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AM-We briefly review the inf-sup condition for the finite element solution of problems in 
incompressible elasticity, and then propose a numerical test on whether the inf-sup condition is passed. 
The evaluation of elements with this test is simple, and various results are presented. This inf-sup test 
will prove useful for many discretizations of constrained variational problems. 

1. INTRODUCITON 

It has been amply recognized that many problems in 
solid and fluid mechanics cannot be solved efficiently 
using finite element discretization with only one 
unknown field variable. For example, the solution 
of almost incompressible elasticity problems with 
the standard displacement method and reasonable 
meshes can yield solutions that are grossly in error, 
and it is much more effective to use displacements and 
pressure as unknown field variables [l]. 

The fundamental difficulties in such problems 
frequently arise because the solution variables are 
subject to some constraints. In the case of the almost 
incompressible elasticity problem, the volumetric 
strains must be very small (and approach zero as the 
condition of total incompressibility is approached) 
while the pressure is of the order of the boundary 
tractions. For the analysis of such problems, it is 
necessary to use a mixed formulation. 

In principle, finite element mixed formulations 
can be quite easily designed, and many different 
approaches and formulations have been proposed. 
However, the key to whether a mixed formulation is 
actually valuable lies, of course, in the convergence 
properties of the formulation. These properties are 
governed by the stability considerations as expressed 
in the elliptic&y requirement and the inf-sup con- 
dition of Brezzi and BabuSka [2]. 

At present, we find that in the engineering litera- 
ture, mixed formulations are proposed and ‘so-called’ 
tested for stability by ‘solvability tests’ and ‘counting 
rules’ (counts and comparisons of degrees of free- 
dom). While these rules are quite easy to use, we have 
pointed out earlier that they are deficient in predict- 
ing whether a mixed formulation is stable and indeed 
these rules can be misleading [3]. 

On the other hand, the inf-sup condition can be 
a difficult criterion to apply to new formulations, 
because an analytical expression must be evaluated 
which deals with an infinity of problems and sol- 
utions. In engineering practice, a numerical test 
that with relatively little effort indicates whether the 
inf-sup condition is passed would be very valuable. 
Such a test could be used much in the same way as 

the patch test is currently used to test incompatible 
displacement-based formulations. 

Our objective in this paper is to propose a numeri- 
cal test on whether the inf-sup condition is passed. 
We consider in detail the problem of incompressible 
elasticity but the basic steps used are also applicable 
to other problem formulations [l]. First we briefly 
review the i&sup condition. We then present our 
numerical test and we apply it to various finite 
element discretization schemes. 

2. THE INF-SUP CONDITION: CONTEXT, FORMS 
AND EVALUATION 

2.1. The context: constrained problems 

In the following developments, for simplicity, 
both the notation and the numerical results refer 
entirely to incompressible elasticity. This particular 
case, however, is sufficiently characteristic to also 
shed light upon similar problems. In particular, the 
subsequent derivations are immediately applicable 
to the field of analysis of incompressible fluids. 

In incompressible elasticity, we want to minimize a 
potential of the form 

+x/2 (divv)2dR- 
s s 

f*vdQ (1) 
n n 

where SJ is the volume corresponding to the system 
considered, 6: are the deviatoric strains, G and K 
are the shear and bulk moduli, respectively, and f 
stands for the external force field. K is of course 
increasing as the material becomes more incompress- 
ible. For full incompressibility, K is infinite. 

We are seeking the displacement field u which 
minimizes the potential over a vectorial space V of 
the type 

V= vEa(r) +2(n), Vi,i=l,..., 3 , 
{ I I I 
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where 9(r) is the space of displacements satisfying 
some homogeneous boundary conditions on the 
boundary r. 

In finite element analysis, we approximate the 
continuous solution u by a finite element solution 
uk, belonging to V,,, a finite-dimensional subspace of 
V. Hence, taking II* as the solution of the minimiz- 
ation of L! over V, seems natural. Unfortunately, 
experience shows that such a scheme almost always 
encounters convergence difficulties when K is very 
large. 

What happens can be described as follows. If we 
define 

D, = { div v,, /v,, E V,, } 

and for all elements q,, in Dh 

Kh (qh) = bh E vh /div vh = qh > 

minimizing n will yield solutions, whether continu- 
ous or discretized, which are closer to incompress- 
ibility as rc becomes larger. In the limit when K is 
infinite, the minimizing solutions satisfy the incom- 
pressibility condition exactly. In particular, the dis- 
cretized solution uh is then constrained to lie in 
K,(O). Of course, what we reasonably expect from 
our finite element analysis is optimal convergence. 
This means that, as the mesh is refined, the distance 
between u and uh must remain of the same order of 
magnitude as the quantity d(u, V,,), the distance 
between u and its best possible approximation in V, . 
Clearly, with uh in Kh(0), optimal convergence cannot 
be guaranteed unless K,,(O) is somehow rich enough 
compared to V,,. More precisely, what we need to 
enforce is 

d(u, K/,(O)) < c d(n, P,) (2) 

with c independent of h. Whenever this requirement 
is not met, we say that we have locking. Conversely, 
when condition (2) is satisfied, other considerations 
show that optimal convergence is ensured for any 
value of K [4]. 

In practice, finite elements exhibit locking when 
used directly with the potential n. To circumvent 
this phenomenon, a convenient method consists of 
weakening the constraint applied on u,,, using the 
modified potential 

n;(“,) = G n i,i: (+h))* m 
s . -I 

+ K/Z 

s 
(Ph(div v~))~ dR - 

s 
f. vh df& (3) 

n n 

where Ph is an L2-projector onto an auxiliary space 
Q,, . This space can be interpreted as a pressure space 
when considering the equivalent mixed formulation 

obtained by invoking the stationarity of l7; 

2G 
s 

ni~,r~(uh)cfj(vh)dn-j Phdivvhm 
. = n 

I @ivUh+Ph/K)qhdn=O vqhE& (5) 
n 

where we recognize in (5) the projection definition 
in the form: ph = - KPh(div uh). The matrix problem 
corresponding to this variational formulation is then 
of the following type 

where all the matrices are naturally characterized 
by the variational formulation (4), (5). Incidentally, 
comparing the two relations ph = - KP,(div uh) and 
B,,U,,- (~/K)T~P~=O, we note that -T;*Bh is 
the matrix form associated with the linear operator 
Ph(diV). 

Going back to (3) and defining, for every q,, in 

ph(Dt,) 

K&h) = iVhE Vh/Ph(div vh) = a>, 

the limit constraint enforced by K infinite is u, E K;(O) 
and the non-locking condition becomes, from (2) 

d(u, K;,(O)) < c d(u, v,,). (7) 

Choosing Q,, smaller makes K;(O) larger and thus 
renders (7) easier to satisfy. Yet, trying to avoid 
locking by taking the pressure space arbitrarily 
small is clearly not desirable-for Qh = {0), 
K;(O) = V, and nothing remains from the incom- 
pressibility constraint! We understand that some 
level of ‘constraint accuracy’ must be preserved. 
Therefore, our aim shall be to reduce the size of 
Q,, sufficiently to avoid locking, but also to keep it 
as large as possible for reasons of accuracy. With 
this in mind, a reliable test to detect locking is very 
useful. This is precisely the purpose of the inf-sup 
condition. 

Before discussing this condition we should recall 
an important general observation. Namely, when 
examining the stability of a mixed formulation, we 
require that both the inf-sup and the ellipticity 
conditions be satisfied [l-3]. Hence, the ellipticity 
condition also requires special attention in general. 
However, our objective in this paper is to concen- 
trate on the inf-sup condition, and, for the problem 
area considered herein, the ellipticity condition is 
immediate. 
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2.2. Inf-sup condition: the natural form 

The natural condition arising in the context 
presented above is the condition 

c q& div v,, &R 

2 a ’ *, (8) 

where the norm symbol in Q,, stands for the L*-norm, 
while If* is measured by the standard norm 

The satisfaction of condition (8) is of several 
important consequences. First, it strongly excludes 
locking by implying that inequality (7) holds for 
any II with the same constant c. Hence, an optimal 
error bound can be derived for the limit problem 
(K infinite) [2, 31 

11 U - uh ti fG CI d(u> vh) + C2 d(p, Qh), (9) 

where p denotes the continuous solution for pressure. 
Here, the last term d@, Qh) displays the meaning of 
what we earlier called ‘constraint accuracy’. In order 
to guarantee optimal convergence, Qh ought to be 
chosen such that, not only the inf-sup condition (8) 
is satisfied, but alS0 d(p, Qh) is at least of the 
same order of ma~itude as d(ah, V,). Since the 
norm of u involves first-order derivatives, (9) tells 
that we should aim to use an interpolation for p no 
more than one degree lower than for u. 

Another direct implication of condition (8) is 
the convergence of the pressures in the mixed formu- 
lation (4), (5). No other assumption is indeed necess- 
ary to derive pressure error estimates as good as those 
for the displacements [4,5]. 

In order to evaluate the inf-sup expression 
contained in condition (8), some preliminary trans- 
formations are necessary. First, we note that, with 
q&o I*, we can always find wh such that 
qk = Ph (div wh). Thus, an ali-displacement form of 
the expression can be obtained, which we write 
equivalently in terms of the nodal-displacement 
vectors instead of the fields 

where S,, is the norm-matrix and Gh is defined by 

W;G,V, = 
f 

P,(div w,)div v, dl2 
n 

=: p,(diV Wh)ph(diVVh) dR 

= 
s 

div w,P,(div vh) m. 
n 

The matrix G,, is symmetric positive semi-definite, 
whereas Sh is of course symmetric positive definite. 
Moreover, S, can be directly assembled at the element 
level and is banded. The same holds true for G,, 
provided that the projector P,, is el~ent-internal, 
or in other words, that the pressure field is discon- 
tinuous between the elements. 

Assuming that the pressure field is continuous, 
Gh can still be derived from the general relation 
Gh = &T;‘B&. directly deduced from the matrix form 
of Ph(div). In this case, more computations are 
involved to evaluate G,; also the resulting matrix is 
full. 

2.3. The inf-sup and spurious pressure modes 

Before we proceed to our computational consider- 
ations, we need to reflect on the form itself of our 
original condition (8). That it involves ph(&) instead 
of Qh should not be a surprise-it is Ph(Dh) and not 
Qh that matters in (3). Yet, considering the stability 
of system (6) from the algebraic point of view [3], with 
K infinite, leads to the slightly different form 

Fortunately, a straightforward relation between (8) 
and (11) can readily be established. Of course, for 
a given h, if P,(Q) = Qh, the two expressions yield 
the same result. Also, whenever p,,(&,) is strictly 
included in Qh, if we denote by Pt (Oh) the ortho- 
gonal subspace to Ph(&) in Qh, we have the follow- 
ing property 

‘Jq,Ep:(Bh), vvhf vh, s q,diVV,dn=o. (12) 
n 

Hence, the inf-sup expression in (11) yields exactly 
zero. The elements of P,I(D,) are usually called 
spurious pressure modes. They correspond to particu- 
lar pressure fields which do not interact with the 
displa~men~ in the u/p formulation. Hence, what 
condition (11) does is two-fold: 

1. Condition (11) tests whether any spurious 
pressure mode is present. 

2. When no spurious pressure mode is detected, 
condition (It) tests whether condition (8) itself is 
satisfied. 

Noting from (12) that the spurious modes are in 
fact the elements of Ker(B;), we understand why 
their existence has to be tested in (11 )--for K infinite, 
they render system (6) singular[3]. By contrast, as 
long as K is finite, fo~ulation (4), (5) is clearly 
regular and system (6) is invertible with or without 
spurious modes. Furthermore, for finite values of K 
(partially incompressible or penalized problems) and 
homogeneous boundary conditions, pressure modes 
do not affect the numerical conditioning and are 
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automatically filtered out of the results, as shown by and call 1, the first non-zero eigenvalue. Then, the 
Ma&us [6, App. 4-H], see also [3]. value of a* is simply fi. 

Yet, spurious modes should be avoided and can 
lead to large solution errors in totally incompressible 
problems or in cases with prescribed non-zero dis- 
placements. Nevertheless, it is important to realize 
that locking and spurious modes correspond to 
two very different issues. Locking-pertaining to 
the question of stability-refers to the convergence 
behavior intrinsic to a given element. On the other 
hand, spurious modes-which can only affect solv- 
ability-occur with certain elements in certain meshes 
and depend on the boundary conditions. 

This property is crucial, for it renders an inf-sup 
value as easy to evaluate as a modal frequency in a 
dynamic anaysis, at least in the case of the discon- 
tinuous pressure field. Also the number of zero 
eigenvalues immediately tells whether spurious modes 
are present [l]. For continuous pressures, a second 
result is still useful. 

Proposition 2.2. Consider the second eigenproblem 

Thus, studying spurious modes through (1 l), which 
is an asymptotic condition, does not seem very 
appropriate. In order to detect them, it is certainly 
more natural to consider the matrix Bj,, checking that 
it has full column-rank. Assuming for instance that 
the basic properties of the matrix G* are known from 
the analysis of condition (lo), the rank of Bi can 
be directly inferred since, with G,, = Bj,T; ‘B,,, we 
have: rank(Bi) = rank(B,) = rank(G,). Incidentally, 
we note that the test advocated by Zienkiewicz 
et al. [7,8] bracticed by counting and comparing 
DOFs of displacement and pressure) is a weaker form 
of this rank verification. Therefore, this test only 
addresses the issue of solvability for which, as pointed 
out by Zienkiewicz et al., it constitutes a necessary 
but not a sufficient condition. 

G;Qh = A‘ThQ,,, (14) 

where G; = B&‘BI,. Call now 1; the first non-zero 
eigenvalue. Then 2: is equal to 1, in the first eigen- 
problem (13). 

In the continuous case, G; is not easier to calculate 
than G,,, but at least Gi has the dimension of the 
pressure space instead of the displacement space, and 
the eigenproblem is simplified accordingly. 

2.5. The inf-sup in practice 

We suggest that a particular element be tested by 
calculating ah using meshes of increasing refinement. 
On the basis of three results, we should be able 
to predict whether the inf-sup value is probably 
bounded from underneath or, on the contrary, goes 
down to zero when the mesh is refined. 

Globally, we have every reason to be satisfied 
with condition (8). It focuses indeed on locking, our 
primary concern, yet still allows the detection of 
spurious modes. We may now concentrate on a very 
interesting feature of formula (8)--its numerical 
applicability. 

2.4. Numerical evaluation: the equivalent eigen - 
problems 

It is evident that such a prediction, as valuable as 
it is, can never be as reliable as a definitive analytical 
proof. Nevertheless, in engineering practice where 
elements of various formulations are proposed and 
used in distorted meshes, it may well remain the 
only available tool to test elements. And even for 
theoretical purposes, we believe that such a numerical 
scheme can be useful as a quick test to give guidance 
for mathematical analysis. 

In so far as it involves an infinite number of 
meshes, verifying a condition like (8), strictly speak- 
ing, cannot be performed numerically. What we 
can do, however, is obtain a numerical value of the 
expression 

In the following section, we demonstrate the use 
of our numerical inf-sup test on several examples of 
elements for the incompressible elasticity problem. 

3. THEINF-SUP AT WORK: NUMERICAL EXPERIMENTS 

3.1. Testing conditions and result interpretation 

c q,, div v,, dfl2 

for a well-chosen set of meshes, and attempt to 
draw a prediction on whether the inf-sup con- 
dition is satisfied. The numerical evaluation is made 
possible by the following result (proven in [2], see 
also [l, 91). 

Proposition 2.1. Consider the following eigen- 
problem 

G,V, = IS,,V, (13) 

The numerical scheme described in Sec. 2.5 was 
used to test several elements, with continuous as well 
as discontinuous pressure fields, in two-dimensional 
plane strain analysis. Throughout the tests, the same 
mechanical system is used: a simple cantilevered 
square block, shown in Fig. 1. In every instance, 
a sequence of three of four meshes is considered- 
successive refinements are obtained by dividing 
the characteristic dimension of the element by 
a factor 2. The results are plotted in the form 
log(H) = f(log(l/N)), where IS stands for the calcu- 
lated value of the inf-sup expression, and N is the 
square-root of the total number of elements (i.e. the 
number of elements per side for square elements). In 
order to satisfy the inf-sup condition (8), an element 
must have its inf-sup values bounded away from zero 
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Fig. 1. Inf-sup experiments, problem considered. 

when N increases. Therefore, when a steady decrease 
of log(E) is observed on the graph, the element is 
predicted to violate the inf-sup condition and said to 
fail the numerical test. By contrast, if the inf-sup 
value stops decreasing as the number of elements 
increases, the test is passed. 

Figures 2-7 show the numerical results. The 
two expected types of inf-sup behavior are en- 
countered. When the inf-sup is not bounded from 
underneath, its rate of decrease with the element 
size always appears clearly on the log/log graph: 
1 for all elements tested, except for the ~/SC element 
in Fig. 7 for which it approaches 0.5. In all cases, 
the predictions are readily drawn. They are sum- 
marized in Table 1, together with the corresponding 
theoretical results whenever an analytical proof is 
known to exist. The exact correspondence between 
theoretical and numerical results testifies to the 
excellent reliability of this numerical test. It also 
makes us confident about the possibility to predict 
the behavior of an element for which no prior 
theoretical result exists. One such element proposed 
by Gresho et al. [lo], the 9/(4c + 1) element, is fea- 
tured in the table and is predicted to satisfy the 
inf-sup condition. 

-0.6 
I 

Fig. 2. Inf-sup results, four-node elements. 

L -0.6 

Fig. 3. Inf-sup results, eight-node elements. 

Fig. 4. Inf-sup results, nine-node elements. 

--04 

Fig. 5. Inf-sup results, 3/l triangular element. 

3.2. Distorted meshes. Macroelements 

Distorting meshes have sometimes been thought 
of as a remedy to improve an element behavior 
when the element does not satisfy the inf-sup con- 
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the 4/l element does not satisfy the inf-sup con- 
-1 2 -1 0 4.8 -0 6 -04 -0 2 dition in a regular mesh while the 9/3 element does. 

When distorted meshes are employed instead of 
regular ones, the same figures display no signifi- 
cant difference in the inf-sup values. In particular, 

0 howlack panem 
KJ -06 t 

Fig. 6. Inf-sup results, MINI element. 

&ion in regular meshes. Whereas distorted meshes 
are difficult to analyze theoretically, they do not 
involve any particular complication for numerical 
testing. 

Two elements, the 4/l (also called Ql/PO) and 
the 9/3 (or Q2/Pl) elements, were therefore tested 
in distorted meshes generated from the pattern 
shown in Fig. 8. As proven analytically and con- 

the inf-sup behavior of the 4/l element is not im- 
proved by the new mesh. Thus, in this case the mesh 
distortion does not help in satisfying the inf-sup 
condition. 

Our inf-sup test can also be used to study special 
meshes built from macroelements. As an example, we 
tested the macroelement shown in Fig. 9-a particu- 
lar assemblage of five 4/l elements. The results are 
plotted in Fig. 2. These results show that the numeri- 
cal inf-sup test is passed for this mesh and in fact, 
this behavior was proven analytically [2], see also [1 11. 
Note that our numerical test can be similarly em- 
ployed, with ease, to investigate any kind of different 

firmed by the numerical tests (see Figs 2 and 4), element and mesh patterns. 

Table I. Inf-sup numerical predictions 

ELEMENT INF-SUP CONOlTlON 

ANALYTICAL NUMERICAL 
PROOF PREDlCTlON 

CONSTRAINT 

RATIO 

IA Yl ’ FAIL FAIL 1 

tI X 4/l l FAIL FAIL 2 

FAIL FAIL 2 

PASS PASS 6 

FAIL FAIL 2 

PASS PASS 6/3 

MINI PASS PASS 6 

0 to-t 9l9c FAIL FAIL 2 

tJ 

. s&c FAIL FAIL Y3 

Ix 
0 9/6c 7 FAIL 4 

a 

. Sk PASS PASS 6 

a 
X 9/(4c+l) 7 PASS 4 

0 conlinuou6 pm66ur6 dol l Yl and 4/l &ment diiizatii CR” 

Xand - di6continuou6 pruaura doi 
contain 6pwiou6 pf666ure mod66 [I] 
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Fig. 7. Inf-sup results, continuous pressure elements. 

3.3. Inf-sup condition: a reliable and discriminate 
criterion 

Mathematically speaking, the inf-sup condition 
is a suficient condition which guarantees that, 
for both displacements and pressures, optimal error 
estimates like (9) can be derived from coefficients 
independent of K. This is a very strong result, 
and therefore any element which satisfies the con- 
dition may be considered as very robust in incom- 
pressible analysis. On the other hand, one might 
hestitate to disqualify elements, like the Ql/PO 
element, which do not satisfy the inf-sup condition, 
on the argument that the condition may be too 
strong. 

These doubts are not confirmed by experience. 
Among the elements presented in Table 1, all those 
which violate the inf-sup condition were tested in the 
nearly incompressible problem defined in Fig. 10. 
Using the Sussman-Bathe pressure band plots [12], 
in every instance without exception, the calculated 
pressures yielded very unsatisfactory band-plots. Two 

Fig. 8. Distorted mesh pattern. 

Fig. 9. Macroelement. 

examples, the results of the 4/l and 9/4 elements, are 
displayed in Figs 11 and 12. They contrast with the 
regular plot obtained for the 9/3 element, shown in 
Fig. 13. 

The inf-sup condition is therefore confirmed as a 
very discriminate test, capable of detecting phenom- 
ena which escape simpler analyses. For instance, the 
constraint ratio defined in [6] for a given element as 
the limit quotient, when the mesh is refined, of the 
number of displacement DOFs by the number of 
pressure DOFs, is certainly a useful quick indicator 
to calculate. Of course, the more constraints there are 
in proportion to the number of displacement DOFs, 
the higher the chance that locking will occur. But 
what is more relevant is the exact nature of the 
constraints and not only their number. Looking at 
Table 1, the impeccable 9/3 element has the same 
constraint ratio as the 9/8c element which does 
not satisfy the inf-sup condition. Even more strik- 
ingly, the 9/5c element, very similar apparently to 
the 9/(4c + 1) element, behaves totally differently. 
Obviously, to estimate an element’s robustness in 
incompressible conditions requires more insight than 
what a mere constraint count provides. A careful 
investigation of the limit influence of the particular 
constraints is necessary, and this is achieved by the 
inf-sup condition, 

4. CONCLUDING REMARKS 

Our objective in this paper was to introduce 
a numerical method designed to test whether an 
element satisfies the inf-sup condition. We also re- 
ported upon the results that were obtained by sub- 
mitting a series of two-dimensional elements to our 

Plane strain 
. unltthkklless 
I 
. 
& 
/ 
. 

Fig. 10. Loading case, problem definition. 
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Fig. Il. Pressure band-plot, 4/l element, Y = 0.499. 

E-z?= 
TIYB 1.000 I 750.0 

500.0 

I 250.0 
0.0 

I -250.0 
-500.0 

T- 750.0 

Fig. 12. Pressure band-plot, 9/4 element, Y = 0.499. 

zz?s 
TIIIB 1.000 I 750.0 

500.0 

I 250.0 
0.0 

I -250.0 
-500.0 

T -150.0 

Fig. 13. Pressure band-plot, 9/3 element, v = 0.499. 
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numerical test, and showed that all the predictions Acknowledgement-We would like to thank Professor F. 

drawn from these experiments were in perfect agree- Brexxi for his valuable comments on this paper. 

ment with existing theoretical results. 
Supported by these very encouraging results, we 

believe that our technique can be used to investigate 
the inf-sup behavior of new elements, like the 
9/4c + 1 element, for which no analytical result is 
available. Of course-very much like the numerical 
evaluation of the patch test-our numerical inf-sup 
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