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Abstract-We present in this paper two plate bending elements that have been proposed and mathemat- 
ically analyzed previousIy by Bathe, Brezzi and Fortin: the MITC7 (a triangular) element and the MITC9 
(a quad~late~l) element. The formation of these elements is summarized and example solutions are 
given that demonstrate the high accuracy of these elements. 

1. lNTRODUCHON 

Although much research effort has been spent on the 
development of reliable and efficient plate and shell 
elements, there is still a large interest in arriving at 
improved elements. During the recent years we have 
concentrated on the development of elements based 
on Mix~-Inte~olat~ Tensorial Components (i.e. 
our MITC elements) and have proposed the 4-node 
MITC4 element [l, 21, the 8-node MITC8 element [3] 
and a complete family of new elements [4, 51. The 
4-node and &node elements have been developed for 
general shell analysis and are available in ADINA [6], 
whereas the elements given in [4, 51 have so far only 
been proposed for plate analysis, but have excellent 
potential to be extended for applicability to effective 
general shell analysis as well. 

We mentioned before [2,3] that the extension of a 
plate element to a general (linear and nonlinear) shell 
element usually represents a major step and is fre- 
quently not possible. It is therefore most appropriate 
to concentrate directly on the development of general 
nonlinear shell analysis capabilities which can then 
also be used in the linear analysis of plates. Hence, we 
have emphasized in our work the development of 
general shell elements and proposed the MITC4 and 
MITCS elements. 

To understand the behavior of these elements and 
possibly to design additional elements, we conducted 
mathematical analyses which were, however, so far 
only possible for the case of the linear analysis of 
plates. These theoretical considerations led us to 
some interesting and quite general results, which are 
in essence based on an analogy that can be drawn 
between the analysis of incompressible media and the 
analysis of Reissner-Mindlin plate problems. The 
mathematical analyses also identified additional ele- 
ments for the plate bending problem and since these 
elements are constructed much like the MITC4 and’ 
MITC8 elements, we can be quite confident that they 
can be extended to general shell analysis as well. 

The objective in this paper is to summarize the 
formation of two of the new elements for the plate 
bending problem and present a numerical evaluation. 

The elements considered are a ‘I-node triangular 
element, the MITC7 element, and a g-node quadrilat- 
eral element, the MITC9 element. Both these ela 
ments pass the patch test, they contain no spurious 
zero energy mode and, as demonstrated in the paper, 
have excellent predictive capability. 

2. THE PLATE BENDING PROBLEM CONSIDERED 

We consider the spaces: Q= (H:(D))2 and 
IY = H:(Q) and a load function~~ven in L2(Q). The 
sequence of problems under consideration is: 

P,: inf 57@, e) 
%Ee,zvusW 2 

+; IIe-Vw((:-P(f, w) 

where (13/2)u(9, 9) is the bending internal energy, and 
(i11/2) II 8 - VW II : is the shear energy. 1) II ,, and ( , ) 
represent respectively the norm and the inner product 
in L%(Q). 

Assume now that we are given the ii&e element 
subspaces Q% ce and Wh c W. The corresponding 
discretized problem is described by 

In general, pti ‘locks’ for small t. A common 
procedure is to reduce the influence of the shear 
energy. We consider here the case in which the 
reduction is carried out in the following way: we 
assume that we are given a third finite element space, 
r,, and a linear operator R which takes values in r, . 
Then we use 11 R(8, - VW,) 11: instead of I{ 6, - VW, 11: 
in the shear energy. In our formulation we further 
assume that 

RVw, = Vw, for all wli E W, (1) 
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so that the discretized problem takes its final form 

+ ; /I R6,, - VW,, I/; - t’(l; y,). 

Setting 

7=lt-2(O-Vw) and 7h=~t-2(R0~-Vwh) (2) 

the Euler equations of P, and Pi* are, respectively 

a(O,q)+(y,tl-VU=(S,U Vsto0,KoW 

7 = It -‘(xl - VW) (3) 

and 

7* = It -*(Re, - VW,). 

We may note that the limit problems are 

(4) 

@,n)+(r,n-Vvy)=(f,i) vnu0,KEw 
(5) 

O=Vw 

and 

RO, = VW,. (6) 

Remark 1: The limit problems in (5) and (6) were 
analyzed in [4, 51. Such analysis is therefore not 
complete, yet gives valuable insight into the behavior 
of element formulations when applied to the analysis 
of very thin plates. 

Remark 2: It is not difficult to show that (5) and 
(6) are the limit problems of (3) and (4) respectively 
(see for instance [q). In particular the limit w will be 
the solution corresponding to the Kirchhoff model. 
Note also that the limit 7,, that appears in (6) will still 
belong to R(O,) - V(W,). Although we are not 
studying the convergence of 7* to 7, the results given 
in 181, with the discussion below, give some insight 
into the behavior of 7.+. 

Remark 3: The operator R defines the ‘tying’ to be 
employed between the basis functions used in rh and 
the functions used in W, and 0. 

3. THE FINITE ELEMENT DISCRETIZATIONS 

Following the discussion of the previous section, a 
finite element discretization is characterized by the 
choice of the finite element spaces 0,,, W,,, rh and by 
the choice of the linear operator R. Note that these 

choices are not independent of each other. We intro- 
duce below the two choices of specific interest in this 
paper, i.e. the MITC7 and MITC9 elements, but ako 
briefly summarize the MITC4 element construction 
(see Fig. 1). The MITC4 element formulation is only 
included to indicate the similarity in the three element 
formulations. We should also mention that in this 
section we assume uniform decompositions, a restric- 
tion which we remove in Sec. 5. 

3.1. The MiTC4 element 

For the four-node element [1,2] we use 

where Q, is the set of polynomials of degree < 1 in 
each variable and K is the current element in the 
discretization. The space IYh is given by 

r,= f&l&l,+TR(K) VK,ii+r continuous at 

the interelement boundaries} (9) 

where z is the tangential unit vector to each edge of 
the element and 

TR(K)=(61S,=a,fb,y,6,=a,+b,x) (10) 

a 

Y a r 

I 
x 

(a) MITC4 element 

Y Nodal Point Variables : 
s 

n 

l rOtatlons and transverse 

displacement 
0 rotations only 

0 

r 

W 
(c) MITCX clement 

Fig. 1. Plate bending elements considered. 
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is a sort of ‘rotated Raviart-Thomas’ space of order 
zero [9]. We next introduce the reduction operator R 
by describing its action on the current element: for q 
smooth in K, RqlK is the unique element in TR(K) 
that satisfies 

(q - Rq) . r ds = 0 for all edges e of K. (11) 
Jp 3.3. The MITC9 element 

Note that if q E (Q, )* then (11) is satisfied if and only 
if q . T = R(q) . T at the midpoints of each edge. 

3.2. The MITCI element 

For the 7-node triangular elements[S] we use 

For the 9-node element [4,5] we use 

@h=(olR~(H:)*, tlIro(S,(T))*VT) (12) 

R’,={Tl~a#, CITEP~VT1 (13) 

where T is the triangular element in the discretization, 
P2 is the space of complete second order polynomials 
(corresponding to a 6-node element), and S, is 

@~=+II~EW:G-W~, tll~~(Qd*vK) (19) 

w,=Klt:~ff:(fVv CIKEQ;VKI (20) 

where Q2 is the space of polynomials of degree Q 2 in 
each variable (corresponding to a 9-node element) 
and Q; is its usual serendipity reduction (correspond- 
ing to an g-node element). In order to introduce the 
space r,, we define first the space of polynomials 

S,(T)={cpIcp~P,,cpl,oP,oneachedgeeof T}. 

(14) 

62=a2+b2x+c2y+d2xy+e2x2} (21) 

Clearly S, is a finite dimensional linear space of 
dimension 7. It can also be characterized as 
S, = P2 @ { 1,1,1,} where 1,1,1, is the cubic bubble 
in T. As degrees of freedom in S,(T) we can clearly 
choose the values at the vertices, at the midpoint of 
the edges and at the barycenter of T. 

We also set, in each triangle T, 

which is some kind of rotated Brezzi-Douglas- 
Fortin-Marini space [lo]. Note that if c E Qi then 
V( EC. This is the main reason why W, has been 
discretized with the interpolations of the g-node 
element instead of the I)-node element. We introduce 
now the space r,: 

rh = (8 I 8) K~ G VK, 8 . T continuous at the 

interelement boundaries, 8 * r = 0 on XI}. (22) 
TR,(T)={SI6,=a,+b,x+c,y+y(dx+ey); 

S2=a2+b2x +c2y -x(dx +ey)}. (15) 

The space TR, (T) is a kind of ‘rotated 
Raviart-Thomas’ space of order one [9]. The space rh 
is given by 

Further, we define the action of the reduction opera- 
tor R on the current element Kin the following way: 
for q smooth in K, Rq I K is the unique element in G 
that satisfies 

T’* = {8(8( ro TR,(T), VT, 8 * z continuous at 

the interelement boundaries, 8 * r = 0 on af2) (16) 

(q - Rg) . rp, (s) ds = 0 Ve edge of K, 

VP,(s) polynomial of degree < 1 on e (23) 

where r is the tangential unit vector to each edge of 
each element. 

We next introduce the reduction operator R. Its 
action on the current element is given as follows: for 
q smooth in T, Rq in T is the unique element in 
TR, (T) that satisfies 

s (R- Rq)dx dy =O. 
K 

Note that if PIE (Q2)* then (23) holds if and only if 
rl. t = (Rq) * I at the two Gauss points of each edge. 

I 
((1- Rq)*tp,(s)d.s =0 Ve edge of T, 

c 

U(s)EPl(e) (17) 

4. A BRIEF SUMMARY OF THE ERROR ANALYSIS- 
UNIFORM DECOMIXWMONS 

I 
(R - Rq) dx dy = 0. 

T 
(18) 

Our analysis of the above elements depends to a 
large extent on the theoretical results already avail- 
able for finite element solutions of the response of 
incompressible media. A key step is that we are 
looking for a ‘pressure space’ Qh made of discontinu- 

It is easy to see that (17) and (18) characterize Rq in 
T in a unique way. It is also clear that if q is 
continuous in R, then the Rq constructed element by 
element through (17) and (18) actually belongs to rh 
[because (17) ensures the continuity of (Rq) . T at the 
interelement boundaries]. 

(24) 
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ous finite element functions? such that, for all q E 6!jk, 
we have 

(rot r(, qh ) = @t(R& 4h ) bh f Q,+ (25) 

where 

and 

rot(r,) c QI,. (26) 

Conditions (25) and (26) are related to the so-called 
‘commuting diagram property’ of Douglas and 
Roberts [Ill that is used in the study of mixed 
methods for elliptic equations. It is easy to check that 
(25) and (26) hold if we take for the MITC4 element 

Q~=~~lqI~~~o’f~I 

and for the MITC7 and MITC9 elements 

(27) 

Q, = (4 I4 lwr~ Pt ‘f&‘T3. (28) 

In both cases Pk denotes the set of polynomials of 
total degree Gk: hence Qh has local dimension 1 in 
the MITC4 case and dimension 3 in the MITC7 and 
MITC9 cases. Note that the relation (25) is satisfied 
because of the specific operator R used for each of the 
elements. 

In order to analyze the error between 8 and 0, in 
(5) and (6) (and as a consequence the error between 
w and iv&) we want to build a pair 8, G in @* x W,, 
such that // 6 - 6 II , is optimally small and 

Ra = Vfi. (29) 

Condition (29) implies 

rotR6=0 (30) 

which, in its turn, using (25) and (26) is equivalent to 

(rot~,q*)=O Vq,EQ,. (31) 

Hence, a possible way of constructing 0 is as follows. 
For 8 given in (Hb(n))2 and satisfying rot 8 = 0, 
consider the following problem: 

find 

such that 

t This space corresponds to the pressure space in incom- 
pressible solutions. 

a~,q)+~,rot~=u(e,~ Vws-9 (32) 

(q, rot p) = 0 Vq E L*(n) 

and its approximation, 

find 

such that 

a(Ci,rl)+(p,,rotri)=a(@,II) ‘dqdh (33) 

(q,rot@=O VqoQ,. 

Note that (32) is a kind of Stokes problem and its 
solution is given by fl = 9, p = 0. If the pair eb, Q,, 
used in (33) is a suitable finite element discretization 
for the Stokes problem one might expect to have 
optimal error bounds for 8 - 8. For the MITC4 
element the pair 81, Qh is the classical bilinear velo- 
cities-constant pressure (or Q,-P,) element, and we 
know that 

II 0 - 6 II , G c h II 0 II *. (34) 

For the MITC7 eiement the pair (pk, Qh is the 
Crouzeix-Raviart element with the velocities given by 
quadratic plus cubic bubble variations and the pres- 
sure given by linear variation. In the case of the 
MITC9 element the pair @h, Q,, is the biquadratic 
velocities and linear pressure (the Qz--P,) element, 
and for both these elements we know 

ll~-~ll~ Gch211@I13. (35) 

Note on the other hand that once 8 satisfying (30) has 
been found, then we can uniquely determine the 
6 E Wthat satisfies (29). It is easy to check that in our 
two cases such a i$ is an element of WA. 

In [4,5,7] we have analyzed the solutions to be 
expected and obtained the following detailed error 
estimates: for the MITC4 element, 

II@-% i+ IIVW 

~ 

-vwh~~~~~~(ll~~~~+ ii’fiio) (361 

and for e MITC7 and MITC9 elements, 

ll~-%II,+IIvw - VW, II 0 Q c hZ( II 0 II 3 + II Y II I ). 

(37) 

Hence the MITC4 element shows linear convergence 
behavior whereas the MITC7 and MITC9 elements 
show quadratic convergence. This result corresponds 
to the behavior of the Q,-PO and Qr-P, eiements, 
respectively [12], and we can anticipate an excellent 
predictive capability of the MITC7 and MITC9 
elements. 
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5. GENERALIZATION OF ELEMENTS TO NONUNIFORM 
DECOMPOSITIONS 

If the elements are to be useful in practice, it is 
important that they are formulated for general gm- 
me&s. The MITC4 and MITC9 elements mUSt 
correspond to general quadrilateral elements and the 
MITC7 element should correspond to a general 
triangle. 

To generalize the formulations given in Sec. 3, we 
interpolate the covariant strains as defined in rh as a 
function of the natural coordinate systems r, s. 
Hence, with the strain tensors given as 

E = Qg’g’ (38) 

where i and j permute over r, s, 1, we use for the 
MITC4 element [ 1,2] 

$,=a,+6,s 

Es,=u2+bzr 

and for the MITC7 element 

(39) 

W) 

$, = a, + b, r + c,s + s(dr + es) (41) 

E;, = a2 + b2r + c2s - r(dr + es) (42) 

and finally for the MITC9 element 

&=a,+b,r+~,s+d,rs+e,s~ (43) 

E;, = a2 + b,r + c2s + d2rs + e2r2. (44) 

The contravariant base vectors g’ in (38) are of course 
calculated from the covariant base vectors gi, where, 
for example, g, = ax/&, xT = [x, y, z]. Note that only 
the transverse shear strain components are defined by 
the separate interpolations whereas the bending 
strains are obtained directly from the assumptions for 
the section rotations in @. The use of (38) with the 
&, and EJ, interpolations employed for the MITC4 
element has been described in detail in [2], and we 
proceed in the same way for the MITC7 and MITC9 
elements. 

There is, however, one additional consideration; 
namely the MITC7 and MITC9 element formulations 
involve the tying of the covariant shear strain compo- 
nents at the Gauss points on the edges and by an 
integral over the element domains, whereas the 
MITC4 element formulation only involves tying at 
the midpoints of the element edges. This integral- 
tying requires some additional computations when 
compared to simple point-tying and it is reason- 
able to ask whether instead of the integration, a 
point-tying at a certain point in the interior of the 
element may yield the same numerical accuracy in 
solutions. An interior point-tying was also used and 

, 

(a) Tying for MITC7 element: 

(b) Tying for MITCO element: 

Fig. 2. Gauss points used for tying of covariant shear strain 
components. 

was shown to be effective in the formulation of the 
MITC8 element [3]. 

As reported in detail in the next section, the 
numerical results show that indeed the following 
point-tying is effective. 

-For the MITC7 element, we use instead of the 
integral-tying given by (IQ, simply the mean of 
the values -at points TA, TB and TC of the 
element; hence eqn (18) is replaced by [see Fig. 

WI9 

-For the MITC9 element, we use instead of the 
integral-tying given by (24), simply the mean of 
the values at points RA, RB and SA, SB, respee 
tively [see Fig. 2(b)], 

thlm +t/zlsd = Rtl2I~. WI 

In summary, for the MITC7 element we use the six 
Gauss points along the element sides and the Gauss 
points TA, TB and TC to express the eight constants 
in (41) and (42) in terms of the covariant strain 
components directly evaluated from the displace- 
ment/rotation interpolations. For the MITC9 ele- 
ment we use the eight Gauss points along the element 
sides and the mean of the values at the Gauss points 
RA, RB and SA, SB, respectively, to express the 10 
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constants in (43) and (44) in terms of the covariant 
strain components directly evaluated from the dis- 
pla~ment~rotation ~te~olations. The details of 
such evaluation are given in [2]. 

In the next section we show numerical results 
obtained with the use of the integral-tying and the 
point-tying summarized above. Using the integral-ty- 
ing we have the elements MITC7’ and MITC9’ 
whereas we refer to the elements MITC7 and MITC9 
when using the point-tying. Here we should note that 
for rectangular element geometries, the elements 
MITC9 and MITC9’ are identical, hence our analysis 
given in Sec. 3 is totally applicable even when using 
the point-tying. However, we cannot make such 
observation regarding the MIX7 and MITCZ ele- 
ments, although the numerical results using these 
elements show small differences. 

6. NUMERICAL RESULTS 

The objective in this section is to present some 
numerical results of plate analyses obtained using the 
MITC7 and MITC9 elements. These results demon- 
strate the excellent predictive capabilities of the ele- 
ments. 

We also present some comparisons with results 
obtained with the MITC4[2] and MITCS [3] ele- 
ments. Note that the MITC7 element stiffness matrix 
is evaluated using 6-point Gauss numerical integra- 
tion and the MITC9 element is evaluated using 3 x 3 
Gauss numerical integration and that these elements 
(and the MITC4 and MITCS elements) do not con- 
tain any spurious zero energy modes. 

6.1. Patch test 

Figure 3 shows the patch of elements considered. 
As usual, when we test whether the patch test is 
passed, we only delete the minimum number of 
degrees of freedom to eliminate the physical rigid 
body modes (11. We recall that the MIX4 and 
MITCS elements pass the patch test. 

The MITC7 and MITC9 elements pass the patch 
test. Further, it is interesting to note that the MITC7’ 
element also passes the patch test, whereas the 
MITC9’element does not pass the test, but the degree 
of failure is not severe. Figure 4 shows the stress 
distributions obtained when the patch of MITC9’ 
elements is subjected to a constant bending moment. 
We observe that the predicted stresses do not vary 
from the analytical solution by a large amount. 

Although this simple patch test does not display 
the complete convergence characteristics of an ele- 
ment, the test does show the sensitivity of an element 
to g~met~c distortions, and a condition for a reli- 
able element is that it should satisfy (or at least 
almost satisfy) the test [3]. 

6.2. Analysis of a square plate 

Figure 5 shows the plate problems considered and 
the meshes used in the analyses. Table 1 summarizes 

(s) MITC7 clcmcnts 

E- 2.1~10’ 

11-43 
Thickness. 0.0 1 

(b) MITCH clcmcnts 

Fig. 3. Patch of elements considered. 

the displacement results obtained, including those 
using the MITC4 and MITCB elements. Figure 6 
shows displacement and stress distributions calcu- 
lated using the MITC7 and MITC9 elements with a 
comparison to the analytical solution [13]. 

The stresses have been calculated at the nodal 
points from the element displacements and hence 
stress jumps can be observed. However, the stress 
jumps are small for the fine mesh results and are 
largely confined to the area of the stress singularity 
(the center of the plate when subjected to the concen- 
trated load). 

Note that in these analyses, the finite element 
imposed boundary conditions correspond to the ‘soft’ 
conditions for the problem considered [ 141. 

The meshes distort-l and distort-2 have of course 
only been included in the tests in order to identify the 
distortion sensitivity of the elements [3]. 

Considering these results we note the excellent 
predictive capabilities of the MITC7 and MITC9 
elements, and that there is little difference between the 
results of the MITC7’ and MITC7 elements, and the 
MITCP’ and MITC9 elements, respectively. 

6.3. Analysis of a circular plate 

Figure 7 shows the circular plate problem consid- 
ered and the meshes used. Table 2 compares the 
displa~ment results obtained and Fig. 8 shows dis- 
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Table 1. Analysis of a square plate. The analytical solution used as reference is the 
Kirchhoff plate theory solution [13]. (a) Response for various plate thicknesses for 

concentrated load at the center of the plate, 2 x 2 mesh 

Element Thickness at: simply supported edge a: clamped edge 

0.2 0.996 0.869 
MITC4 0.02 0.995 0.867 

0.002 0.995 0.867 

0.2 
MITC8 0.02 

0.002 

0.2 
MITC7’ 0.02 

0.002 

0.2 
MITC9’ 0.02 

0.002 

0.2 
MITC7 0.02 

0.002 

0.2 
MITC9 0.02 

0.002 

1.000 1.004 
0.998 1.001 
0.998 1.001 

0.982 0.918 
0.980 0.907 
0.980 0.907 

1.000 1.010 
0.998 1.006 
0.998 1.006 

0.982 0.929 
0.979 0.918 
0.979 0.918 

1.000 1.010 
0.998 1.006 
0.998 1.006 

Element 

MITC4 

MITCS 

MITC7’ 

MITC9’ 

MITC7 

MITC9 

Mesh 

2x2 
4x4 
8x8 

2x2 
4x4 
8x8 

2x2 
4x4 
8x8 

2x2 
4x4 
8x8 

2x2 
4x4 
8x8 

2x2 
4x4 
8x8 

(b) Response for various mesh layouts (thickness = 0.02) 

Concentrated load Uniform pressure 

a: simply supported a: clamped a: simply supported a: clamped 
edge edge edge edge 

0.995 0.867 0.981 0.963 
0.995 0.965 0.996 0.993 
0.998 0.992 0.999 1.001 

0.998 1.001 1.000 1.006 
1.000 1.001 1.001 1.005 
1.000 1.002 1.001 1.004 

0.980 0.907 1.003 0.965 
0.994 0.985 1.000 1.001 
0.999 0.999 1.000 1.004 

0.998 1.006 0.999 1.025 
1.000 1.001 1.000 1.005 
1.000 1.002 1.000 1.004 

0.979 0.918 1.003 0.977 
0.994 0.987 1.001 1.003 
0.999 0.999 1.000 1.004 

0.998 1.006 0.999 1.025 
1.000 1.001 1.005 
1.000 1.002 

::g 
1.004 

(c) Response for distorted mesh layouts under concentrated load at the center of the 
plate (thickness = 0.02) 

Element Mesh a: simply supported edge a: clamped edge 

MITC4 distort- I 0.986 0.807 
distort-2 0.984 0.922 

MITCB distort- 1 1.002 0.975 
distort-2 0.999 0.994 

MITC7’ distort-l 0.966 0.827 
distort-2 0.991 0.975 

MITC9’ distort-l 1.011 1.025 
distort-2 0.999 1.001 

MITC7 distort-l 0.965 distort-2 0.991 1% 

MITC9 distort-l 1.002 1.015 
distort-2 0.999 1.001 

Wfm 
?a=- 

W-b. 
at center of the plate. 
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Fig. 6(a) 
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:d) 

SIHPLY SUPPORTED SOUARE PLATE ’ 
CASE OF UNIFORM PRESSURE 
8 ELEMENTS/SIDE 

Y MITC7 
0 IIITCO 
- ANALYTIC 

?@&--I--- 
2. 4. 8. 8. 10. 

POINTS ALONG CENTERLINE 

w 

SIMPLY SUPPORTED SQUARE PLATE 
CASE OF UNIFORM PRESSURE 
8 ELEMENTS/SIDE 

Y HITM 
0 HITCO 
- ANALYTIC 

Fig. 6(d) 

Fig. 6. Displacement/stress response of a simply supported square plate: meshes of Fig. 5(a)-(d). (a) 
Transverse displacement along centerline of the plate, case of concentrated load. (b) Stress along centerline 
of the plate, case of concentrated load. (c) Transverse displacement along centerline of the plate, case of 

uniform pressure loading. (d) Stress along centerline of the plate, case of uniform pressure loading. 

a) 

Ezh 
6 Elements 

i 

3Elements 12Elements 48Efements 

Fig. 7. Finite element meshes used for analysis of a circular plate. Diameter = 20, thickness = 0.02, 
E = 2.1 x 106, v = 0.3. Due to symmetry only one quarter of the plate is discretized. (a) Mesh layouts using 

MITC7 elements. (b) Mesh layouts using MITC9 elements. 
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Table 2. Analysis of a circular plate subjected to concentrated load at the center of the 
plate. The analytical solution used as reference is the Kirchhoff plate theory solution [13] 

Element Mesh at: simply supported edge a: clamped edge 

MITC4 

MfTC8 

MITC7’ 

MIT@ 

MITC7 

MITC9 

3 elements 
12 elements 
48 elements 

3 elements 
I2 elements 
48 elements 

6 elements 
24 elements 
96 elements 

3 elements 
12 elements 
48 elements 

6 elements 
24 elements 
96 elements 

3 elements 
12 elements 
48 elements 

0.983 0.786 
0.995 0.948 
0.998 0.986 

0.990 0.984 
0.999 0.997 
1.000 0.997 

1.006 0.965 
1.000 0.990 
1.000 0.997 

0.992 0.973 
0.998 0.997 
I.000 1.000 

0.987 0.980 
0.996 0.992 
0.999 0.998 

0.997 0.991 
0.999 0.998 
1.000 1.000 

ia= g at center of the plate (thickness = 0.02). 

‘a) 

. 

i 

SIMPLY SUPPORTED CIRCULAR PLATE 
; CASE OF CONCENTRATED LOAD 

2 ELEMENTS/SIDE 

/ 

Y nxTC7 
0 nffca 
- ANALYTIC 

_. 
-;OINTS ALONG CiNTERLINE 

. 
i- 

SIWLY SUPPORTED CIRCULAR PLATE 
CASE OF ~CE~ATED LOAD 
2 ELEMENTS~SIDE 

/ 

A HITC71 
x nmaf 
- ANALYTIC 

E 
‘2. 

1 t I 1 
2. a. 6. 
POINTS :;ONS CENTERLINE 

12. 

Fig. 8(a) 
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Fig. 8. Displacement/stress response of a circular plate. (a) Transverse displacement along centerline of 
the plate, case of simply supported edge. (b) Stress along centerline of the plate, case of simply supported 
edge. (c) Transverse displacement along centerline of the plate, case of clamped edge. (d) Stress abng 

centerline of the plate, case of clamped edge.. 
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placement and stress distributions calculated using 
the MITC7 and MITC9 elements. Note that as 
expected, and as for the analysis of the square plate, 
the stress jumps at the nodal points are less severe for 
the fine meshes, and are confined to the area of the 
stress singularity, i.e. the center of the plate. 

As in the analysis of the square plate, there is little 
difference between the results obtained with the 
MITC7’ and MITC7 elements, and the MITCY and 
MITC9 elements, respectively. 

7. CONCLUDING REMARKS 

The objective in this paper was to summarize the 
formulation of the MITC7 and MITC9 plate bending 
elements and to present numerical results. The ele- 
ments are based on the Reissner-Mindlin plate 
theory and a mixed interpolation of the transverse 
displacement/section rotations and the transverse 
shear strain components. The strain interpolations 
are ‘tied on the element’ to the interpolations of the 
transverse displacement/section rotations; hence the 
only final element unknowns are the nodal point 
transverse displacements and section rotations. The 
numerical evaluation of these elements shows their 
high predictive capabilities. 

An interesting point is that the mathematical 
theory used in the formulation of the elements strictly 
asks for some point-tying and an integral-tying of the 
assumed transverse shear strain components to the 
transverse displacement/section rotations. However, 
our numerical evaluation shows that instead of the 
integral-tying a point-tying can be used. The numer- 
ical results with point-tying are as accurate and for 
both the triangular and the quadrilateral elements, 
the point-tying is of course computationally more 
efficient. The point-tying is also appealing for the 
development of these plate elements to general linear 
and nonlinear shell elements. 
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