in the space.
We noted that the activity widget correlated well with
particular activities such as typing at the keyboard in
the desk zone. Most people thought the automatic con-
trol of lights, radio, and projector was novel and useful.
In particular, within a work environment filled with
devices and gadgets, the changes in environment state
(light and music) and information display state proved
useful even in our preliminary user studies.

However, at this stage, we perceive a need to edit the
maps—for example by clustering several zones into one
or by labeling zones to provide the user with semantic
meaning. For this reason we added a graphical tool that
let a user or developer easily configure the parameters
through a visual user interface, similar to the way you
would set up areas for the spatial selection widget. A les-
son here is that even though widgets provide advanced
and complicated abstractions, they might require sup-
port for appropriate configuration and use.

Future directions
While our widgets and examples in this article

exploited cues sensed by cameras and computer vision
algorithms, we could extend our framework to other
types of sensing modalities including audio, ultrasound,
or radar. Widgets could combine inputs from this broad
array of sources to declare more properties about a given
environment or interaction. Just as the development of
GUI abstractions made raster display devices ubiquitous
interaction devices, abstractions for perceptual presence
and context will play a key role in making perceptual
interfaces usable by everyday applications. �
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