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Abstract—Finite element procedures for the dynamic analysis of fluid-structure systems are presented and
evaluated. The fluid is assumed to be inviscid and compressible and is described using an updated Lagrangian
formulation. Variable-number-nodes isoparametric two- and three-dimensional elements with lumped or consistent
mass idealization are employed in the finite element discretization, and the incremental dynamic equilibrium
equations are solved using explicit or implicit time integration. The solution procedures are applied to the analysis
of a number of fluid-structure problems including the nonlinear transient analysis of a pipe test.

1. INTRODUCTION

The accurate and efficient transient analysis of fluid-
structure problems has during recent years attracted
much research effort[1-5]. Fluid-structure problems need
to be considered in various engineering disciplines, and
to a great deal in reactor safety deliberations{1]. In this
paper we consider the response of fluid-structure
systems in which the fluid can be idealized as being
inviscid and compressible, and we focus particular
attention on the analysis of problems in which the fiuid
transmits a significant amount of energy in a relatively
short time duration (such as might occur under accident
conditions).

An obvious approximate procedure to analyze a fluid-
structure problem is to perform the complete analysis in
two steps: first, the fluid response is calculated assuming
that the structure is rigid; and then the structural
response is predicted that is due to the calculated fluid
pressures. In most cases this analysis approach will
(probably) yield a conservative estimate of the structural
deformations. Thus, a drawback of this decoupling of the
fiuid and the structural analysis is that a substantial
overdesign may be reached. On the other hand, this
procedure of analysis may yield an unsound design if
significant resonance between the fluid and the structure
oceurs,

A decoupled analysis of the fluid and the structural
response is somewhat a natural engineering solution,
because, historically, finite difference analysis proce-
dures are employed for analysis of fluid response and
finite element procedures are used for structural analysis.
Thus, it is natural to employ a finite difference-based
computer program to perform the fluid analysis and a
finite element program to predict the structural response.

Recognizing the serious deficiency of a decoupled
analysis, emphasis has been directed in recent years
towards the development of solution algorithms that can
be employed to directly analyze the coupled response of
fluid-structure systems. In the search for effective solu-
tion procedures the versatility and generality of the finite
element method for structural analysis and the close
relationship between finite difference and finite element
procedures suggest that it be very effective to include
fluid elements in the finite element programs. These
eiements can then be directly employed together with
structural elements to model fluid-structure systems. At
present, some solution capabilities are available, but the
programs use only lower-order fluid elements, are
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restricted to two-dimensional analysis, and, in general,
lack versatility with regard to explicit and implicit time
integration and Jlumped and consistent mass
idealizations{1].

The objective of this paper is to report on our recent
developments of solution capabilities for fluid-structure
interaction problems. In the paper, first the Lagrangian
formulation of the inviscid and compressible variable-
number-nodes 3-8 two-dimensional and 4-21 three-
dimensional isoparametric fluid elements is briefly
summarized [6). These elements have been implemented
in the computer program ADINA([7]. The elements can
undergo large displacements, they can be employed with
implicit (Newmark or Wilson-8 methods) or explicit
(central difference method) time integration schemes,
and lumped or consistent mass idealizations. Next, the
elements, time integration schemes and modeling consi-
derations that lead to either a lumped or consistent mass
idealization are discussed. Finally, a number of demon-
strative sample solutions are presented. Here, the analy-
sis of a fluid pressure pulse propagating in a pipe section
and leading to elastic-plastic structural response is dis-
cussed in detail with regard to the finite element mode-
ling and the time integration scheme employed.

2. CALCULATION OF FLUID FINITE ELEMENTS

The objective in this work was to develop a fluid-
structure analysis capability that can be employed in the
analysis of problems in which no gross fluid motion
occurs. For these types of problems a Lagrangian
formulation is effective. The fluid elements can then be
employed in conjunction with structural elements that
are also based on Lagrangian descriptions. The following
two basic assumptions have been used in the formulation
of the fluid elements:

1. The fluid is compressible and inviscid.

2. Interaction between mechanical and thermal pro-
cesses is negligible; thus only the mechanical equations
are needed to describe the fluid response.

Using a Lagrangian formulation, in principle, a total or
updated Lagrangian formulation can be employed, but
considering the numerical operations required for fluid
systems, an updated Lagrangian (U.L.) formulation is
more effective{8].

2.1 Continuum mechanics formulation
Consider a body of fluid undergoing large defor-
mations and assume that the solutions are known at all
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discrete time points 0, At, 2At, ... t. The basic aim of the
formuiation is to establish an equation of virtual work
from which the unknown static and kinematic variables
in the configuration at time ¢ + At can be solved. Since
the displacement-based finite element procedure shall be
employed for numerical solution, we use the principle of
virtual displacements to express the equilibrium of the
fluid body. In explicit time integration equilibrium is
considered at time ¢ [6]

f ~'pée‘do="R (0
ty

whereas in implicit time integration equilibrium is consi-
dered at time ¢ + A,

f _r+up&*meﬁr4~mdv = H-ARQ‘ (2)
1 Afy

In eqn (1) 'p is the pressure at time ¢, 8¢, is a virtual
variation of the volumetric strain at time ¢,

Seams 2 (umoni) o)
a'Xi

'V is the volume at time ¢ and ‘R is the external
virtual work corresponding to time ¢, and includes the
effect of body, surface and inertial forces{8]. The quan-
tities in eqn (2) are defined analogously.

Equations (1) and (2) contain the momentum balance
and continuity equations used in analytical fluid
mechanics{9]. In addition we also use the constitutive
relation

‘p=-'a AVIV, @)

where AV is the total volume change of a differential
volume V, and ‘a is a variable that may be pressure
dependent. Using eqn (4) we can directly employ eqn (1)
in transient analysis. For static analysis or implicit time
integration we linearize eqn (2) as summarized in Table 1
and obtain(8,91,

f ‘ngg&eft'df?"f fp&nutd”=!+ua+f tpmldv
v 143 y
(5)

where ‘p is evaluated using eqn (4) and ‘« is the tangent
fluid bulk modulus.

The linearization used to arrive at eqn (5) introduces
errors in the solution which may be large if the time step
is relatively large. In order to reduce solution errors and
in some cases instabilities (see sample problem 4.4)
equilibrium iterations are used. In this case, we employ
the following equation to solve for the incremental
displacements {10}

J' ‘cAcel Bie'dv -I ‘p8AMY dy
ty ty

t+Aty(k—1)

k=12,... ©)

H-Alp(k*l) 8'*Meg‘k—l)l*t\tdv(k—l)

where

I+Alu'(k) - £+Aru’(k-l)+ Au’(k)

and eqn (6) reduces to eqn (5) when k = 1.
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Table 1. Updated Lagrangian formulation of fluid elements

1. Equation of motion
f _l*dtpa’*uehli'dldv - !#dfa
1+aty
or
J: NM‘S"y-»A:‘#:dU = :*A:Q
i

where
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2. Incremental decompositions
(a) Stresses

S, = ~'p 8+ 5y & = Kronecker delta.
{b) Strains
e = ey &= ey oMy

1 1
= 5(:#:; + )y = 3 e e

3. Egquation of motion with incremental decompositions
Substituting from (a) and (b) into the equation of motion we
obtain

f' 'Sqmldv_f 'p&na'dv =2+Ma+f 'PM{gdv.
v tv tv

4. Linearization of equation of motion
Using the approximations ,S; = '« &;8y, 5,¢; = ,¢; we obtain an
approximate equation of motion

I ‘ketydey'dv —~ f Démy'dy = 4R + f ‘paie;’dv.
ty ty v

2.2 Finite element discretization
Using isoparametric finite element discretization, the
basic assumptions for an element are [6]

N
= 2 e rx‘k
k=1 i = 1,2,3 depending on

. & one, two or three-
= ,‘Z‘ he'u®  dimensional analysis, M
respectively

N
Auy = "Z‘ he Au

where N is the number of nodes of the element consi-
dered, the i are the element interpolation functions, and
the ‘x*, ‘u* and Aw" are the coordinates, displacements
and incremental displacements of nodal point k at time 1.

Substituting the relations in eqn (7) into eqns (1) and
(6) and including the effect of inertia forces, we obtain
the governing finite element equations in explicit time
integration,

Mfi='R-F ®
and in implicit time integration

Ml+At|-i(i) + {:Kl, + ;KNL)Allm - “‘A‘R" ;:z i1 (9)
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where the first iteration, i = 1, corresponds to the solu-
tion of eqn (5).
In eqns (8) and (9) we have

M = time independent lumped or consistent mass
matrix
Kz, :Knz = linear, nonlinear strain (tangent) stiffness
mamxmtheconﬁgurauonatumet
@ = vector of nodal pomt accelerations in the
configuration at time ¢, 1 + At
Au = vector of incremental nodal point displace-
ments
‘R, "*~R = vector of external loads at time ¢, t + At
iF, i 74iF = vector of nodal point forces at time ¢, 1 + At
and

the superscript (i) indicates ith iteration.

t 0- I-O-At

The matrices in eqns (8) and (9) are defined in Table 2
for a single element using the following notation:

H = displacement transformation matrix
H® = surface displacement transformation matrix

+V = dilatation-displacement transformation
matrix
By = nonlinear  strain-displacement  trans-

formation matrix
t+aty a5t =traction and body force vectors.

The displacement transformation matrices and force
vectors are defined as usual[6, 10], and Table 3 gives the
matrices ;V and ;Bnx for the two and three dimensional
fluid elements.

Using the above formulation, the 4-8 and 8-21 vari-
able-number nodes elements (shown in Fig. 1[6]) with
lumped or consistent mass assumptions have been im-
plemented in ADINA for two- and three-dimensional
analysis, respectively. The lumped mass matrix of an
element is calculated by simply allocating 1/N times the
total element mass (where N = number of nodes) to the
nodal degrees of freedom.

We may note that the continuum mechanics equations
of motion (eqns 1 and 2) are valid for general displace-
ments. However, considering the finite element equations
of motion severe mesh distortions that are due to large

Table 2. Finite element matrices

Integral

Matrix evaluation
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(conslstent mass)
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Table 3. Linear and nonlinear strain-displacement trans-
formation matrices

Two-dimensional analysis
Dilatation-displacement transformation vector:

e ) ) () )

where

N
= ; ’l]'I]'.
-]

Nonlinear strain-displacement transformation matrix:

iy 0 iy, vy 0
iz 0 by thna 0
Bwe=] 0 4y 0 0 vy
I? iz '? h° vz
pid 2 N
5 0% A

(% is included only in axisymmetric nnalysis)
1

Three-dimensional analysis
Dilatation-displacement transformation vector

VELhadiadah ... g Bzl
Nonlinear strain-displacement transformation matrix:

! :lm_ (] [ ]
, A
Bne={ ¢ By 0

' n]'m

- lhl.l 0 0 lhz,] 0 0
Bae=) th, 0 0 hy 0 O

ANy
th.I
s 0 0 3 0 O Ana

displacements reduce the accuracy of a finite element
solution. In order to preserve solution accuracy rezoning
would have to be used which is not considered in this study.

2.3 Analysis of fluid finite elements

The variable-number-nodes fiuid elements shown in
Fig. 1 are compatible with the solid elements available in
ADINA. This compatibility is important because higher-
order isoparametric solid elements have proven to be
significantly more effective than lower-order elements in
analysis of problems with significant bending response
and would naturally be employed with high-order fluid
elements. However, to model the complete fluid domain
appropriately, the basic characteristics of the fluid ele-
ments need to be known.

The basic characteristics of a fluid element are dis-
played by the element eigenvalues and eigenvectors [6].
Figure 2 summarizes the eigensystem of a 4-node two-
dimensional element. The figure shows that, as reported
earlier, using reduced Gauss integration (1 point in-
tegration) for the 4-node element the hourglass patterns
correspond to zero eigenvalues. Various attempts have
been made to remove the instability of the hourglass
deformation modes without increasing the computational
expense significantly, but it is believed to be best to use
2 x 2 Gauss integration. Indeed, the formulation-consis-
tent removal of the hourglass instability using 2x2



386

Z [
(7 Iy

\ TYPICAL ELEMENTS

ol TWO-DIMENSIONAL FLUID ELEMENTS FOR PLANAR QR
AXISYMMETRIC CONDITIONS

=/
' [F

TYPICAL ELEMENTS

X
b} THREE-DIMENSIONAL FLUID ELEMENTS

Fig. 1. Fluid elements in ADINA.

Gauss quadrature is an advantage of a finite element
formulation over a finite difference analysis.

Figure 2 also gives the number of zero eigenvalues of
the 8-node two-dimensional and 8 and 20-node three-
dimensional elements. As for the 4-node two-dimensional
element, reduced integration introduces additional zero
eigenvalues that can result in solution instabilities in the
analysis of a fluid-structure system.

Of particular interest is the analysis of fluid-filled
pipes. If the geometry and loading are axisymmetric,
these fluid-structure systems can be modeled using the
axisymmetric elements, and the question is whether
higher or lower-order elements should be employed. It is
well-known that in axisymmetric analysis of solids,
higher-order isoparametric elements need be employed
for accurate prediction of stresses. The same conclusion
is reached for the fluid elements. Figure 3 shows the
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Fig. 2. Eigensystems of two and three-dimensional fluid
elements.

stresses calculated in axisymmetric plane strain fluid-
solid models with a varying bulk modulus in the fluid and
compares the results with theoretical values.

The use of higher-order fluid and solid elements in
transient analysis requires that a distinct choice be made
on the use of a lumped or consistent mass idealization. If
4-node two-dimensional elements (and 8-node three-
dimensional elements) are employed it is probably most
effective to use a lumped mass model. Not only is the
computational expense less when using a lumped mass
matrix but the similarity between the finite element
equations and the finite difference equations (in some
cases these are the equations used in the method of
characteristics) requires the use of a lumped mass
matrix for best solution accuracy[11]. On the other hand,
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Fig. 3. Analysis of axisymmetric plane strain fluid-structure model, 4-node vs 6-node elements.
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considering the use of higher-order elements, a lumped
mass characterization leads to spurious oscillations that
arise because a lumped mass distribution does not
represent a consistent loading on the elements. Since it is
the objective to employ as few higher-order elements as
possible to model the fluid-structure domain, a consistent
mass idealization is in most cases desirable.

3, TIME INTEGRATION

In ADINA, the central difference method is employed
in explicit time integration and the Newmark method or
the Wilson-8 method can be used in implicit time
integration{6]. Using implicit time integration a lumped
or consistent mass matrix can be employed, but in
explicit time integration only a lumped mass idealization
can be specified. Table 1 in [7} summarizes the complete
solution algorithm employed.

The stability and accuracy characteristics and the
computational details of using these techniques in linear
analysis have been summarized in [6). Considering
general nonlinear analysis the main difficulty is to assure
the stability of a time integration solution. In explicit
time integration the solution is simply marched forward,
and it may be difficult to identify an instability that
manifests itself only as a significant error accumulation
over a few time steps. On the other hand, using an
implicit time integration method, in each time step the
incremental equilibrium equations are solved and equili-
brium iterations can be performed on the solution quan-
tities. These equilibrium iterations are equivalent to an
energy balance check and can be very important to
assure a stable and accurate solution (see sample prob-
lem 4.4).

4. SAMPLE SOLUTIONS
The sample analyses presented in this section have
been performed using the computer program ADINA in
which the fluid elements discussed in this paper have
been implemented.

4.1 Analysis of rigidly-contained water column
A simple axisymmetric water column idealized using
4-node elements as shown in Fig. 4 was analyzed for a
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step pressure applied at its free end. Lumped and
consistent mass idealizations were employed in this
analysis, and the objective was to study the accuracy
with which the response of the water column is pre-
dicted.

Figure 4 shows the calculated longitudinal displace-
ments at the free end of the column and compares these
displacements with the analytical solution. It is seen that
using implicit time integration (Newmark method) the
free-end displacements in the consistent mass analysis
were predicted accurately for a time period that included
6 wave reflections, whereas the lumped mass analysis
results are inaccurate.

Because of the simplicity of the problem the method
of characteristics shows that in this analysis the exact
solution can be calculated using the central difference
explicit solution method[11). To obtain the exact solution
the pressure and lumped mass idealizations must be such
that the displacements are uniform over the column
cross section and At = AL/c, where ¢ is the wave velo-
city and AL is the length of an element.

4.2 Static analysis of an assemblage of concentric fluid-
filled cylinders

Five concentric fluid-filled cylinders were analyzed for
a load applied on a stiff cap. This same problem was
studied by Munro and Piekarski{12]. Figure S shows the
finite element model employed and the predicted fiuid
pressures. The finite element solution is compared with
the approximate analysis results of Munro and Piekarski.

4.3 Transient analysis of a water-filled copper tube

The dynamic response of a water-filled copper tube
subjected to an impact loading was analyzed. The struc-
ture, the loading and the finite element model employed
are shown in Fig. 6. This problem was also analyzed by
Walker and Phillips[13], who established governing
differential equations based on a number of assumptions
and solved these equations using the method of charac-
teristics.

Two finite element analyses were performed: a lumped
mass and a consistent mass idealization was used. The
mass allocation employed in the lumped mass analysis is
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Fig. 4. Longitudinal displacement of free end of rigidly contained water column under pressure step load.
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shown in Fig. 6. This distribution of mass corresponds to
the assumption used by Walker and Phillips. It should be
noted that a thin layer of elements was used at the tube
wall in order to “release™ the axial displacements of the
fluid.

In both finite element analyses the Newmark method
was employed with a time step 1 usec, i.e. 65 time steps
correspond to the pulse length. The length of the ele-
ments (axial direction) was about 1/10th of the pulse
length. The aspect ratio of the elements was very high
(1:34).

Figures 7 and § show the response of the system at
Z = Sin (see Fig. 6} as predicted in this study and by
Walker and Phillips. It is seen that for t <100 usec the
finite element solutions correspond reasonably well with
the results of Walker and Phillips, but relatively large
solution discrepancies are observed at larger times.
These solution discrepancies are due to the different
assumptions employed in the analyses. Since no
experimental or “exact analytical” results are available,
it is difficult to assess the actual accuracy of the different
models. However, considering the finite element solution
results it is seen that the consistent mass model predicts
a somewhat smoother response for the hoop strain than
does the lumped mass model and gives also results that

compare somewhat better with the response predicted in
[13].

4.4 Nonlinear transient analysis of a pipe test

The experience gained in the above analysis was used
to analyze the water-filled straight piping configuration
show in Fig. 9 subjected to a pressure pulse at its end.
The elastic-plastic response of this pipe was experi-
mentally assessed as reported in [14], Figure 9 shows
also the finite element model employed in the analysis.

In this analysis, a consistent mass matrix was
employed and the time integration was carried out using
the Newmark method. The time step was changed to half
its size at the time the pulse entered the nickel pipe so
that the pulse front would pass through a solid element in
about three time steps. The effective stiffness matrix
used in this analysis was reformed only at time ¢ = 1.905,
2.302, and 3.435 msec. However, to take into account the
elastic-plastic response of the pipe, equilibrium iterations
were used at each time step once the pulse reached the
nickel pipe. The equilibrium iterations (energy balance
check) were found to be necessary for a stable solution,
although an average of only 1 to 2 iterations per time
step were carried out.

Figure 10 shows the calculated pressures and hoop
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Fig. 9. Finite clement model of straight pipe test.

strains at various locations along the pipe as a function
of time and compares the ADINA results with the
experimental data. It is noted that in general the cal-
culated response compares well with the experimentally
observed response.

S. CONCLUSIONS

The transient analysis of fluid-structure systems
presents a great deal of difficulties because an ap-
propriate structural and fluid representation together
with effective numerical procedures must be employed.
In this paper, the fluid is assumed to be inviscid and
compressible, an updated Lagrangian formulation is used
to describe the fluid motion, isoparametric finite element
discretization is employed with lumped or consistent
mass idealizations and the incremental equilibrium equa-

tions are solved using explicit or implicit time in-
tegration. The solution capabilities have been implemen-
ted in the ADINA computer program, and the solution
results of various sample analyses are presented.

The study performed here indicates that higher-order
isoparamatric finite elements can be effective in the
representation of the fluid. Depending on the dis-
cretization used, the elements may have to be employed
with a consistent mass idealization and implicit time
integration.

Considering nonlinear analysis, it can be important
that equilibrium iterations be performed in order to
prevent solution instability. In some analyses only very
few iterations are needed to greatly improve the solution
accuracy (see Section 4.4).

Since there does not exist a single analysis approach
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Fig. 10. Pulse propagation in water filled straight pipe system.

that is always most effective for the analysis of fluid-
structure problems, it is deemed best at this time to have
versatile computational capabilities available. This way,
different finite element discretizations, mass idealizations
and time integration procedures can be chosen for an
effective solution to a particular problem. In this paper
much emphasis has been placed on the use of higher-
order isoparametric finite elements, consistent mass
idealization and implicit time integration. However, it
need be noted that these techniques have been employed
primarily in two-dimensional analysis and can be pro-
hibitively expensive in three-dimensional response cal-
culations.
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