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by

Andrew J Perelson

Submitted to the Department of Electrical Engineering and Computer Science
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Master of Engineering in Electrical Engineering and Computer Science

Abstract

iPlot is an intelligent lighting design assistant. Given a performance space and a set of
lighting goals, each specifying an area to be lit and a direction, iPlot explores the space
of possible light arrangements in search of solutions that satisfy the goals. It employs
a generate, test, and repair strategy in which solutions are generated and tested to
see if they satisfy a goal. If a goal failed to be satisfied iPlot uses the explanation of
this failure to propose a number of repair suggestions that either modify the solutions
or relax the set of goals to form a new goal set. It then carries out these suggestions
to create new solutions viewable by the designer as a light plot, a two-dimensional
top down view of the performance space, lighting pipes, and lights all drawn to scale.
This thesis describes iPlot and an experiment that involved asking a lighting designer
to evaluate the light plots that iPlot produced.

Thesis Supervisor: Kimberle Koile
Title: Research Scientist
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Chapter 1

Introduction

iPlot is a system designed to aid theatrical lighting designers in creating a physical

representation of their lighting design concept. This physical representation is a light

plot, which is a two-dimensional top-down view of the theater showing the stage,

lighting pipes, lights, and circuits into which each light is plugged. iPlot explores

different mappings from a designer’s lighting goals to a physical model of lights, along

with their positions and focus points. It evaluates design goals, proposes and refines

repair suggestions for unsatisfied goals, and carries out those suggestions to create

revised goals and new solutions. As such, iPlot assists designers in specifying lighting

goals and exploring the space of possible solutions, or physical representations, of

those goals.

1.1 Understanding Theatrical Lighting Design

Theatrical lighting design is the process of determining the placement, focus and

use of lights throughout a theatrical performance. In creating a lighting design, a

designer is primarily concerned with supporting the theatrical production; by finding

a way for lighting to emphasize important aspects of the performance. As Stanley

McCandless said “[stage] lighting may be defined as the use of light to create a sense

of visibility, naturalism, composition and mood, (or atmosphere)” [9]. This lighting

design process breaks down into four steps: creating an abstract design concept,

10



turning that abstract concept into a set of lighting goals, meeting those goals by

finding a set of lights and their corresponding hang positions and focus points, and

deciding how to use those lights during each moment of a performance.

The abstract design concept is the set of impressions the designer wants to convey

to the audience using lighting; the impressions can be thought of as “looks” or moods

and are usually described in terms of familiar styles, locations, objects, and adjectives.

A lighting designer, for example, might describe his abstract goals by saying the

lighting should be “film noir”, “like a creepy 1950’s diner in a scary movie”, “angry”,

or “like a normal, everyday room”. These goals specify the lighting in terms of a

scene or mood that people can imagine.

From the abstract design concept the designer must articulate lighting goals that,

when realized, will create a look that matches the abstract design concept. These

lighting goals describe what section of the stage is illuminated and from what di-

rection. Examples of lighting goals are “front light coming at 45 degrees above the

actors, covering the entire stage” or “a single pool of light dead center, about half

the size of the stage, coming from directly above”. Thus to go from abstract de-

sign concept to physical lighting goals the designer must devise methods that enable

lighting to imply a given situation or circumstance. How can lighting make a room

look scary, for example? A possible method is to use front light coming from the feet

of the people on stage, i.e., light that illuminates below a person’s face from below.

(People even use this method when telling a scary story—they shine a flashlight up

at their face from below.)

Given a physical lighting goal, such as the ones mentioned above, and a specific

theater, a designer then must determine where to hang lights and at what point on

stage to focus them. He uses his knowledge of the photometric properties of the lights

and a fair amount of geometry and trigonometry to accomplish this task. The result

is an arrangement of lights described by a light plot, a two dimensional top-down view

of the theater showing the stage, the lighting pipes, lights themselves, and circuits

into which each light plugged.

After placing all the lights in the theater, the designer’s last task is to decide for
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each moment of the show what lights should be on and how bright they should be.

1.2 Problem

iPlot is focused on helping designers with the third step in the lighting design process

described above—translating physical lighting goals into a light plot that satisfies

those goals. iPlot, in other words, takes a list of goals such as the following:

1. Full stage wash coming from downstage at an angle of 45◦

2. Full stage wash coming from stage left at an angle of 60◦

3. Full stage wash coming from stage right at an angle of 60◦

4. A square 3’ on a side centered on center coming from upstage at an angle of

75◦ .

and finds a set of lights that satisfies those goals. The set of lights is represented

by a light plot, e.g. Figure 1-1.

1.3 Scenario

As a demonstration of how we envision iPlot being used, consider the following sce-

nario in which a lighting designer, Charles, works with his lighting design assistant,

iPlot.

Charles is working on a new show for the Wang Theater. He has received the

architectural plans, including lighting pipe layout, and lighting inventory from the

building manager. After reviewing the script, seeing a rehearsal, and meeting with

the director, Charles has determined an abstract design concept. In this case, he

wants to use lighting to create an environment on stage that is very film noir and

creepy.

Charles next uses an intelligent assistant iConcept to determine possible physical

lighting goals that would satisfy these abstract goals. These goals will be stated in
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Figure 1-1: Light plot output from iPlot. This light plot shows iPlot’s proposed
solution to the four goals stated in Section 1.2.

terms of the area of the stage to be illuminated and from what direction. Given a

representation of the production space and the abstract design concept describing

the desired look, iConcept suggests using two groups of lights, which it represents as

two physical lighting goals. These lighting goals specify that the first group of lights

should illuminate the entire stage, with the light coming from downstage right. The

second group of lights should illuminate center stage in a circle whose diameter is

approximately one third that of the stage.

Charles’ next task is to create a light plot. With the set of lighting goals proposed

by iConcept in hand, Charles starts iPlot, loads in the information on the Wang

Theater, and asks iPlot to propose a light plot. iPlot retrieves the lighting goals from

iConcept. iPlot suggests a group of fifteen lights to accomplish the first goal and a

single light to accomplish the second. It then renders a picture of what the Wang

Theater would look like with those sixteen lights on. Charles likes the look of the
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stage, but wants to modify it slightly and explore some alternatives. He drags light

icons around on the screen to simulate new lights and positions, and iPlot change the

look of the stage accordingly. When he is satisfied with the way the stage will look,

Charles saves his work, sends a copy of the design to the director, prints out a light

plot, and goes to discuss the design with the director.

1.4 Motivation

iPlot supports the early stage of lighting design with the aim of helping designers

quickly find an arrangement of lights that satisfies their design concept and lighting

goals. We choose to focus on this step in the lighting design process because it is the

one least covered by current lighting design tools, and it is sufficiently complex that

artificial intelligence techniques have the potential to provide valuable assistance to

human designers (e.g. [7]).

The process of going from physical lighting goals to a light plot is one of the most

time consuming and tedious tasks for a designer. It involves an extensive search using

trigonometry, geometry, and lighting design knowledge to map from the goal space

(stage area and light direction) to the solution space (lights with hang and focus

points–a light plot). Most lighting designers are not adept with the necessary math

and use rough approximations when creating plots. Current tools help with some of

the math, but none attempt to generate an entire solution given a set of lighting goals.

The system described in this thesis acts as an intelligent design assistant, translating a

designer’s lighting goals into a recommended light plot, which represents the physical

layout of the lights. With a tool such as iPlot designers can explore many more design

possibilities easily and find a solution more quickly than is possible with currently

available tools.

Design is an inherently knowledge-based, intelligent behavior. A designer has

a number of goals that he wants to accomplish and must figure out how to build

something that accomplishes them. The design process itself is not static and the

goals of the design often change while searching for a solution. In lighting design,
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the quality of a solution to a goal is somewhat subjective. Designers have preferences

that influence the solutions they create and prefer. Because of these complications,

building computational tools to aid the design process requires addressing interesting

AI issues such as how can the search space for design solutions be restricted to avoid

the combinatoric problems inherent in large search spaces. How can one find solutions

for multiple conflicting goals? This thesis proposes answers to these questions.

1.5 iPlot’s Intelligence

iPlot’s intelligence derives from it’s knowledge base and its informed search of both

solution and repair space, an idea explored in [7].

iPlot’s knowledge consists of knowledge about spatial reasoning and knowledge

about the lighting domain. The domain knowledge includes an awareness of the

objects relevant to design (i.e., lights, performance spaces, etc.), the photometric

properties of lights, and general techniques for placing lights, evaluating proposed

solutions, and modifying both goals and groups of lights that form a solution to that

goal. Much of iPlot’s intelligence derives from being able to map not only light goals

to light arrangements, but desired changes in light arrangements to changes in goals.

Exhaustive search of the design space is not a feasible method of finding an

arrangement of lights for a set of goals. Not only is it computationally difficult,

but many goal sets are over-constrained such that no solution is possible. iPlot is

able to limit this search by using a design process similar to that of a lighting de-

signer, with techniques for generating individual groups of lights that are best able

to satisfy each goal, modifying solutions, and relaxing goals as necessary to get an

acceptable solution.

1.6 Guide to this document

This document describes the iPlot system, what it accomplishes, how it works, and

why it is a useful tool.
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• Chapter 1 introduced the problem, the context of the problem, and iPlot’s

solution and discusses the motivation for building iPlot

• Chapter 2 describes a lighting designer’s design process and how iPlot models

it

• Chapter 3 describes iPlot’s domain knowledge and representation

• Chapter 4 describes iPlot’s control structure

• Chapter 5 describes iPlot’s user interface

• Chapter 6 describes an evaluation of iPlot given a realistic design problem

• Chapter 7 discusses related work in artificial intelligence and lighting design

tools

• Chapter 8 summarizes iPlot’s contributions and discusses future work.

16



Chapter 2

Approach

In building iPlot we adopt the view that the best lighting design tool serves as an

assistant modeled on the way human lighting designers create light plots1. In order

to aid Charles with his design process, as in the scenario from Chapter 1, the system

has to be capable of representing Charles’ lighting goals and mapping them to a

physical model of light positions and focus points. In particular, it must find a set of

available lights that can accomplish the specified goals when placed in the theater’s

light hanging positions. It also must display its recommendation in such a way that it

is understandable to Charles and easily explored and modified. The proposed system,

iPlot, is capable of performing each of these tasks.

Given a set of physical lighting goals, determining which lights to use for each

goal and where to put them is an over-constrained problem. A designer always can

specify more goals than any given set of lights can satisfy. Consider a trivial case

where three lights are available and the lighting designer wants four distinct, non-

overlapping pools of light on stage, each from a different direction. Even such a small

scale problem has no solution. A designer would be forced to abandon that set of

goals or rent more lights. The problem also can be over-constrained when determining

a light’s physical placement. If a room has only one hanging position for a light, then

only a single direction is possible for any given point on stage regardless of the desired

direction. While the situation is not always this bad, designers often must place lights

1This view is similar to that adopted in [7]
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in less-than-optimal positions that are as close as physically possible to where they

would really like them to be.

For a realistic size theatrical production in which it is possible to realize all of

the lighting goals, the search space that must be explored to find a solution is huge.

Imagine, for example, a situation in which there are 15 different goals and 100 lights.

Each light can be assigned to one of 15 goals, independent of every other light. Trying

every possible combination would result in looking at 15100 combinations of lights,

each of which would be a potential solution and thus would need to be evaluated.

In spite of a very large search space, lighting designers manage to create light plots

with a very limited amount of search. They accomplish this task by having a very

efficient set of preferences that effectively prune the search tree. This preferential,

or informed, search on the part of a lighting designer amounts to having a specific

style of design, which guides their design choices, and a large case base of previous

design experience to give them examples of what can be accomplished with a given

inventory of lights. Similarly, iPlot can use informed search to quickly generate a

set of light placements that satisfy the goals of a lighting designer. In creating a

design methodology for iPlot, it is useful to first examine in a more detail a lighting

designer’s approach to the problem.

2.1 A lighting designers approach

Let us again consider the scenario presented earlier. If a designer did not use a system

such as iPlot, then he would have to create a light plot from his lighting goals by hand.

A simplified overview of a lighting designer’s process in this case might be something

along the following lines. After creating a list of physical goals the lights used should

satisfy the lighting designer sits down to work out exactly how he should place the

lights in the theater. The designer will step through the goals one by one, and for

each one, create a group of lights that satisfies that goal. Then, for each group of

lights, the designer will estimate the number of lights needed for that group, and if

there are not enough lights, he will go back and either decrease the area of the stage
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covered by a lighting goal or remove a goal altogether, thus reducing the number of

lights needed to satisfy all the goals. For each group of lights a designer thinks will

work for a specific group, the designer then explores the placement of lights within

that group, checking for alternative arrangements that may reduce the number of

lights.

Initially this process of placing lights involves merely working through the trigonom-

etry to find the best place for a light and the correct spacing between lights. As more

and more lights are in the space, however, conflicts may arise between two lights that

need to be in the same place. Often the designer will move one light over slightly so

that the two lights are centered around their desired location. Repeating this action

many times may result in locations quite far from the desired location, however, and

the goal will not be satisfied. At this point the designer will explore either alternative

goals that can be accomplished more easily, or looks at ways to create more hanging

positions at the desired location.

It is important to note that in the description above the lighting designer assumed

goal independence, finding a separate set of lights to satisfy each goal. Discussing

the problem with lighting designers, we have found this assumption to hold because

they are internally combining all dependent goals into a single goal. They are thinking

about the goals whose solutions will be the most flexible, i.e. able to satisfy the largest

set of dependent goals. As an example, consider that a designer might describe a goal

stating that he wants the entire stage to be illuminated and the focus points of the

lights to be symmetric about center with a column of focus points to be on center

stage. This goal covers a single area, but has additional constraints on how individual

lights are used to satisfy this goal. Questioning the designer you would find that he

wanted to use the solution of this goal to:

• Illuminate the entire stage

• Illuminate stage right

• Illuminate stage left
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• Illuminate a column several feet wide, centered on center stage

While the designer conceptually thought in terms of a single goal whose solution

would have many applications, the goal could also be decomposed into four dependent

goals. Thus, in effect the designer reduced four dependent goals into one goal that

is further constrained. As a result, when the designer sought a group of lights that

satisfied each goal, he was considering the goals independent because the dependent

goals had already been combined.

2.2 iPlot’s approach

To accomplish its task of mapping physical lighting goals to a physical model of light

positions, iPlot models a human designer’s search process. Given a set of goals and

preferred methods for satisfying each goal, it first assumes goal independence, and

for each goal attempts to create a solution, which is represented by a set of lights,

their hanging positions, and their focus points on the stage. If the system fails to

find a solution (because a needed light or position is unavailable), it attempts to find

an acceptable solution by moving lights or modifying goals. Thus, iPlot is using a

generate, test, and repair paradigm to find a solution. It first generates a potential

solution, and then tests that solution. If the solution is not satisfactory, it uses the

results of the test to modify its goals and generate a new solution. Unlike most

generate, test, and repair systems (e.g. [7]), iPlot modifies goals as well as solutions.

To accomplish this task, iPlot employs lighting design and spatial reasoning knowl-

edge. The lighting design knowledge can be garnered from lighting designers, light

specifications and the relationship between those specifications. For example, light

manufacturers publish the specifications of their lights, including photometric infor-

mation such as the beam and field angles, the intensity of the light, and how fast the

intensity decreases as you move out from the center of the light. Using this photo-

metric information, a set of light placements, and a model of the performance space,

iPlot can predict what the stage will look like when those lights are turned on.

Conceptually iPlot consists of four components: (1) a physical model of the space
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for which a designer is creating a light plot; (2) a base of knowledge used to place

lights, i.e. when and how to calculate the direction of a light beam and predict what

a light will look like on stage; (3) a way of representing lighting goals –including an

understanding of how they can be satisfied, fail to be satisfied, and ways of repairing

goals that fail to be satisfied; (4) a search system that will attempt to match lights

and placements to goals; Parts one through three of this system form the domain

knowledge needed to address the problem, while part four is the control structure

that manipulates this knowledge to find a solution. The relationship between these

four components is shown in Figure 2-1

Goals
Model

Physical
Lighting

Placement 
Knowledge

Search 
System

Domain Knowledge

Control Structure

Figure 2-1: iPlot System Overview. The search system manipulates a physical model
using lighting placement knowledge to find a solution to a set of goals.
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Chapter 3

Domain Knowledge &

Representation

To map from lighting goals to physical light placements iPlot needs an internal repre-

sentation of the objects and knowledge being used to create a solution. This represen-

tation must include knowledge about performance spaces and all of the items within

it such as lights, pipes on which lights are hung, and the stage lights are focused on; a

representation of the goals that it is attempting to satisfy and the requirements that

have to be met for a group of lights to be considered a solution to a given goal; and

ways of refining goals for which no solution can be generated. In addition to this,

iPlot requires knowledge of how the objects being represented can be manipulated

and how they interact with each other. In iPlot, this knowledge of the properties, be-

havior, and interaction of objects is contained within the representation of the objects

themselves.

3.1 Performance Space

iPlot creates a representation of the physical objects that are in a theater, or any

performance space, that are relevant to lighting design. This initial version of iPlot

uses a simple model of the performance space and considers only the stage, the pipes

on which lights can be hung, and the individual lights that are hung. In addition to
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these physical objects, we also represent the inventory, which is the collection of lights

available for use in a specific theater. For a description of the geometric constructs

used to build the spatial representation of these objects see Appendix A.

The control structure must go through the performance space to access any object

within the space. Thus to hang a light the control structure gives a light and a hang

point to the performance space. The performance space hangs the light if there is an

available hanging position at that point.

3.1.1 Stage & Coordinate Space

The stage in iPlot is represented as a two-dimensional rectangle with a constant

z-coordinate of zero and serves as a reference for designers when talking about direc-

tions. All directions are given from the perspective of someone on stage, facing the

audience. Designers also use the downstage center point on the stage as the origin

of the coordinate space when talking about the position of any object in the theater,

accordingly the origin of iPlot’s coordinate space is always the downstage center point

of the stage. As shown in Figure 3-1, the x-axis runs along the bottom of the stage,

the positive direction going stage left and the y-axis runs along the centerline of the

stage, the positive direction going upstage. The z-axis is perpendicular to the stage,

the positive direction is towards the ceiling.

The iPlot coordinate space is discrete, taking on only integer values in which

one unit represents one inch. This discretized coordinate space was chosen to make

the computational geometry algorithms necessary to reason about the space simpler

and easier to formulate. It is assumed that having the smallest unit be an inch

will not hinder the performance of the system in determining light placements. This

assumption is reasonable because when placing lights in the theater, the hung position

of a light is always approximated at most to the closest inch. Furthermore, given that

the audience is far from the stage, the difference of an inch in placement or focus point

rarely, if ever, changes a human’s perception of a light beam.
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Figure 3-1: Stage & Coordinate Space. The origin of the coordinate space is at the
most downstage center point on the stage, with the x-axis on the downstage edge of
the stage and the y-axis on the centerline

3.1.2 Pipes

Pipes in iPlot represent the structural pipes in the theater that lights can be attached

to. In the theater the standard lighting pipe is the 1.5 inch inner-diameter schedule

forty pipe. The system makes the simplifying assumption that all pipes are straight

lines and furthermore the connection points between pipes and the buildings super-

structure are not modeled.

The length of each pipe is subdivided into three types of areas: available areas

that are unoccupied by a light; forcible areas that are occupied by a light that can

move and still satisfy its goal; and unavailable areas that are occupied by lights that

if moved will no longer satisfy their goals. In creating this set of three areas Pipes are

capable of reasoning about lights in relation to the bounded direction of their goal.

A light is said to ”satisfy its goal” with its placement on the pipe if the resulting line

between source point and focus point is within the bounds of the goal direction when

centered on the focus point. Thus a pipe can distinguish unavailable positions from

forcible ones by testing to see if a light can be moved to the adjacent possible hang
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point and still satisfy its goals.

Given a light, and a hang point on a pipe, the pipe will hang the light on that

point, if all points in space the light would occupy in that hang position are currently

available or forcible.

3.1.3 Lights

Light Categories & Types

A wide variety of theatrical or entertainment lighting fixtures are commercially avail-

able. While the exact specifications vary between lights, the lights can be grouped into

a few categories according to the lens or reflector of the light. Currently iPlot’s knowl-

edge of light categories encapsulates three of the most popular conventional (non-

moving) light types: ellipsoidal reflector spotlight (ERS), Fresnel spotlight (Frensel is

a lens type named after its inventor Augustine Fresnel) , and the parabolic aluminum

reflector spotlight (PAR).

Every light in iPlot has a type, which is the conventional name for that light and

in general includes information on the manufacturer and the properties of the light.

Each light type belongs to one of the light categories. Given a specific light type, iPlot

can determine to which category of lights it belongs. Furthermore, given a category

of lights, iPlot can enumerate the different light types it supports that are in that

category.

Light Properties

In reasoning about where to place lights to achieve a given lighting look, or state of

illumination, we want our representation of lights to encapsulate the physical prop-

erties relevant to placing a light, and the photometric properties of the light.

The system approximates the physical form of a light using a bounding cube.

The placement and focus of a light is determined by using two points: the hang

point, where a light attaches to a pipe; and the focus point, the point is space where

the center of the light beam is pointed. The light beam emitted from a light is a
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cone whose angle is specified by the manufacturer as a beam spread. For a complete

description of how the manufacturer’s specify the beam spread see Appendix B

in iPlot a light object can calculate its illumination at any point in the perfor-

mance space in absolute terms, measured in foot-candles, or as a percentage of its

illumination at the center of the light beam1. As shown in later sections, this is used

by the control structure when determining how to overlap to lights being used to

satisfy a single goal.

3.2 Goals

In addition to representing the physical objects that must be manipulated to satisfy

a goal, the system must represent the goals themselves. A goal and its accompanying

solution have five components: a purpose; a desired outcome specified as an area to

illuminate and a direction; user-specified preferences that narrow the search space;

whether or not the goal was satisfied, a solution if one was found. The the goal failed,

it contains an explanation of which constraint was violated and how.

The purpose of a goal represents the design rationale, a brief explanation of why

the designer created the goal. As discussed earlier, the desired outcome is specified as

an area and a direction. In iPlot the area is represented as a rectangle and the direc-

tion as a direction vector2. For a complete description of these geometric constructs

see Appendix A.

Each goal object contains a flag indicating whether or not it was satisfied. When

a goal is satisfied, its solution is a set of lights hung in the performance space that

together illuminate the goal area. When the goal failed, the goal object generates an

explanation for the designer as to why the goal failed, what hard constraints were

violated, and how.

1How iPlot calculates this intensity is shown in Appendix B
2Direction objects in iPlot are bounded. A designer gives bounds for the direction with the

understanding that given the relative sparseness of hanging positions with a space that an exact
direction for the light is not always possible. Using bounds a designer can represent the idea of an
acceptable range of directions around the ideal one
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3.2.1 Goal Preferences

The user’s goal preferences narrow the search space by functioning as a set of soft

constraints,i.e. ones that can be violated if necessary, on the generators used to create

a solution. These preferences influence the overall style of the look created by a group

of lights and directly or indirectly specify the type of lights used to satisfy a goal, the

uniformity of illumination in the goal area, the search technique to find the solution,

and the importance of a single goal in relation to the other goals of the designer. We

will briefly go over the most influential preferences; a full description can be found in

Appendix C.

The type of light used to satisfy a goal is specified either directly, by choosing a

light type, or indirectly using a light category and a discretization, indicating how

many lights should be used to span the width of the goal area.

The uniformity of illumination in the goal area is determined by two preferences

the crossover and border intensity. These intensities are specified as percentages of

the hotspot intensity, which is the brightest spot in the light beam3. The crossover

intensity indirectly specifies the point at which two light beams should overlap. Sim-

ilarly, the border intensity specifies how bright the border must be. Figure 3-2 shows

the crossover and border intensity ellipses from a light beam. These ellipses bound

the portion of the light beam that is at least as bright as the specified percentage of

the hotspot. From this figure we can see that for a border to be “sufficiently” illumi-

nated, i.e., at least as bright as the border intensity with respect to the hotspot, then

it must intersect the light’s border intensity ellipse. Similarly two lights that want

to overlap such that two points at the crossover intensity overlap, then the crossover

intensity ellipses of the two lights must just overlap each other.

The search technique, i.e., how and in what the order lights are placed, is deter-

mined by a generation start point and a generation technique. These two preferences

uniquely identify one of the methods available for generating a solution to a goal.

The relative importance of a goal is determined by its order, i.e., order determines

a goal’s priority in being satisfied relative to other goals. This goal order is used in

3The hotspot is usually at the center of the light beam, which also contains the focus point.
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Crossover Intensity Ellipse

Border Intensity Ellipse

Hotspot

Figure 3-2: Light Beam Intensity Ellipses. We see here the ellipse formed by the
intersection of the light beam (a cone) with the goal area. The intensity of the light
is always brightest at the center of the beam, also called the hot spot, and fades
as the distance from the center increases. The crossover intensity ellipse forms the
bounds of the portion of the light beam that is at least as bright as the specified
crossover intensity (which is a percentage of the hot spot intensity). Similarly, the
border intensity ellipse bounds the portion of the light beam that is at least as bright
as the specified border intensity.

determining the order in which goals are generated and what repair suggestions are

carried out to repair a failed goal.

3.2.2 Solution Constraints

In order to satisfy a goal any group of lights must satisfy two constraints: it must

cover the area specified by the designer; and each light used must come from the

specified direction, measured from the light’s focus point. iPlot is able to check these

hard constraints for each proposed solution that it generates.

These hard constraints can fail to be met by a proposed solution in one of three

ways: there may not be enough lights to cover the goal area, there may be no place

to hang a light, or the desired direction may not be achievable with the available

light hanging positions. These three general reasons for failure can be caused by

several events, as shown in Figure 3-3. In the case that the desired direction is not

achievable, this state is further decomposed into three cases: the desired xy-angle is

not achievable; the desired z-angle is not achievable; or, both angles are not achievable.
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Both Angle Bounds

Not Met

XY−Angle Bound

Not Met

Z−AngleBound

Not Met

Constraint Violated

Not Enough Lights No Hang Positions Direction Bound Not Met

Figure 3-3: Reasons for goal failure. At the highest level a goal fails either because
there are not enough lights, there are no hanging positions available, or the goal
direction is not achievable. These reasons can be further decomposed. The leaves
of this tree enumerate the specific reasons that a goal can fail, i.e., exactly what
prevented the hard constraints from being satisfied.

3.3 Repair Suggestions

This section describes the types of repair suggestions. Their use in the solution

generation and repair process is discussed in Section 4.2.

When a goal cannot be satisfied the system can create a set of repair suggestions.

These repair suggestions fall into three broad categories: altering solutions, relaxing

goals, and removing goals. When followed, these repair suggestions change a goal

or solution to form a better proposed solution for the failed goal–one that does not

violate the hard constraint that caused the failure. Table 3.1 enumerates the possible

repair suggestions and indicates what types of failure each suggestion can help repair.

3.3.1 Solution alteration suggestions

Solution alteration suggestions propose repairing a failed goal by altering a solution

to another goal. These suggestions amount to moving a light out of the way to make

room for a second goal. The suggestion can be to move a light’s hang point or focus

point (potentially causing a change in hang point). If such a move renders a light

unnecessary as part of the goal’s solution the suggestion can also propose the removal
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Table 3.1: Possible suggestions to repair a failed goal. The suggestions are listed from
right to left in order of severity, i.e. how much they change the goal being modified.
IB and IC are the border intensity and crossover intensity preferences, respectively,
na is not applicable.

Modify Solution Relax Goal
Remove Goal

Move
Move &

IB IC
Light

Direction Area
Remove Type

Not Enough
na x x x x na x x

Lights
No Hang

na x x x na na x x
Position
Direction

x x na na na x na x
Bound

of that light. Solution alteration suggestions change what hang points are available

in the theater.

Solution alteration suggestions that only move a light can be used to repair a

situation in which the direction bound for a goal could be met because the acceptable

hang positions were occupied. Moving the light occupying the acceptable hang posi-

tion frees up that position for use by the failed goal. These suggestions can also free

up lights for use by other goals when slight changes of position and focus points allow

for the removal of a light. It is important to note that solution alteration suggestions

are made only when the proposed alteration does not cause a goal to fail.

3.3.2 Goal relaxation suggestions

Goal relaxation repair suggestions change either a goal’s desired outcome or a goal’s

preferences.

When the direction bound for a light was not met, there is only one option–

change a direction. Changing the failed goal’s direction allows the light to be hung

somewhere else. Changing the preference of a light occupying an acceptable hanging

position moves the occupying light, freeing up a useful hanging position.

When there are not enough lights to satisfy a goal or no hanging positions exist,

the number of lights currently being used must be reduced. This reduction can take
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place when some goal in the system changes its light type, area, or its mechanical

preferences (i.e, the border and crossover intensity).

3.3.3 Remove goal suggestions

Remove goal suggestions propose the removal of a goal and its solution from the list of

goals that iPlot is trying to satisfy. This suggestion may be needed in the case when

there are simply too many goals for all of them to be simultaneously solvable. Rather

than reducing every goal and getting a less-than-desirable solution to every goal, a

designer may choose the eliminate an entire goal, thus freeing up a large number of

lights and hanging positions for use by other goals.

3.3.4 Representing repair suggestions

Each repair suggestion consists of three elements: the failed goal, a goal that will be

affected if the suggestion is carried out, and the suggestion of what to change in the

effected goal or solution. In the case that the suggested change is a relaxation of a

goal, then the suggestion is an iPlot generated goal that represents the relaxation of

the goal being modified.

Repair suggestion objects also provide the user with information about the repair’s

effect and the reason that it was proposed to the user. Knowledge of a repair’s effect

allow iPlot to determine how many light will become available if the suggestion is

appied—useful information when iPlot is choosing repairs to carry out. An important

feature of iPlot is its ability to provide a description of the repair in terms that a

lighting designer can understand.
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Chapter 4

Control Structure

Given the representations previously described for a performance space, lights, goals,

failed goals, and repairs, iPlot must manipulate these objects making use of the

knowledge they represent to form a solution–a group of lights that satisfies each goal.

To accomplish this task iPlot uses a generate, test and repair cycle. Thus iPlot will

propose solutions, test them for validity, and, if necessary, refine the goals and repeat

the process.

4.1 Generating a proposed solution

Given a set of lighting goals iPlot has three separate kinds of generators that together

can create proposed solutions for each lighting goal: light plot generators, light group

generators, and light position generators. When each of these generators is created

they are given a specific performance space in which they will be generating solutions.

The relationship between these generators is shown in Figure 4-1. We present a brief

overview of these generators before describing them in detail.

At the highest level is a light plot generator which takes a goal list and handles

generating solutions for each goal, starting the repair process if necessary. The light

plot generator takes as input a list of goals, and outputs a performance space object

in which all lights forming the solution have been hung1. To find a solution for

1Thus whenever a light is ”hung” we mean that it has been placed, i.e. hung on a pipe, in the
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each goal the light plot generator first assumes independence between goals2 (but not

solutions). Under this assumption the plot generator in turn makes use of a light

group generator that generates a set of lights that satisfy a single goal.

A light group generator takes as input a single goal, and outputs a group of lights

that satisfy that goal. It also adds these lights to the current performance space

object, which represents the evolving solution. The generator has a variety of different

generation techniques that can be used to create a proposed solution. It chooses the

technique to use based on the goal preferences. Each technique is a different method

finding positions for a set of lights overlapping according to the preferences described

in Appendix C.2. The group generator is concerned only with overlapping lights and

uses a light position generator to find the best hanging position for individual lights.

A light position generator takes as input a light that needs to be placed, a direction,

and a way of describing where the focus point of the light should be. The light position

generator returns the best hang point for the light in the performance space. It does

not hang the light. As a side effect, the light position generator changes the focus

point of the light it was passed to be the focus point corresponding to the returned

hang point. This will allow the light to reason correctly about illumination levels on

stage after it has been hung.

Each of these three generators uses different domain knowledge to generate a

proposed solution. Light position generators use knowledge about the relationship

between a light’s hang and focus points, and the resulting angle of the light beam to

find the best match between light position and a direction. Light group generators

focus on the knowledge about combining multiple lights. They combine lights using

the goal preferences such as crossover intensity and border intensity, laying them out

as specified by a generation technique. The plot generator is concerned with the

validity of each proposed solution, the interaction between goal solutions and the

repair process.

performance space as part of a solution
2The assumption for goal independence was justified previously in Section 2.1.
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Light Plot Generator

{G1, G2, G3}

G1 G2 G3

Light Group Generator

. . . Light Position Generator

Figure 4-1: Solution generation overview. A single light plot generator takes as input
all of the lighting goals to be satisfied. It in turns uses a single light group generator
to generate a solution to each goal separately. The group generator in turn uses a
light position generator to find available hanging positions in the performance space.

4.1.1 Light Plot Generator

The light plot generator is concerned with generating a solution to every lighting

goal. Currently, iPlot assumes that all lighting goals are independent and generates

solutions for each of them individually.

The first stage of this cycle is to generate a solution to each goal. The light plot

generator uses a light group generator to generate a proposed solution to each goal.

The solutions are generated according to their goal order, such that goals that the

user specifies first are satisfied first.

This iterative solution generation takes place within a testing framework. After

each proposed solution is generated it is tested against the hard constraints described

in Section 3.2.2. If a goal fails, the plot generator ensures that the goal object’s

state reflects this failure and it’s cause. The failure of a single goal does not stop the

generation process, rather the failed goal is saved for later consideration.
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After the plot generator has attempted to find a solution for each goal it looks

at the collection of goals. If there are no failed goals, the plot generator terminates

having succeeded in generating a complete set of lights that satisfies all goals and

is hung in the returned performance space object. Otherwise, iPlot proposes repair

suggestions for each failed goal. The user may then manually choose which repair

suggestions should be followed or allow an automated repair strategy to direct the

repair. If the user is directing the repair process they can manually start the next

iteration of the cycle, otherwise the plot generator will automatically start the next

round of generation when the automated repair finishes. These repair facilities are

explained fully in the next section on repairing a failed goal.

4.1.2 Light Group Generator

The light group generator attempts to find a group of lights that satisfies a single

goal. To do this, it must find a group of lights that together illuminate the entire

area specified by the goal. The light beam from each light in the solution must come

from the specified direction relative to the focus point of the light. This light group

generation is guided using many of the preferences specified as part of the goal.

Each light group generator makes use of a light position generator, specified when

the group generator is created. Using this light position generator, the group genera-

tor finds hanging positions for individual lights used as part of the proposed solution.

The most basic generation methods of the group generator use the light position gen-

erator to generate a single line of lights whose combined light beams span the goal

area. More complex generation methods are built upon this line generation method

to create several lines of lights that together illuminate the entire goal area. Thus the

process used to generate any group of lights to satisfy a goal will be a recursive process

of using different generation methods, that at the most basic level place a single line

of lights. In summary, the overall process of generating a proposed solution to a goal

is as follows:

1. Choosing the type of light to use
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2. Break the goal area into smaller sub-areas

3. Recursively generate solutions for each sub area. Recursion stops at the level

of a single line of lights (potentially a single light).

All of the methods implemented in iPlot’s light group generator follow these three

steps. Currently iPlot implements total of six generation methods: two ways of

generating a single, vertical line of lines that spans the area and four methods for

generating a set of lights that illuminate an entire area. Figure 4-2 shows the group

generators different methods and the dependencies between them.

We will first go through how iPlot chooses a generation method, light type, and

then explain the generation methods in detail. Readers unconcerned with the details

of this recursive generation process may skim through these sections or skip ahead

entirely to Section 4.1.2.

Choosing a generation method

While iPlot’s light group generator has many generation methods, the plot genera-

tor calling upon the light group generator need only ask for a solution to a given

goal, they do not have to explicitly specify the generation method. The light group

generator uniquely determines the generation technique using the goal generation

preferences described. If the generation start point is a corner, the group generator

uses the area generation from corner method. Otherwise, if a center point is given

the generation technique preference is used to determine which of the three center

generation methods should be used.

Choosing a light type

The first step in finding a group of lights that satisfy a goal is choosing the type of

light to use. The light beams of the different categories of lights have very specific

qualities, and the features of the lights themselves vary. Designers usually know what

category of light they want to use to satisfy a single goal. But within each light

type there are a variety of different lights made by several manufacturer and with a
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Light Plot Generator

Choosing Generation Method

Generation From Corner

Area Generation Methods

Line Generation Methods

Light Group Generator

Light Position Generator

Generation From Corner

Generation From Line

Generation From Center

Figure 4-2: Group generator method overview. This figure shows that the plot gen-
erator calls a single method to get a group of lights which form a solution to a goal.
This method in turns calls the appropriate area generation method. Each method
makes calls to simpler generation methods to cover sub-areas, eventually reducing
down to methods that generate a line of lights using light position generators.
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wide array of beam spreads. To accommodate this situation iPlot allows designers

to specify light type by specifying either a type of light to use, or a category of light

and discretization3.

When a designer specifies a category of light such as ellipsoidal reflector spotlight,

the system must determine which light type best meets the requirements of the goal.

This task is accomplished by testing each possible type. A focus point is chosen inside

the goal area and for each light the best hanging position is found. The discretization

obtained by each light type is then estimated from this single light. The light type

with the discretization closest to that specified by the designer is used.

To estimate the discretization iPlot uses two distances from the test light. The

distance from the focus point of the light to the crossover intensity point (crossover

distance), and to the border intensity point (border distance). We assume that the

lights on the border have their border intensity point exactly on the border. Given

this assumption we can calculate n, the number of lights needed to span that stage,

as

n = 1 + W−2B
2C

.

Where B is the border distance, C is the crossover distance, and W is the width of

the stage. This heuristic can be derived graphically from Figure 4-3.

area generation from center methods

The group generator’s most complex generation methods are the methods that gen-

erate a group of lights that illuminate an entire area and whose focus points are

symmetric around the stage. We choose this as our example of complex generation

methods because it is one commonly used by lighting designers. A front light full

stage wash, i.e. a set of lights that illuminate the whole stage and coming from the

house (where the audience is), is most often generated in this way. The group gen-

erator of iPlot has three separate methods for generating a group of lights that are

symmetric about the center of an area.

3Described in detail in Appendix C.1.
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Ellipse Ellipse

Crossover Intensity

Figure 4-3: Estimating the number of lights to span the stage. As we can see it takes
three lights to cover the width of the area. Because the crossover intensity circles of
each light just touch each other, we can say that each light contributes 2C towards
covering the width of the stage with the exception of the two lights at the borders,
which cover B + C. As such width = n · 2C − 2C + 2B = 2C(n − 1) + 2B, which
when solved for n produces our estimate n = 1 + W−2B

2C

Two of these methods are different ways of generating a group of lights symmetric

around center. The first method generates a group of lights that is symmetric around

the centerline of an area but does not have any lights whose focus point is on the

centerline. The second method generates a symmetric group of lights that does have

a line of lights whose focus points are on the centerline. Because of the symmetric

nature of these algorithms the first method will always use an even number of lights

to span the stage and the second method will always use an odd number. The third

center generation method is an intelligent way of choosing whichever of the first two

methods uses the fewest lights. Thus a designer who doesn’t care if there is a light

exactly on center can use whichever method conserves lights. Using the same process

outlined in Section 4.1.2 for estimating the discretization of a light, we can estimate

the minimum number of lights to cover the width of the stage. If this number is odd,

then we want to use the second center generation method. If it is even, we want to

use the first center generation technique.

The first method, symmetric about center not including center, breaks the goal

area into two equally sized sub-areas, a stage left area and a stage right area. The
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stage left and stage right sub areas are generated using a simpler generation method,

generating an area from a corner, which is explained in the next section. Figure 4-4

shows this arrangement of sub-areas. By generating the two symmetric sub-areas

using the same method, working in opposite directions the focus point on either side

of the stage should be symmetric, assuming the hanging positions are also symmetric

about center4.

SR Area SL Area

Start Corner

Figure 4-4: Area generation from center, no lights on center. The stage is divided
into two symmetric sub-areas, each of which is generated using a generate area from
corner method, starting at the upstage or downstage center point.

The second of these methods generates a group of lights whose focus points are

symmetric about the center of an area including a line of lights on center. This is

done by first generating a vertical line of lights centered on the centerline of the stage.

The unlit portion of the stage is then divided into two equally sized, symmetric about

center areas, which are covered using the corner generation methods using techniques

similar to that of the first generation method. These areas are shown in Figure 4-5.

area generation from corner method

The area generation from corner method is group generator’s simplest generation

method that searches for a set of lights that can illuminate an entire area of arbitrary

4Most theaters have regularly spaced pipes at least as wide as the stage, centered on center stage
such that this assumption holds. Even if the pipes are not laid out symmetrically, this method will
generate an area that is symmetric as possible.
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Figure 4-5: Area generation from center, lights on center. The stage is divided into
three sub areas: a central column and two symmetric sub areas, one on each side of
the column. The column is a single line of lights generated using a line generation
from line technique, the other sub areas are generated using from an on-stage corner

size. The corner generation method generates divides the stage into columns, each

of which can be illuminated by a single line of light. The lights to illuminate each

column are generated using the line generation from corner method described in the

next section.

For the purposes of explaining the corner area generation method let us assume

the designer has just given a goal for a front light full stage wash, symmetric about

center without lights on center. The generator has just started generating the stage

left sub-area using vertical lines of lights.

The corner method starts by generating an initial column of lights, starting at the

corner specified when calling this method. In this case the corner is down-stage center.

After this first column has been laid down the generator tests to see if the border

opposite the start point, the stage left border in this case, is sufficiently illuminated.

The generator considers a border sufficiently illuminated if the intensity at the border

is at least as bright as the border intensity preference.

If the border is not sufficiently illuminated, a second column of lights is generated

adjacent to the first. To determine the amount of overlap between columns generator
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Figure 4-6: Area generation from corner. The generation of the stage left sub-area
is shown above. Starting center stage the generator places columns of lights until a
column sufficiently illuminates the boundary point.

looks at the first light in the newly placed column and finds its stage left crossover

point5. Because we want crossover points to overlap, this crossover point is on the

new boundary for the next column of lights. After laying down the second column

the border is again tested. This process of test and then generate columns repeats

until the border is sufficiently illuminated and the process stops.

line generation methods

The line generation methods are used internally by iPlot as a building block for more

advanced generation methods. They generates a set of lights whose focus points all

lie on a single line. The combined light pool from these lights span the stage. As we

have seen both the center and corner generation methods reduce their problems to

generating a line of lights. We have implemented the methods to generate vertical

lines of lights running upstage and downstage. This process can be generalized easily

to generate lines of lights in other directions.

5As mentioned in Section 3.1.3 given the crossover intensity and a direction, in this case stage
left, the light returns the crossover point. The details of how this is done are covered in Appendix B
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Generating a vertical line of lights is done using a goal area and either a specified

bounding edge (generating from a line), or bounding corner of that area (generating

from a corner). It is important to note that while the line generation methods take

as input an area, the combined light pool from the line of lights will span the goal

area but there is no guarantee that the entire area will be illuminated.

We have seen examples of situations where both of these line generation methods

are used. When generating a wash that was symmetric around center with lights on

center, the line of center lights in generated from a bounding edge, the downstage

edge of the stage with the lights centered on the centerline. The wash to either side of

this central column was placed using the corner generation method which exclusively

uses the line generation from corner method.

Let us again consider generating the stage left sub-area of our symmetric full stage

wash. Our first column of lights starts just stage left of downstage center and goes

all the way to the upstage edge of the stage. The first step is to remove a light

from the inventory for use, and find the best hanging position for it. We want the

centerline to be bordering the crossover ellipse of the light beam and the downstage

edge of the stage to be bordering the border ellipse of the light beam. We can pass

this information, along with the first light and direction to a light position generator

and get the best hanging position for the light and hang it in the performance space.

The light position generator conveniently sets the focus point of the light to where it

needs to be given our intensity bounds.

After this first light has been placed we then test if the upstage edge of the goal

area is illuminated sufficiently by this light. If it is, we stop, otherwise we generate

the next light in the column. In this case we find the upstage crossover point of this

first light. The y-coordinate of this crossover point is the new y-coordinate of the light

position generator downstage boundary line for the next light. We can then pass the

light position generator a second light, the direction, and the new boundaries and get

the optimal hang position. This place and test process repeats until the border is

sufficiently illuminated, Figure 4-7 shows this placement process graphically.
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(a) Corner Generation Technique
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Crossover Intensity Ellipse

Border Intensity Ellipse
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(b) Line Generation Technique

Figure 4-7: Line generation. Lines of lights are generated by successively overlapping
lights along a line so that their crossover points are in the same location until the
boundary is sufficiently illuminated. Part (a) shows how light placement can be
bounded by two lines forming a corner, while part (b) shows how light placement can
be bounded using a boundary line and a centerline.
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Hanging the lights of a light group

In describing these light group generation methods we said that the line generation

methods take lights from the inventory and hang them in the performance space

as positions are found. This was a slight simplification. Lights are hung in the

performance space by calling a method in the performance space object to hang a

light, passing the hang point and the light to this method. As each light is hung in

the performance space as part of a goal solution two additional actions occur. First,

the light is added to a goal’s list of lights forming the solution, second, the light is

told that it is satisfying that goal.

Failure during light group generation

A light group generator can fail to completely satisfy a goal when a light position

generator fails or their are not enough lights of the appropriate type to illuminate the

entire stage. In either case generation stops and the reason for failure is propagated

up to the light plot generator. This reason will be a violation of one of the hard

constraints mentioned in Section 3.2.2 along with any addition knowledge such as the

number of lights needed to complete the goal, or the closest available hang position

that was out of bounds. In the case of a failure all lights that were hung prior to the

failure remain in the performance space and associated with the goal.

4.1.3 Light Position Generator

The light position generator is concerned with finding the best hanging position for a

single light. Corresponding to the types of areas on a pipe, iPlot can search for ideal,

forcible, or available hanging positions. This process can be broken down into three

steps: finding the focus point; finding the best hanging position on each pipe given a

focus point; and then comparing the hanging positions available on each pipe.
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Finding the focus point

When lighting designers place a light they do so in one of two ways, either they

know exactly where they want the light to be, i.e. they directly know the focus

point, or they know how bright they want the light to be at some point and roughly

what direction the center of the light should be relative to that point. If the focus

point is known, then the position generator just finds the best hanging position given

that focus point and a direction. When the focus point is not known, the generator

must search for the correct focus and hang point pair such that the known point is

illuminated at the specified intensity.

In the case where the exact focus point is not known then the designer, or the

position generator, must search for the proper focus point. This is done by estimating

a first focus point and finding the corresponding hang position for the light, testing

to see if it meets the intensity requirements, and if not moving the focus point and

repeating the process. The position generator has two different methods for searching

for a focus point: line bounded search and corner bounded search. Figures 4-8 and

4-9 summarize this search process, the details can be found in Appendix D

Finding the best hang position on a pipe

Given a focus point, a direction, and a pipe the position generator can find the best

position on a pipe to hang the light. The ”best” position to hang a light is the

position that creates the focus line that is closest to the direction when the direction

is centered on the focus point. Under these conditions the point on the pipe that

has the smallest relative angle compared with the direction is the best hanging point.

Figure 4-10 shows a hanging position and it’s relative angle with respect to a direction.

Directions are capable of reasoning about the point with the smallest relative

angle out of a list of points, and pipes can enumerate the ideal, forcible, and available

hanging positions on the pipe. Thus, the position generator finds the best hanging

position by connecting these two components. It obtains potential hang points of the

appropriate type from the pipe and hands them to the direction asking for the hang
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Figure 4-8: Finding a light’s focus point from a line. A light beam’s position is
specified a bounding line and a point on that line to be at a specified intensity.
The focus point is then found by choosing focus points, testing the intensity at the
bounding point, and if necessary moving the focus point such that the intensity at
the bounding point approaches the desired intensity.

(a) (b) (c)

Figure 4-9: Finding a light’s focus point from a corner. A light beam’s position is
specified by two bounding lines, each of which must be at a specified intensities. The
focus point is then found by choosing focus points, testing the intensity at both points,
and if necessary moving the focus point such that the intensity at the bounding points
approaches the desired intensity.
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point with the minimum relative angle. The returned hang point is the best one for

that point.

Pipe

. Focus Point

.
Direction

Hang Position

a

Figure 4-10: Relative angle between point and direction. We can see that the relative
angle between the hang position and the direction is a. By inspection one case see
that in this case the hanging position with the smallest relative angle is going to be
at the intersection of the pipe and the direction.

There is one subtlety to this process and that is the definition of the “minimum”

relative angle. In comparing relative angles between a point and a direction, the

designer may choose to distinguish between the xy-angle and the z-angle. If the goal

specifies that the ideal, non-prioritized angle is what a designer cares about then the

minimum relative angle is just that, the absolute minimum relative angle, attempting

to minimize both angles simultaneously. If, however, the designer chooses to prioritize

an angle, let us suppose the xy-angle, then the point with the “minimum” relative

angle is that with the minimum relative xy-angle. If two or more points have this

minimum relative xy-angle, then their z-angles are compared. Directions are capable

of reasoning about points with both definitions of minimum, and the choice of which

type of reasoning it use is determined by the goal preferences.

Comparing pipe positions

After obtaining the best hanging position on each pipe for a light, the position gener-

ator can find the best overall position through a similar process using the direction.

Now instead of a collection of points on a single pipe the generator uses a single point

from each point and picks the one with the minimum relative angle to the direction
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centered on the focus point.

Returning the best position

After the light position generator has determined the best hang position for a light

it returns that light position to the method which called upon the generator. In

addition it sets the focus point of the light passed to the generator to the focus point

that corresponds to that hang point. This ensures that after being hung the light has

the correct hang and focus points from which to base it’s photometric calculations.

Failing to find a position

A light position generator can fail for two reasons: either the best hanging position

does not meet the hard constraints of the angle bounds, or no hang position exists at

all. When this happens the light generator fails and propagates the reason for failure

to the method caller.

4.2 Repairing a failed goal

We say that a goal has failed when a proposed solution meeting all of the hard

constraints could not be found. This situation occurs for one of three reasons: there

were not enough lights available to complete the goal, the desired goal direction could

not be achieved, or there were no hanging positions available in the theater6. After a

goal has failed the first step in the repair process is to create a list of repair suggestions,

each of which proposes to “repair” a goal by doing one of the following:

1. Modifying a proposed solution

2. Relaxing a goal

3. Removing a goal

6In most situations a lighting designer usually runs out of lights to hang before completely
exhausting the set of all hanging positions. As such, this failure does not happen in practice.
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Note that choices two and three result in a new goal set. Using an explanation

of why a particular goal failed, iPlot’s repair suggestion generator proposes a set of

repair suggestions, each of which will, when carried out, result in the failed goal no

longer failing for the same reason7 (i.e., violating the same hard constraint). The

choice of which suggestions to carry out can be made by either the designer or by

iPlot using an automated repair strategy. After carrying out the selected suggestions,

iPlot generates a new solution to this alternate set of goals.

4.2.1 Solution dependence and goal relaxation

The generation of a new goal set is unusual in such a computer-aided design tool.

Most such systems generate new solutions. The reasoning behind iPlot’s approach

is as follows. When some goals in a goal set cannot be satisfied we can approach

the problem of fixing this situation in one of two ways. We could attempt to find

the set of solutions that is closest to satisfying the goals, but may not satisfy them.

Alternatively, we could ask: What is the set of goals closest to the original goals

that I could satisfy. In theory approaching the problem from either direction should

result in the same solution. The difficulty lies in defining what makes one proposed

solution “closer” to satisfying a goal than another proposed solution, and how you

define nearness between goals themselves.

In iPlot, and generally in lighting design, the solutions are very dependent on each

other, regardless of goal interdependence. This situation derives from the fact that

all the solutions occupy the same physical space, the theater, and are competing for

resources in that space, i.e. lights and hanging positions. Because of this, solutions

that iPlot creates are very dependent on goal ordering. The fewer goals that are

satisfied in the performance space when a new solution is being proposed, the more

resources available to be used in that solution. This competition for resources means

that in many cases it is easier to approach the problem of finding a good solution

by modifying the set of goals. iPlot implements a hybrid strategy that considers

7There is no guarantee that a relaxed goal will not fail when the solution for it is generated, only
that it will not fail for the same reason.
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modifying both goals and solutions.

4.2.2 Proposing Repair Suggestions

Repair suggestions represent a way to increase the chances of a failed goal being

satisfied. It is the job of the repair suggestion generator to propose a set of repair

suggestions for each goal. For each failed goal the the generator will propose repair

suggestions by:

1. Looking up the type of suggestions that will repair that goal, determined by

the goal’s failure explanation.

2. Determine what goals should be modified by repair suggestions.

3. For each possible goal and suggestion type pair, propose the appropriate repair

suggestions.

Determining type of suggestions to propose

As originally presented in 3.3, iPlot’s knowledge about which types of failure are

repaired by whichsuggestion types can be stored in a table, presented again below as

Table 4.1.

Table 4.1: Possible suggestions to repair a failed goal. The suggestions are listed from
right to left in order of severity, i.e. how much they change the goal being modified.
IB and IC are the border intensity and crossover intensity preferences, respectively,
na is not applicable.

Modify Solution Relax Goal
Remove Goal

Move
Move &

IB IC
Light

Direction Area
Remove Type

Not Enough
na x x x x na x x

Lights
No Hang

na x x x na na x x
Position
Direction

x x na na na x na x
Bound
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Thus, given a failed goal, the system uses the information in Table 4.1 to find the

repair suggestion types that can be used to repair this particular goal. For each type

of suggestion the system then finds all goals or goal solutions that can be modified

with a suggestion of that type to fix the failed goal.

Determining what goals to modify

What goals can be modified to repair a failed goal depends on the circumstances of

the failure. For each of the three failure reasons one of two conditions existed in the

performance space: either the goal is impossible to satisfy in the performance space,

or it would normally be satisfiable, but a previous solution is using the necessary

resources (lights or hanging positions). In the first case, the only way to repair the

failed goal is to modify the failed goal itself. In the second case, the failed goal could

be modified, or whatever goal (or solution) is using the necessary resources could be

modified. When it is possible that modifying another goal or solution in the system

could repair a failed goal, the repair suggestion generator determines which goals as

follows.

When the failure is due to not having eough lights, we want to make more lights

of the failed goal’s light type available. Thus, all suggestions will in some way cause

a goal to use fewer lights. Suggestions can be generated for every goal in the system

that uses the same light type as the failed goal.

When the failure is due to not having any hang positions, we want to free up

hanging positions. This freeing up is also accomplished by making some goal use

fewer lights, but in this case there is no restriction on which goal, and potentially

every goal in the system could be modified. The repair suggestion generator, however,

reasons about what goals would be best to modify. The repair suggestion generator

looks at where the failed goal’s solution would be hung if possible and only suggests

modifying the solutions (or goals) that result in those desired hang positions being

occupied by other lights.

When the failure is due to a direction bound not being met, then there is a light

occupying every acceptable hanging position. Again the system can look at where the
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failed goal’s solution would be hung if possible and suggests modifying all solutions

or goals that result in those desired hang positions being occupied by other lights.

It is important to distinguish that while the goals being modified are similar in this

case to having no available hang positions, any suggested goal relaxations will be very

different (changing direction rather than intensity or area).

Proposing the repair suggestions

At this point iPlot has a set of goals that can be modified, and a set of repair

suggestion types and must propose a repair suggestion of each type for each goal.

The last step then is to determine what the exact change will be. For goal removal

suggestions, this is trivial; the only possible change is removing the goal. For the other

suggestion types, the state of the performance space must be analyzed to predict the

effect of each change.

It is important to note that the current implementation of iPlot does not know

how to predict the effect of all possible repair suggestions. Of the possible repair sug-

gestion types iPlot can predict the effect of moving lights within an existing solution,

changing the border intensity of a goal, change light type, and changing the direction

of a goal. We limit our discussion to how these four types of changes are predicted.

Move Light Suggestions

Move light suggestions are made when moving light can make useful hanging positions

available for the lights of a failed goal. This situation occurs when the goal failed

because a direction bound was not met. We must find the hang positions needed by

a failed goal to determine which, if any, of the lights occupying those positions can be

moved without causing previously satisfied goals to become unsatisfied. Recall that

lighting pipes are broken down into three areas: available, forcible, and unavailable.

Forcible was defined as am area on the pipe currently occupied, but the occupying

light can move without causing any goal to become unsatisfied. Distinguishing be-

tween forcible and unavailable areas can be done by moving the occupying lights along
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the pipe and testing if they still satisfy their goal’s direction bounds8. Furthermore,

light position generators can be asked to find ideal (ignoring all lights currently hung

in the performance space) or forcible hang position.

Thus a move light suggestion is generated in two steps. First the light position

generator is used to find the best forcible hang position. If the failed goal light can

be hung at this point and satisfy its goal, a suggestion is then made to move the light

currently occupying that position along the pipe and hang the failed goal light. Oth-

erwise, no suggestion is generated because moving any light would cause a previously

satisfied goal to become unsatisfied.

Change Border Intensity Suggestions

A change in border intensity has the potential to reduce the number of lights

needed to satisfy a goal. This reduction can occur when a subset of lights forming

a solution overlap the border, but their intensity is not sufficient to meet the border

intensity requirement. Thus, additional lights were needed to increase the amount of

illumination at the borders of the area. In this case, reducing the border intensity

will make these additional lights in the solution unnecessary. A situation such as this

is shown in Figure 4-11.

While there are technically an infinite number of border intensities, minute changes

in intensity have little effect. Designers rarely consider changes of less than five

percent, and so we use this value as the smallest change in intensity to consider. As a

result we can consider a finite subset of changes. For each of these potential changes

in border intensity we can estimate the effect of changing the border intensity. This is

done in two steps. First count the number of lights whose light beams’ border ellipse

intersect the the area boundary given the current border intensity. Then, count the

number of lights whose beams’ border ellipse intersect the area boundary will the

8If a moved light is still within its goal’s direction bounds after the move, iPlot assumes that the
light beam has not changed significantly, and the goal is still satisfied. If the moved light’s effective
direction would no longer be in the bounds of the goal direction, then it cannot be moved. In this
way the direction bounds are limiting the number of times we can “nudge” a light assuming it won’t
effect the solution. It is bounding the transitivity of light movement.
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Figure 4-11: Estimating the effects of changing goal area border intensity. The left
image shows the border intensity ellipse of the light beams projected onto the goal
area after a solution has been generated. While the area is currently covered using a
set of 15 lights, we can see the area is only slightly larger than the area covered by
border ellipse of the inner square of nine lights. The right image shows the predicted
change if we modified the goal to cover the same area, but with a lower border
intensity. The lights would not change position, but the size of their border intensity
ellipses increases. As a result only nine lights are needed to cover the area.

new, lower border intensity. The difference between these two counts are the number

of lights that would not be needed if we changed the border intensity.

For each goal for which we want to generate a border intensity suggestion, we use

the above method to find the largest border intensity that will require fewer lights

than the current solution. A suggestion is made to change the goal’s border intensity

to this estimated intensity. It is important to note that no change is made to make

the border intensity (less than or) equal to zero. With a border intensity of zero

all borders would always be sufficiently illuminated. As a result, after the first light

was placed and the area borders examined, generation would stop because all borders

(and thus the entire area) are sufficiently illuminated.

Change Light Type Suggestions

A change light type suggestion is exactly that—a suggestion to change the light

type of a goal. It can be used when a goal failed because there were not enough lights

of a specific type. In this case the light type of all goals with the failed light type

can be changed to any other light type, so long as there are enough lights of that

type available. Thus for each goal with the failed goal light type iPlot looks at all the
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light types in the inventory. If the beam spread of the light is wider than the beam

spread of the current light type and there are at least as many in the inventory as

use in creating the solution, then a change light type suggestion is made. If the beam

spread is smaller than the current beam spread iPlot can estimate the number of lights

needed to cover the stage in a manner similar to that of estimating the discretization,

it can estimate the number of lights needed to span the area in both directions. The

product of those two light counts is the number needed to cover the entire area. If

that many lights are available in the inventory of the type under consideration, a

change light type suggestion is made for that goal.

It is interesting to note that we do not consider this repair suggestion valid for

goals that fail because no hang position available. It is the only suggestion that

is used to repair failures due to not enough lights and not failures due to no hang

position available. This situation arrises because while changing the light type will

presumably free up hanging positions for a failed goal, the goal whose light type is

changing will most likely then fail—either because again no hang positions exist, or

the one or two hang positions that are available would not let the needed lights satisfy

their direction bounds.

Change Direction Suggestions

Change direction suggestions are made whenever all the hanging positions that are

acceptable for a light in the failed goal are occupied. This situation prevents the failed

goal light from being hung in a position that allows it to meet its angle bounds. In

this case though we are looking at relaxing the goal by changing the desired outcome,

in effect changing the ideal hang position of the lights. To find the desired change in

direction iPlot first uses the position generator the best available hang point for the

failed light goal. Then iPlot finds the relative angle between the available hang point

and the direction. At this point a suggestion can be made to increase the bounds

of the failed goal’s direction by this relative angle, making the available hang point

acceptable. The suggestion is not changing the desired direction, but rather just
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saying that the available hanging position should be considered acceptable.

Now for each goal that could be altered to repair this goal (i.e. including those

occupying acceptable hang positions) iPlot also proposes a suggestion to move the

entire goal direction by the relative angle. This change in desired direction will result

in different occupied hanging positions, allowing the failed goal light to be hung at

an acceptable position.

4.2.3 Repair Strategy

In general it takes only a few of the proposed repair suggestions to allow all goals to

be satisfied. The blind application of every suggestion would result in sub-optimal

solutions. As an example, consider the case where there are two goals G1 and G2 that

use the same light type. G1 is satisfied and G2 failed because there were not enough

lights. There will exist a suggestion to change the light type of both goals, and to

remove goal from the system. Applying any one of these suggestions would ensure

that the next round of generation could find a solution to all goals. Applying all of

them would remove all goals from the system, leaving the worst solution possible–none

at all.

It is the job of the repair strategy to choose the subset of repair suggestions that

will be carried out. To generate a single ”optimal” repair strategy would be difficult

because every designer is going to have different preferences towards how they would

like to repair a set of failed goals. Much of the information they might use in user-

directed repair might not be available in iPlot. For example if a goal could not be

satisfied the designer’s first repair choice might be to replace it with a completely

different goal. Currently iPlot has no facility for expressing this situation. As a

result, the most basic repair strategy is to generate an a set of repair suggestions and

present them to the designer. The designer can then choose the subset of suggestions

he wants followed, in addition to making any changes or additions to the goal set that

aren’t suggested.

While every repair situation is going to be slightly different, we believe that differ-
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ent designers have distinct styles or strategies for repair that iPlot can model. Thus

iPlot has an interface for creating automated repair strategies that given a list of goals,

failed goals, and repair suggestions will return the subset of suggestions that should

be followed. Currently iPlot has implemented one such automated repair strategy

based on the preferences of a single lighter designer, the author, called simply the

Perelson repair strategy.

We shall provide an overview of the Perelson repair strategy on a set of four

goals: G1, G2, G3, and G4. The Perelson repair strategy assumes that the goals

have carefully been prioritized by the designer and these priorities are reflected in the

goal order. Thus G1 is the most important goal.9. The Perelson strategy allows no

goal to modify a higher priority goal as part of a repair. Thus all repair suggestions

that modify G1 to fix G2, G3, or G4 are discarded. Furthermore, the strategy allows

only one repair suggestion to affect each goal. Thus if a suggestion to repair G2 by

modifying G1 is chosen, no other suggestion that repairs or modifies G1 or G2 is

followed10. Because of this strict limitation on the number of suggestions that will

be followed, the strategy picks repair suggestions for the higher priority goals first.

Thus it will first look at suggestions that repair G1 then G2 and so on.

With these broad policies in hand the Perelson strategy chooses specific sugges-

tions to be followed. First any solution modification suggestions are chosen. Then,

in the case that a goal failed to meet it’s direction and the repair suggestions are

to change a direction, the suggestion to change a goal’s own direction is followed.

Thus if G2 failed because it’s direction bounds could not be met, the only suggestion

followed would be to change G2’s direction. When the cause of the error was not

enough lights the Perelson strategy looks to change the border intensity; change the

light type; or a remove a goal, in that order. Thus if G3 failed because it did not have

enough lights the strategy would first attempt to reduce it’s border intensity to as

9For those interested the author would have chosen G1 to be a front light wash of the entire stage.
This ensures that at the very least the audience will be able to see everything on stage clearly.

10This is done because multiple modifications of one goal would interact. Trying to free up lights
by changing both the crossover intensity and light type of a goal is counter productive. All lights will
be released by changing the light type and changing the crossover intensity would be unnecessary.
iPlot does not attempt to predict which repairs can safely interact.
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low as 30%. If the border intensity is already this low, or such a change is predicted

to have no effect then the system looks to change the light type of G3 or G4 (if it uses

the same type of lights and contains lights in its solution). As a last resort if previous

methods have not resulted in a useable suggestion then a remove goal suggestion will

be chosen, essentially saying the set of goals is over-constrained and the only way to

fix the problem is to remove a goal, thereby relaxing a large number of constraints at

once.

4.2.4 Goal refinement and regeneration

After generating repair suggestions for all failed goals and pruning those suggestions

using a repair strategy, iPlot must set up for another cycle of generate, test, and

repair. The first step in this process is to make a copy of the current, unrepaired set

of goals and solutions. This step allows the user to back-up and undo a set of repairs

if he does not like the next iteration. After this step all lights are removed from

the performance space object, clearing all the old solutions from the physical model.

Now the system is ready for a new set of goals, so iPlot carries out each of the repairs

selected by the repair strategy. After carrying out all of the repair suggestions we

are back to the original state of the system: There is a set of goals that needs to be

satisfied. The plot generator takes this set of goals and starts iteratively generating

them, and the cycle continues until either all goals are satisfied, or the user chooses

to stop the process and accept an intermediary state as an acceptable solution.
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Chapter 5

System Evaluation

To evaluate iPlot we had it find solutions for a set of realistic goals, and presented

these goals and corresponding solutions to a designer for analysis. The designer was

asked to comment on the solutions as if iPlot were one of his design students and he

was giving us feedback. After analyzing these prepared solutions the designer was

asked to try using iPlot for himself and to give us verbal feedback as he experimented

with the system.

We present here three goal sets and corresponding solutions that demonstrate

some of iPlot’s generation and repair abilities. We present a case with a goal whose

solution found by iPlot required repair and was considered a good solution by the

designer; a case in which there is only one goal that was considered satisfied by iPlot,

and whose solution was judged less than satisfactory by a designer; a case in which

there were two conflicting goals that were repaired and the solution was considered

good by the designer.

5.1 Evaluation of three solutions

5.1.1 Example 1: Single goal, a good solution demonstrating

self repair

iPlot was given the goal shown in Table 5.1
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Table 5.1: Goal for Example 1
Value Bounds

Direction
xy-angle DS ±5◦

z-angle 45◦ ±20◦

Crossover Intensity 0.6 ±.05
Border Intensity 0.4 ±.05
Discretization 1

5
na

Light type ERS na
Start Point USC na
Technique Fewest Lights na
Automated Repair Yes Perelson Strategy

iPlot generated a solution using two iterations of the generate, test, and repair

cycle. The generation method chosen by iPlot was to generate an area symmetric

around center, with lights on center1. We can see from Figure 5-1 that iPlot suc-

cessfully generated the center column of lights and was in the process of generating

the stage left subarea when it failed. By inspection (and from iPlot’s output) we can

see that it failed because no available hanging position allowed it to illuminate the

remaining portion of the stage left subarea from the specified direction. At this point

iPlot generated three goal relaxation repair suggestions: change the direction bounds

to allow an available hang point to be acceptable, change the direction itself so that

all lights can achieve that direction, and remove the goal. The Perelson strategy dic-

tated that the direction bound change be followed as the least severe change to the

goal. After this repair suggestion was carried out, iPlot tried to generate the solution

to this relaxed goal, this time succeeding. The solution is shown in Figure 5-2

The designer upon seeing this solution commented that overall the solution was

very good. The repair chosen was the one he would have picked had be been directing

generation, and in fact the one he would have used had he been satisfying the goal

without iPlot. Overall he believed that the illumination on stage would actually look

more even than shown because such a wash of lights would normally get diffusion

added to it, which scatters the light a little making it fade out more gradually.

1See Section 4.1.2 for the details of this generation technique
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Figure 5-1: Example 1: Good solution part 1. At this point the generator has failed
because there is no hang position available that will allow the direction bounds to be
met for a light illuminating the rest of the stage left area.

Figure 5-2: Example 1: Good solution part 2. After using the Perelson strategy to
choose a direction change suggestion to repair the failed goal, iPlot comes up with
this solution to the new relaxed goal.
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5.1.2 Example 2: Single goal, a bad solution

iPlot was given the goal shown in Table 5.1

Table 5.2: Goal for Example 2.
Value Bounds

Direction
xy-angle DSL (40◦ SL of DS) ±◦
z-angle 45◦ ±20◦

Crossover Intensity 0.6 ±.05
Border Intensity 0.6 ±.05
Discretization 1

5
na

Light type ERS na
Start Point DSC na
Technique Fewest Lights na
Automated Repair Yes Perelson Strategy

iPlot generated this solution in one attempt without needing any repair. It chose

to use the generate area from center, no lights on center method as the one that

would require the fewest lights. This solution is shown in Figure 5-3. The designer,

however, upon seeing this solution did not think it was very good. He pointed out

that while the entire goal area was lit, both the upstage and downstage borders could

be illuminated better. To demonstrate his point he showed what the solution would

look like with only one row of the lights simulated as being on, as shown in Figure 5-

4. He pointed out that the downstage row of lights is focused primarily below the

stage where the light is not needed. Furthermore, a designer would typically use a

shutter on the light to prevent the light from illuminating any area offstage. Such

a large shutter cut would not be possible in this case and, even if it were, doing so

would dim the light considerably as the shutter would be blocking the majority of

the light beam. The designer continued by saying that a better solution would be to

move all of the lights upstage by a pipe, moving their focus points upstage by the

same distance. This change would cause more of the downstage row of lights to be

on stage. As a result both upstage and downstage borders would be brighter, and a

smaller shutter cut would be required on the downstage edge of the area.

iPlot generated this bad solution because of its use of the generate area from

corner technique, starting upstage center. iPlot placed the top row of lights such that
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Figure 5-3: Example 2: Bad solution part 1. iPlot successfully generated this solution
to two goal 2, however, it was not considered acceptable by the designer.

the border intensity ellipse of each light just overlapped the upstage border of the

stage. With this top row position set, the crossover preference dictated how close

the downstage row was, which in this case was far below stage. After generating this

solution iPlot checked only that the solution it generated did not violate any hard

constraints, that it covered the entire goal area from the appropriate direction.

This problem in generation could be fixed in one of two ways. We could increase

our knowledge of generation techniques to incorporate a better method of laying

out lights, or we could test for non-optimal strategies and attempt to repair them.

A smarter generator could make an estimate of how many lights would be needed

to span the stage both horizontally and vertically, and use this to predict the best

placement of the first set of lights relative to the border. With our goal for Example

2, iPlot could have reasoned that it would only take slightly more than one light to

cover the entire area, and that therefore there is no need to start with the top row of

lights as far from the border as possible. Instead it could estimate a closer acceptable

focus point, which would result in an optimal placement of lights. If instead we
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Figure 5-4: Example 2: Bad solution part 2. On the left we see the solution with
only the top row of lights on, and on the right we see only the bottom row of lights
on. As we can see from the image on the right, the solution would be improved if we
moved all of the lights to the next pipe upstage, moving their focus points the same
distance.

turned to a repair mechanism to fix this problem then iPlot would need knowledge

of how to recognize non-optimal solutions. As we’ve seen from this example, lights

whose focus points are far outside the goal area are a good indication of non-ideal

solutions because a majority of the light beam is not being used. After recognizing

this situation iPlot could then propose a repair that shifted the lights such that the

lights that focused off stage now focused on stage.

5.1.3 Example 3: Multiple conflicting goals, a good solution

iPlot was given the goals shown in Table 5.3. The inventory contained: 15 Source

Four 26◦ lights, 15 Source Four 36◦ lights, and 50 Source Four 50◦ lights.
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Table 5.3: Goals for Example 3.
Goal 1 Goal 2

Value Bounds Value Bounds

Direction
xy-angle DS ±5◦ US ±5◦

z-angle 45◦ ±20◦ 60◦ ±20◦

Crossover Intensity 0.6 ±.05 0.6 ±.05
Border Intensity 0.4 ±.05 0.4 ±.05
Discretization 1

5
na 1

5
na

Light type ERS na ERS na
Start Point USC na USC na
Technique Fewest Lights na Fewest Lights na

Automated Repair Yes
Perelson

Yes
Perelson

Strategy Strategy

iPlot generated this solution using two iterations of the generate, test, and repair

cycle. The generation method chosen by iPlot for both goals was to generate an area

symmetric around center, with lights on center. iPlot also chose both goals to use

Source Four 36◦ lights. We can see from Figure 5-5 that iPlot successfully generated

the first group of lights. It had finished generating the center column of lights for

the second goal and was in the process of generating the stage left subarea when it

failed. By inspection (and from iPlot’s output) we can see that it failed because there

were not enough Source Four 36◦ lights available. This is because goal 1 is using

the majority of the 36◦ lights2. At this point iPlot generated four goal relaxation

repair suggestions. For each goal it suggested changing the light type to Source Four

50◦ (which had enough lights to cover the entire area), and removing the goal. It is

interesting to note that no border intensity change suggestions were generated. All

smaller border intensities were estimated to require the same number of lights. The

Perelson strategy dictated that light type of the second goal be changed because it

had a lower priority and changing light type is the less severe of the two suggestion

types. After this repair suggestion was carried out, iPlot tried to generate the solution

to this relaxed goal, this time succeeding. The solution is shown in Figure 5-6.

2Note that here we are seeing an example of how solutions are very dependent because of resource
contention and goal ordering comes into play in determining what goals are initially satisfied.
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Figure 5-5: Example 3: Multiple conflicting goals solution part 1. At this point the
generator has failed having used all of the available Source Four 36◦ lights before it
had successfully satisfied goal two. Because all Source Four 36◦ lights are in use, one
of the goals must change their light type to be satisfied

Figure 5-6: Example 3: Multiple conflicting goals solution part 2. As the lower
priority goal, the back light light type was changed to use Source Four 50◦ and both
goals were successfully generated.
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Similar to our first example, the designer upon seeing this solution commented

that overall the solution was very good. The repair chosen was the one he would have

picked had be been directing generation, and in fact the one he would have used had

he been satisfying the goal without iPlot.

5.2 General Feedback

During his experiments with iPlot, the designer gave us some feedback on the system

as a whole. Overall he liked the effect that the bounds in direction had, but thinks

they should be made even more complex. He said that while designers have a range

of directions they may think are acceptable, they want all lights within a solution to

have the same direction. Thus the designer’s direction ideas might be modeled more

accurately as a bounded range model such as the following: A direction as a whole

can be given a bounds, for example ±15◦, but within that bounds they would like all

the directions to consistent to within some smaller range, such as 5◦ . The designer

also pointed out that while this is rule generally true, like all rules it has exceptions.

For example, the situation presented in Example 1 above is quite common. Here

the designer does not worry as much about the lights at the boundaries of the area

being within the range of the bounded range model because they realize it would be

impossible.

The designer also mentioned that the situation we saw with iPlot in Example 2 was

not uncommon. Fairly often iPlot would generate a solution that while accomplishing

it’s goal was not ideal. Currently iPlot stops searching when it finds an acceptable

solution, not checking to see if there might be a more acceptable solution. We believe

that iPlot could become better at handling this situation in three ways. First, the

generator itself could become smarter, perhaps by adapting the start point by small

amounts. Second, using the same machinery that should be developed to make move

and repair lights suggestions, iPlot could analyze existing solutions to see if the can

made better. Third, iPlot could make quick methods of adapting solutions available

to the designers themselves.
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The designer also mentioned that he believes that certain designers may want

to increase the number of preferences controlling the overlap. He believed there are

situations in which the designer would want independent control over vertical and

horizontal crossover intensity, as well as the border intensity for each border. He

cited as an example the case in which much of the action of the play takes place

down stage, near the audience. In this case the designer will most likely want the

downstage border bright, but may not care if the other borders are as bright.

Overall the designer thought iPlot needed a bit more work to become extremely

useful, but that it was a very good start. The designer said that he could imagine

using iPlot quickly as a brain storming tool to see what might be possible with a given

inventory, even if he did not directly keep iPlot’s solutions. While iPlot’s solutions

may not be perfect, they allowed the designer to find an acceptable solution quickly.

This, in turn, let him think about how the solution could be changed slightly to

improve it, a faster process than starting from scratch by hand or using computer

drafting tools.
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Chapter 6

Related Work

At this time we know of no other intelligent design tools that focus specifically on the

domain of lighting designer. This lack of availability was in fact one of the motivating

reasons for iPlot. There are, however, many commercially available tools designed to

aid lighting designers and researches have been looking into other aspects of lighting

design. We will present a brief overview of the other work that has been undertaken

in the lighting design domain. Then we will present some information on related

intelligent design tools from domains such as architecture.

6.1 Lighting Design

6.1.1 Commercially Availably Lighting Design Tools

There is quite an extensive base of software aimed at aiding certain steps in the

lighting design process. Computer aided design and drafting programs such as Au-

toCAD [1] and VectorWorks [8] are widely used to draw and render two- and three-

dimensional representations of both lighting and scenic designs. They do not, how-

ever, support, lighting design per se. They represent a physical model with no notion

of design goals or preferences. Software such as Beamwright [4] or Rosco’s Lighting

Paperwork System (LPS) [13] include a large selection of lights’ photometric proper-

ties and can calculate area covered, intensity, etc. for an arbitrary angle and distance
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from a light. In addition there are many programs to help lighting designers organize

the paperwork that represents their lighting design, e.g., Lightwright [5], LPS, or Vec-

torWorks. There is an increasing trend towards encapsulating all of this functionality

within one program. LPS and VectorWorks have had much new functionality added

with each new version. In addition, lighting control consoles themselves have become

more advanced, now including rendering and paperwork tracking capabilities. Elec-

tronic Theater Control’s (ETC) Emphasis Control System is such a system [3]. The

software listed here represents only a few of the most popular products within each

category.

6.1.2 Lighting Research

Research in computer graphics, specifically three-dimension rendering, has focused

on realistic renderings of theatrical lighting [2]. Such systems give lighting designers

the ability to evaluate their designers prior to their implementation in a performance

space. These systems take as input the location of light sources, light source proper-

ties, and other spatial information. Thus this work is focusing on the step after iPlot,

or a lighting designer, has completed the step of assigning lights to hanging positions

and a more complete analysis of the light plot is desired.

System’s such as Lula [12] address the programming of the lighting control console

where designers consider individual light looks (a.k.a. cues) for each moment of a

performance. This considers lighting design after the lighting plot has been designed,

accepted, and implemented and now the designer must consider how to use each

light during the performance itself. At this step designers are deciding what lights

to use, how bright they should be, and how and when to transition between looks.

This information is saved in a lighting console and later used again during the actual

performance itself. Lula approaches the problem from a functional programming

perspective and lets designers associate the implementation, the individual lights,

with their purpose1.

1In this instance purpose refers to what the lighting is representing or helping emphasize. For
example, the a yellow light might be representing the sun itself, or it could be used as part of a set
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6.2 Intelligent Design Tools

Other intelligent tools use search strategies similar to iPlot’s, such as dependency-

directed redesign [7, 6] or generate-test-debug [11].

iPlot’s generate-test-repair strategy is closely related to the technique of dependency-

directed redesign, which in turn combines the ideas of dependency-directed backtrack-

ing and generate-and-test (TAC)[7]. The technique was employed in a computer-aided

architectural design tool called The Architect’s Collaborator (TAC). TAC analyzes

architectural designs, reasoning about how abstract qualities, e.g., visually open, are

translated into a physical form, represented as a 2D floorplan2 TAC starts with a set

of design goals and a design provided by the user, evaluates the design with respect to

the goals, and generates new designs. For designs that are not solutions, it proposes

repair suggestions, and continues with its generate-test-repair strategy. TAC’s search

through the space of possible designs is dependency-directed, guided by dependencies

between abstract qualities and physical form and the dependencies for a specific goals,

which serve as explanations for unsatisfied goals. This search process is very similar

to iPlot’s. Both systems use the explanations for failed goals to narrow the search

space. While TAC only uses this explanation to guide in altering solutions, iPlot uses

this knowledge to alter solutions and relax goals.

Generate-test-debug is a paradigm used by Gordius [11]. Gordius is a planning

system in that it attempts to find a set of events that can explain the formation of a

geological region. While iPlot is not a planning system because it does not generate

a sequence of steps to transition between states, it does share many similarities with

Gordius. Both systems use the generate-and-test paradigm by generating a solution,

testing it, and repairing if necessary. While iPlot uses the results of the tests to form

both alternate solutions and relaxed goals, Gordius uses the results to fix parameter

values within its plan steps. Also, Gordius prunes conflicting plan steps, much as

iPlot’s repair strategy chooses which repair suggestion to carry out.

of lights that are being used to create a scary atmosphere.
2While not directly relating to iPlot it is interesting to note that this translation is similar to an

earlier part of the light design process when a designer is considering what lighting goals will best
represent their abstract design concept.
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Chapter 7

Conclusion

7.1 Future Work

This initial version of iPlot focused on creating a complete system that could map

physical lighting goals to a set of lights, hang positions, and focus points for a subset of

common theatrical spaces. Future work on iPlot should focus on a few key areas that

would increase the usefulness, usability, and efficiency of iPlot. This work includes

improving iPlot’s existing models for the performance space, allowing a larger set of

theaters to be modeled. Additionally, the domain knowledge incorporated into iPlot

represents a small fraction of the knowledge available, incorporating more knowledge

will allow for the creation of even better solutions. In addition, the current version

of iPlot does not consider an important aspect of the light designer’s process–their

reliance on past experience. iPlot would benefit greatly from a case-based reasoning

system that has the potential to enhance solution generation and repair.

7.1.1 Improving existing mechanisms

Applicability to all theater spaces and efficiency were not priorities in designing and

implementing the three-dimensional space that serves as the basis of iPlot’s physical

model. To increase the situations that iPlot can be used in we must start relaxing the

assumptions made about possible shapes. Currently iPlot only considers rectangles
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with a constant z-coordinate value. This assumption is fine for representing many

black box theaters, but not for oddly shaped performance spaces or most theater in

the round1. To represent realistic stages and goal areas iPlot should be able to handle

arbitrary n-sided polygons as well as ellipses in three dimensions. Similarly, lighting

pipes should be modified to allow curved pipe sections as many pipes in the theater

curve to follow the form of the performance space or the stage.

The initial restriction on shapes was made to simplify the algorithms to find

hanging positions and layout a series of overlapping lights that cover the stage. Any

modification of the performance space representation motivates a need to change these

algorithms. It is also important to consider the running time of these algorithms and

improve their efficiency because in the creation of one solution the knowledge to find

hanging positions can be used hundreds of times and increasing the speed of these

algorithms can have a dramatic effect on the search time2.

In addition to the physical structure of the performance space, iPlot does not

model all light types, or all the specific instruments manufactured of each type. Future

versions of iPlot should consider more light types, such as fluorescent or HMI lights.

For each light type, iPlot should have larger set of specific instruments from a range

of the popular manufacturers.

7.1.2 Incorporating more domain knowledge

The first version of iPlot considers only a small portion of the knowledge used by

experienced designers. Most notably iPlot could improve its techniques for modifying

solutions and could include knowledge about other issues that effect the physical

layout of lights.

1Theater in the round is when the audience is on all sides of the stage. As a result the stage is
very often shaped like an ellipse

2As an example, at one point during the implementation of iPlot the algorithm for a line to
find the point with the smallest relative angle from a list of points was improved to use binary
search rather than linear search. This one change decreased the running time of the program to find
solutions to two identical goals, full stage washes, by 30%
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Solution repair techniques

Currently iPlot has a limited set of solution repair techniques. If two lights want to be

in the same place it can slightly move them along the pipe. This knowledge alleviates

some of the need to repair and regenerate entire goals. This knowledge could be

generalized to handle the shifting of an arbitrary number of lights. As an example

three lights that wanted to be in the same place should, if acceptable, be centered

around where they want to be. This would mean one light in the precise position and

the other two centered around it. Knowledge of goal order could be included in this

process such that the light with the highest priority could be the light of the three

that gets the ideal position. Besides moving on a pipe, it is occasionally possible to

move lights to nearby lighting pipes and the solution repair mechanisms could include

this notion.

Other issues effecting light placement

There are quite a few issues that arise in the design of stage lighting that iPlot ignores.

Inclusion of these aspects of the domain would improve the quality of iPlot’s solutions

and it’s usefulness to designers. Currently iPlot does not take into account the set,

the physical structure of the performance space itself, the availability of circuits, or

lighting accessories.

Representing the set and the physical structure of the performance space would

allow iPlot to reason about the objects that can obstruct a light beam. Potentially

the hanging position that results in the best direction is non-ideal because there is

an object between the goal area and the hanging position. Because iPlot does not

currently model any such objects, it is not aware if that situation happens. Adding

these representations also would require that iPlot be able to reason about where

obstruction of a light beam is acceptable and how designers might deal with it. Quite

often lighting designers don’t mind a light that is partially obstructed, as long as the

obstruction is not illuminated.

Either in tandem with or after a lighting designer has placed all of the lights to
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be used for a performance, he considers the availability of electrical circuits to power

all of these lights. It is possible in many performance spaces, particularly older ones,

to hang more lights than you have the ability to turn on independently or at all.

Thus a few situations can arise. There may be enough circuits, but their placement

throughout the performance space is such that there is not enough cabling to run

power between the lights and the circuits. There may be enough power available,

but less one circuit per light. In this case two lights must be powered by the same

circuit, always turning on at the same time, effectively combining in many ways. At

best this reduces the flexibility of a single solution, at worst designers must connect

lights that do not satisfy the same goal. Because the two goals might be independent

and the lights used at different times during the performance, in such a situation the

designer might choose instead to reduce the number of lights used by one of the goals.

Often the work of figuring out how to power individual instruments is delegated by

the designer to a show’s master electrician3. None the less, iPlot could increase its

knowledge to assist in this aspect of the designer process.

7.1.3 Extension: case-based reasoning

Lighting designers draw greatly on past experience when creating a light plot for a new

design. This reliance on past experience can be modeled by iPlot through the use of a

case-based reasoning system. This system would have a record of performance spaces,

shows, goals, and solutions that could be retrieved and adapted for use in solving and

repairing current sets of goals. We will first explain in detail the motivation for a

case-based reasoning system and how it could integrate with iPlot to create better

solutions. Then we will go over some of the design issues and requirements that must

be considered in creating a case-based reasoning system for iPlot.

3The theatrical master electrician supervises the implementation of a designer. They over see
the hanging, circuiting, and focus of lights in the performance space.
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Motivation

Designers use the knowledge gained from previous lighting designs in a variety of

ways. At the very least, this experience helps the designer search more effectively

because they have a better understanding of what is possible with a given inventory,

or in a space in which they have worked before. In some situations, a designer

may use complete solutions from previous shows in future ones. Following the use

of previous work by a designer, a case-based reasoning system in iPlot would have

several functions.

In one sense the case base can act as an archive for the designer, remembering the

collection of lighting goals that make up the design for a specific show. The designer

could use iPlot to review or revise shows worked on previously. This use of complete

shows would be useful when a show is brought back to a theater, a situation known as

a revival. A more likely use of the archive would be to bring back previous solutions.

A designer may remember a specific lighting implementation of a goal from iPlot and

want to re-create that look exactly, down to the repairs the goal underwent. In this

case the exact solution could be retrieved and put into the performance space.

At times a designer may not be interested in recreating a goal exactly, but may

think of one goal as a variant of another. There are a lot of preferences associated with

the goals in iPlot, and each designer is likely to develop a few preference combinations

that capture his style of lighting design. By retrieving previous goals designers can

retrieve a set of preferences that closely match their style. The retrieved goal can

then be modified slightly to match what the designer currently wants to do. Thus we

believe that it will be easier for a designer to remember a specific instance when a set

of preferences worked well, than to remember the exact combination of preferences.

This situation is especially true if iPlot is extended to allow for even more preferences,

thus improving generation and reducing the need for repair.

iPlot also could make use of the case base to recreate past solutions without the

explicit direction of the designer. Consider that a designer could ask for a goal that

had been previously solved without knowing it had been solved previously by iPlot.
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This could certainly happen in environments where more than one designer uses the

same version of iPlot. The light group generator would interface with the case base

as a generation method. If the case base had a solution that could be put into the

performance space, then the light group generator would retrieve the solution and

use it, otherwise it would generate a solution from the physical model. This retrieval

could also be done at the level of partial solutions if the group generator considered

cases as sub-areas.

One could stretch the case-based reasoning system even farther and give it an

ability to reason about solutions, giving it a way to infer cases that were never actually

solved. Consider the case when two different goals have identical solutions. Let us

consider G1 and G2, both of which are full stage front light washes. G1 and G2 are

identical, except for the z-angle of their direction. G1 has a z-angle of 45◦ and G2

has a z-angle of 50◦ . Given the spacing of pipes in a theater, and that only a few

z-angles are actually possible it is quite likely that these two goals have the same

solution. From this we could further assume that a goal G3, identical to G1 except

for a z-angle which ranged between 45◦ and 50◦ would have an identical solution

without having to solve for G3 explicitly. A case-based reasoning system capable of

this type of reasoning would over time develop a model of what was achievable in a

performance space and be able evaluate new goals using that model to determine if

their solutions would be identical to previous ones.

So far we have mentioned ways in which the case base is being used to put a

solution into the performance space, but this is only one of the uses of the case-based

reasoning system. With experience a designer also becomes better at generating

solutions to completely new goals. Explained computationally, the act of creating

past designs, or cases, allows lighting designers to develop better heuristics to estimate

what a solutions to a goal will look like using a specific generation method. This is

true even in situations when the designer is not exactly recreating a remembered goal

or solution.

As an example we can consider two situations in which iPlot could make use of

the case based reasoning system as a source of heuristics. Light group generators
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can use previous cases to estimate the discretization achieved with a given light for a

goal. This heuristic would improve the light choice given a set of possible lights, as

discussed in 4.1.2. Previous cases also can serve as heuristics for the repair suggestion

generator and repair strategy. Let us suppose we have the goal G5, which has failed

because there were not enough lights. The repair strategy must choose between the

various suggestions, each of which make a different number of lights available for

G5. If G5 had been previously solved, perhaps in a situation when it did not have

such a low priority, we could use this prior solution to estimate how many lights G5

needed to create a complete solution. This knowledge would help choose the repair

suggestion that would help repair G5 and release the fewest lights from other goals.

Another example of using heuristics during repair is estimating the change in

solution that would occur with a change in goal. Suppose to repair G5 we wanted

to change the border intensity of the goal G4. If the case base has a goal similar

to G4, but with a lower border-intensity the solution in the case base can be used a

quick and accurate estimate of what would happen if the system were to change G4’s

border intensity.

Design Issues

Starting from the uses for a case based reasoning system in iPlot, we can begin to

formulate ideas about what should be stored in the case base, how it should be

indexed, and how it should interface with the rest of the system.

There are four types of information the case base will need to store and cross

reference: performance spaces, shows, goals, and solutions. Designers will work in

a variety of performance spaces in which iPlot may be used to solve lighting goals.

Each set of goals is used to create the design for a single show, thus a show is a

reference to a number of goals that were solved together. Each goal was generated

for a specific performance space and specific show and had a single solution. Each

solution is associated with a single goal. It is important to consider each of these pieces

of information and their relationship to each other. Without all four it is impossible

to uniquely identify the situation in which a solution was used. Because of solution
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dependence the same goal will have a variety of different solutions, potentially one

for each show in which a goal appeared. Potentially it also might be possible that a

solution and goal are applicable to two performance spaces because of a similarity in

stage size and potential hanging positions, but the solution might not be optimal in

both places. As a common example consider that performance spaces have moveable

pipes, which can be configured differently for each show. Two different configurations

of a performance space in iPlot would be considered two different spaces, but they

would be remarkably similar. Many solutions could be implemented in both, but

because of the slight changes in available positions not every goal will have the same

ideal solution.

Having determined what must be stored in the case-based reasoning system it

is also important to consider how each piece of information should be indexed and

retrieved. Each object should get a unique identifier that can be used to retrieve

it. This capability will allow for a compact representation of the relations between

objects. For example, a goal in the case base could store unique ID triplets (perfor-

mance space, show, solution) to identify each situation in which a solution to that

goal had been found. Alternatively, one could have a goal store just a list of solution

unique IDs, but each solution in the case base would know the performance space

and show that it was associated with. Because such unique IDs span multiple uses

of iPlot and would be used primarily by the case-based reasoner, these IDs could be

created by the reasoner itself.

For many of these items the system also will need a way of mapping between

unique IDs and a reference that the designer can remember, most likely as something

east to remember, such as a string. Performance spaces and shows both typically

have names, and each goal is for a specific purpose. There is no guarantee that these

names are unique, however. Considering combinations such as show and performance

space will reduce the overlap but it might be necessary to include a concept of time.

It is doubtful that a theater is going to have two distinct shows of the same name

in the same performance space at the same time. Indexing using this information

could be performed entirely at the level of the user-interface or built into the case
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base itself.

It is also important to realize that there are times when the system will not want

to exactly reference a specific goal or solution. Consider the times when a case is to

be used as a source of heuristics rather than for an exact solution. In this situation

there is no specific show being referenced, just a performance space and a solution.

The case-based reasoning system could have a variety of methods that could report

on the number of matching solutions, retrieve a specific one, or all of them to the

iPlot component interfacing with it.

There also will be times when both the designer or iPlot components will care

only about certain features of a goal. The designer may, for example, want to see

all goals that cover a specific area with a single direction, but compare the different

preference choices. Similarly, a repair strategy might want to look at all solutions to

a goal that vary only in border intensity when making suggestions. To accomplish

this there could be a type of goal template that is used to describe what features

are desired in retrieved cases, and what features can have any value. It could even

consider ranges of features such as directions within a set range of directions.

Before implementing a case-based reasoning system in iPlot we must decide upon

specific answers to the questions raised here about storing and indexing performance

spaces, shows, goals and solutions in iPlot. This work will be undertaken in the next

version of iPlot.

7.2 Summary

Because of iPlot’s informed search process using generate and test, it is able to effi-

ciently search the space of possible light arrangements for a set of lighting goals. It

was found useful as a tool by lighting designers to quickly brainstorm about possible

lighting arrangements, allowing them to consider many more options than they would

have otherwise.

iPlot has demonstrated the effectiveness of its goal relaxation technique as part

of the repair process. This technique sets iPlot apart from most other generate and
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test systems, which consider only modifying solutions.

Because of these contributions iPlot is a step toward an intelligent tool for con-

ceptual lighting design.
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Appendix A

Geometric Constructs

Within the three dimensional space of the theater iPlot uses basic solid geometric

shapes as the building blocks of its representation of objects. The basic elements it

uses are points, lines, rectangles, directions, and dimensions.

A.1 Point

A point in iPlot represents one point in the discrete coordinate space with a specific

x, y, and z coordinate. These points can be translated in each dimension, effectively

changing the point that is being represented. Furthermore, any point can calculate

the distance between it, and any other point in the coordinate space.

A.2 Line

A line, or more accurately a line segment, in iPlot is defined by its starting point and

ending point, and represents all points that lie on the line between those points. A

line is capable of several basic operations: it can calculate its length; tell if it contains

a specific point and even enumerate all of the discrete points that lie on the line. A

line can also reason about the relative angle between it and a specific point; more

specifically it can reason about the angle between two lines: it and the line defined by

its starting point and the specified point. This reasoning is extended into reasoning
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just about the relative angle only on the XY plane, or XY-Z plane. Building upon this

knowledge, a line given a list of points can choose the point that forms the smallest

relative angle with that line.

A.3 Rectangle

A rectangle in iPlot is a simplified three-dimensional rectangle defined by its upstage

right corner, width, and depth. Rectangles in iPlot are flat, with all points having the

same z-coordinate, in effect being a two-dimensional rectangle that can vary in height.

This is a very limiting assumption that was done to simply the geometric algorithms

needed to reason about the rectangle. Within iPlot, rectangles are used solely to build

representations of the stage, which more often than not is a two-dimensional rectangle.

Further versions of the system should work on relaxing this assumption. Rectangles

are only capable of reasoning about their size and what points are contained within

the rectangle.

A.4 Direction

A direction in iPlot is a direction vector which represents two angles: a xy-angle

which represents the angle off the positive x-axis formed by the vector, and a z-angle

which represents the vertical angle off the xy-plane. Directions can be centered on

a point, such that all reasoning done is about directions whose origin is that point.

In essence a direction is a specialized kind of line in which the starting point is the

point on which the direction is centered, and the ending point is an approximated

end point generated from the two angles.

Because of this representation, direction objects are able to reason about relative

angles between a point and the direction. This is useful in reasoning about lighting

placement. A direction is one of the two components of a lighting goal. Given a

direction and a focus point for a light, one can center the direction on the focus

point and evaluate various hanging points by comparing their relative angles with the
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desired direction. The point with the minimum relative angle is the hanging point

the best achieves the desired direction. Furthermore, given a list of points a direction

can choose the point that has the minimum relative angle.

To facilitate this use of directions, all directions in iPlot are bounded. That is,

both the xy- and z-angles have bounds and the directions are capable of reasoning if

the relative angle from any point is within those bounds.

A.5 Dimensions

Dimensions in iPlot are a representation of the size of a physical object. Dimensions

are a specification of the width, depth, and height of an object.
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Appendix B

Light Specifications & Illumination

Determining the illumination at any point in space from a light requires knowing the

photometric properties of the light’s beam and the exact placement of the beam in the

performance space. iPlot can determine the position of a light beam from its physical

model and extract the relevant photometric information from the manufacturer’s

specifications.

The placement of the light beam is determined by the source and focus points.

The source point is the point in space that the lamp, or light bulb, occupies and

acts as the source of the light beam. iPlot hangs all lights directly below the hang

positions, such that the source point is directly below the hang point, the distance

between them is determined by the height of the light. The focus point is the point

in space at which the hotspot or center of the lights beam is pointed. The focus line

of a light is the line between the source point and the focus point.

The illumination of an area, in other words the amount of light falling on that

area by a light measured in foot-candles or lux, is determined by the intensity of light

measured in candela or candlepower and the distance from the source point. Areas

lit by conventional theatrical lighting instruments have a hotspot, typically at the

center of the beam, at which they are brightest and get dimmer as the distance from

the hotspot increases following a cosine distribution. This distribution is scaled by

knowing the cutoff angle of the light, effectively the angle of the light beam. Theatrical

lighting manufacturer provide two angles to specify the beam spread of a light beam:
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the beam and field angles. The field angle is defined as the outer cone where light

diminishes to 10% of the center intensity. The beam angle is approximately half the

field angle and is defined as the internal cone where the light is 50% of the center

intensity [10]. The different components of a light beam as specified by manufacturers

are shown in Figure B-1.

Beam Angle

Field Angle

Focus Line

Focus Point

Stage

Figure B-1: Light beam description from sepcifications. Entertainment light manu-
facturers specify the size of the light beam by giving the field angle, where the light
diminishes to 10% of the center intensity and the beam angle, where light diminishes
to 50% of the center intensity.

From these manufacturer specified angles iPlot can determine the cutoff angle of

the light that bounds the size of the light beam. iPlot first assumes that the light

beam intensity follows a perfect cosine distribution with the brightest point at the

center of the light. Thus we can normalize the field and cutoff angles using a cosine

distribution and say cutoffAngle
arccos (0)

= fieldAngle
arccos (.1)

and thus

cutoffAngle = fieldAngle ∗ arccos (0)

0.1

Having assumed the intensity of the light beam follows a cosine distribution and
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knowing the intensity at one angle, we can use a similar process to calculate the

intensity of the light beam at any angle1. To calculate the intensity at any point

iPlot finds the angle of that point relative to the focus line. This is one half the angle

that determines light beam cone intersecting that point as shown in Figure B-2. Using

this cone angle we can find the proportional intensity of the light beam at that point

by using the following equation:

percentIntensity = cos (
coneAngle

cutoffAngle
∗ π

2
)

a

2a

x

Figure B-2: Calculating percent intensity of a point. Given a point x, we can calculate
the angle a between that point and the focus line. Twice that angle is the angle of
the cone of the light beam that intersects x. From this cone angle we can calculate
the percent intensity at x

Using this knowledge on calculating the percent intensity one can find any point

in the light beam at a specified percent intensity. Lights in iPlot have been given a

method to find these intensity points. Given an intensity direction from the focus

point, this method will find the first point along that line that is at the specified

intensity by walking down the points along the line testing each one.

1While the cosine function is periodic a light beam is not, so the intensity at any angle greater
than the cutoff angle is defined as zero.
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Appendix C

Goal Preferences

In order to narrow the search space of possible solutions to a goal the designer can

specify a set of preferences that influence the mechanics of finding light and placement

pairs and the overall style of the look created by a group of lights. This is done by

directly or indirectly specifying the type of lights used to satisfy a goal; the uniformity

of illumination level, determined by how lights overlap; the search technique used to

find a solution; and, the importance of a single goal in relation to the other goals of

the designer. These preferences reduce the search space explored by placing a set of

soft constraints on the generators used to create a proposed solution.

C.1 Preferred Light Type

The designer can specify the type of light to be used using two constraints: light type

and individual light beam size, also called discretization. In specifying a light type a

designer can specify a specific model of instrument, such as an ETC Source Four 26◦

, which is a ellipsoidal reflector spotlight manufactured by Electric Theater Controls

that has a beam spread of approximately 26◦ . However, in many cases designers

have higher level goals, in which they want a specific genre or type of light usually

specified by the type of lens or reflector of the light, but not a specific beam spread.

Thus designers might specify they want an ellipsoidal, a PAR, or a Fresnel. Given

a specified light type of this kind, which is essence a super-type for a wide variety
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of different lights with varying beam spreads and intensities, the designer can guide

the choice of a specific type of light by specifying a desired amount of discretization,

stated in terms of percentage of the width of the area that should be occupied by

a single light. Thus, a discretization of 20% would indicate the designer wants it to

take five equally sized beams to form a row of lights illuminating the width of the

goal area.

C.2 Controlling the mechanics of overlapping lights

In considering the level of illumination in an area, designers constrain how light beams

overlap each other and the bounds of the goal area. The crossover intensity preference

specifies the point at which two pools of light should overlap, measured in percent

intensity relative to the brightest stop of the individual lights. Thus a crossover

intensity of 100% would imply that the brightest spot of the lights should overlap

(typically the center), which would cause the lights to be directly on top of each

other. The standard value for crossover intensity is 50%. At this value the combined

pool of light formed by two light beams is as close to a uniform intensity as possible.

In a similar vein, the border intensity constraint specifies the minimum percentage

intensity at the border, in relation to the hotspot, of a light whose beam overlaps the

border area and forms a light at the edge of the light pool.

In addition to these very mechanical preferences determining how lights overlap

lighting designers can specify more stylistic preferences that determine the technique

and order of laying down multiple lights to satisfy a goal. On the issue of hanging

positions, designers must choose if and how they want to prioritize the two angles

creating a goal’s direction. In finding the ”best” hanging position for a light one can

consider both angles equally and try to minimize them simultaneously. Alternatively,

the designer can choose to prioritize an angle. Thus if the designer specified that he

wanted to prioritize the xy-angle, he is in effect saying that he wants the placement

that achieves the best xy-angle, and within the multiple hanging positions that achieve

this xy-angle choose the one that has a z-angle closest to the goal direction. Designer’s
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typically prioritize the xy-angle and this is the default for the system.

C.2.1 Determining light placement technique

The order in which lights are placed influences the placement of lights in a stylistic

way. While generating in any order will result in the goal being technically satis-

fied with respect to angle and direction, a designer might still be unhappy with the

solution. This situation results because because most large groups of lights by the

designer will inevitably be used for multiple purposes throughout a show. As de-

scribed in Section 2.1 the goal iPlot satisfies may in fact be a combination of several

dependent goals. A common example is with a full stage wash, i.e. a group of lights

covering the entire stage in light. A designer will often want to turn on only half

of these lights, illuminating exactly half of the stage. For this situation to happen

the lights must be laid out such that their focus points are symmetric around the

centerline.

This type of subtlety of placement is determined by the generation start point

and generation technique. The generation start point can be any of eight points:

upstage center, upstage right, center stage right, downstage right, downstage center,

downstage left, center stage left, and upstage left. Thus a group that’s generation

start point is upstage left will be generated from stage left to stage right and upstage

to downstage. When the start point involves center stage the lights will be symmetric

around center. In this case there is a secondary preference called center technique.

This preference determines if the group of lights symmetric around center includes a

light exactly on center or not. Again this may be useful for points when the designer

wants to use a sub-set of the goal’s lights.

C.3 Relative goal importance

Because all goals may not be equally important to a designer, each goal is given an

order that determines its priority in being satisfied relative to other goals. By default,

goals are left in the order in which they are created, but they can be reordered. The
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plot generator will generate goals iteratively in order. With a limited inventory goals

that are generated first are more likely to be initially satisfied. The goal order may

also be considered by a goal repair strategy in choosing repair suggestions.

One preference is considered exclusively by the repair portion of the system. A

designer can specify resize directions for a goal. This states the directions, if any,

from which the goal area may shrink if there are not enough lights to satisfy the goal.

These repair related aspects of goal preferences are discussed further in Chapter 4.
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Appendix D

Finding the focus point of a light

When lighting designers place a light they do so in one of two ways, either they know

exactly where they want the light to be, i.e. they directly know the focus point, or

they know how bright they want the light to be at some point and roughly what

direction the center of the light should be relative to that point. When the focus

point is not known, the system must search for the correct focus and hang point pair

such that the known point is illuminated at the specified intensity. This is done by

estimating a first focus point and finding the corresponding hang position for the

light, testing to see if it meets the intensity requirements, and if not moving the focus

point and repeating the process. iPlot’s light position generator has two different

methods for searching for a focus point: line bounded search and corner bounded

search.

In line bounded search we have a few pieces of knowledge: a line that must have

a specific intensity also called the bounding line, a side of the bounding line the

focus point must be on, and perpendicular line that must bisect the center of the

light beam1. As an example of where this comes up in lighting design consider the

situation in which the designer placing a light and he wants the bottom of the light

pool at 50% the center intensity at the downstage center edge of the stage, as was done

in our center generation techniques. In this case the bounding line is the downstage

1Because this line is always perpendicular to the bounding line, it can be specified by a single
point. Furthermore, the side of the bounding line this single point is on can indicate the side of the
bounding line the focus point should be on
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edge of the stage, the perpendicular line is the centerline, and the focus point must

be above the bounding line because the light is focused above the downstage edge of

the stage. The position generator can search for the focus point by choosing points

on the perpendicular line, finding a corresponding hanging position, and examining

the intensity of a light hung on the hanging position at a specific point, the boundary

point. This boundary point is at the intersection of the boundary and perpendicular

line, also called the boundary point. If the boundary point is to bright, the focus

point must move away from the bounding line, if the boundary point is too dim, the

focus point must move closer to the boundary line. This process is demonstrated in

Figure D-1.

Boundary Point

Crossover Point

Direction of Movement

(a) (b)

Figure D-1: Finding a light’s focus point from a line. A light beam’s position is
specified a bounding line and a point on that line to be at a specified intensity.
The focus point is then found by choosing focus points, testing the intensity at the
bounding point, and if necessary moving the focus point such that the intensity at
the bounding point approaches the desired intensity.

In corner bounded search we also use two lines, both of which are boundaries:

a vertical bounding line and a horizontal bounding line. An example where corner

bounded search comes up in lighting design is when lighting a corner of the stage

or sub-area, this is the method used by the group generator corner area generation
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method. Suppose that a designer wants a light placed such that the 50% intensity

light pool just touches the downstage edge of the stage and the centerline, with the

light on the stage left half of the stage. In this case the downstage edge of the stage is

serving as a vertical bounding line, the intensity at the downstage edge influences the

y-coordinate of the focus point. Similarly, the centerline forms a horizontal bounding

line and the intensity at the stage left edge of the stage influences the focus points

x-coordinate. Corresponding with these lines are a vertical and horizontal bounding

points. The vertical bounding point is the point on the vertical bounding line with the

same x-coordinate as the focus point. The horizontal bounding point is the point on

the horizontal bounding line with the same y-coordinate as the focus point. To find

a focus point given the horizontal and vertical bounding lines the position generator

picks a point on stage on the correct side of both sides as a focus point and determines

the best hang position for that focus point. Given that hang and focus points the

generator then determines the intensity of the light at both bounding points. If the

intensity of the vertical bounding point is to dim the focus point moves closer to that

line, if it is too bright it moves farther away. The same is true with the horizontal

bounding point. This process is demonstrated in Figure D-2.

(a) (b) (c)

Figure D-2: Finding a light’s focus point from a corner. A light beam’s position is
specified by two bounding lines, each of which must be at a specified intensities. The
focus point is then found by choosing focus points, testing the intensity at both points,
and if necessary moving the focus point such that the intensity at the bounding points
approaches the desired intensity.
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