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Solution capabilities for three-dimensional geometric and material nonlinear finite element analysis of concrete struc- 
tures are presented. The concrete material is modeled including triaxial nonlinear stress-strain behavior, tensile cracking, 
compression crushing and strain-softening. The objective in this work was the development of a practical nonlinear con- 
crete analysis capability. The material model can also be employed to represent some rock materials. The results of various 
sample analyses are given, in which the stability and accuracy of the finite element representations have been studied. 

1. Introduction 

During recent years interest in nonlinear analysis of  concrete structures has increased steadily, because of  the 
wide use of  plain, reinforced and prestressed concrete as a structural material, and because of  the development of  
relatively powerful analysis techniques implemented on electronic digital computers. A most important analysis 
procedure that is already in wide use for the linear analysis of  structures is the finite element method [1,2]. If  a 
realistic nonlinear analysis of  a concrete structure can be carried out, the safety of  the structure is increased and 
the cost can frequently be reduced. 

Concrete exhibits a complex structural response with various important nonlinearities; namely, a nonlinear 
stress-strain behavior, tensile cracking and compression crushing material failures, and temperature dependent 
creep strains [ 3 - 1 6 ] .  All these concrete nonlinearities depend strongly on the triaxial state of  stress, and in addi- 
tion the nonlinearities introduced by the reinforcing and prestressing steel should in general be taken into account. 

There are a number of  factors that prevent at present the wide acceptability of  nonlinear finite element anal- 
ysis procedures in the analysis of  concrete structures. A first important consideration is that the constitutive prop- 
erties of  concrete have not as yet been identified completely, and there is at present no generally accepted mate- 
rial law available to model concrete behavior. A second important factor is that nonlinear finite element analysis 
of concrete structures is very costly and requires much user sophistication. The high cost of  nonlinear analysis 
of  concrete structures is largely due to the difficulties encountered in the stability and accuracy of  the solutions. 
These difficulties, however, are a direct consequence of  the specific numerical implementation of  the concrete 
nonlinearities. Since even linear three-dimensional analysis can be expensive to the analyst, the practical difficul- 
ties of  three-dimensional nonlinear concrete analysis are particularly pronounced. 

It is important to realize that progress in practical nonlinear analysis procedures is largely based on the develop- 
ment of  improved constitutive models and kinematic descriptions, and on the development of  stable and effective 
computational procedures. Since there is a strong interaction between the development of  improved constitutive 
models and their effective numerical implementation, it is important to endeavor to advance the development of  
new material descriptions and their numerical implementations at the same time. The situation at present is that 
a linear analysis of  a concrete structure can be performed in almost a routine manner, but nonlinear analyses that 
would represent the structural behavior more accor~tely~ nncl thnt mu~t h~ ~mplnyed to predict the ultimate load 
carrying capacity of  a structure are difficult, if not impossible, to perform. Also, only a few general analysis tools 
are available for such a task. 
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The objective in this paper is to present the formulation and numerical implementation of a three-dimensional 
concrete model that has been incorporated and evaluated in the computer program ADINA [17]. Based on the 
above considerations, the basic aim in this work was to implement in the program a model that with the present 
constitutive descriptions, numerical methods and computing equipment available and with the general high cost 
of three-dimensional analysis would satisfy the following two criteria. Firstly, the model should be as simple as 
possible, but reproduce the important nonlinear and strength characteristics consistent with experimental results. 
Secondly, the model should be theoretically sound and numerically stable, so that reliable analysis results are ob- 
tained. 

The material model is a hypoelastic model based on a uniaxial stress-strain relation that is generalized to take 
biaxial and triaxial stress conditions into account. Tensile cracking and compression crushing conditions are iden- 
tified using failure surfaces. The use of tensile and compression failure criteria (including strain-softening condi- 
tions) prevents that unrealistically large stress and strain conditions are predicted as can be the case when using 
some plasticity models, (e.g. Drucker-Prager model with Prandtl-Reuss plasticity theory). 

The concrete model is defined with a number of input parameters that provide versatility in its use. By employ- 
ing the appropriate material parameters, the model can be employed also to represent some rock materials [ 18]. 

In this paper, we first review the kinematic nonlinear incremental formulation that is employed in the analysis. 
Then the material model which has been implemented is described. The material representation includes triaxial 
nonlinear stress-strain behavior, material tensile cracking and compression crushing characteristics and strain- 
softening effects. The model can be employed in two- and three-dimensional analysis. Following the general 
description of the model the computer implementation is presented. Finally, a few sample solutions are given. In 
the studies, various nonlinear characteristics of the material model have been evaluated in detail, in order to 
identify the stability and accuracy characteristics of the finite element representations. 

2. The governing incremental equilibrium equations 

A very general geometric and material nonlinear formulation is obtained using the principle of virtual displace- 
ments. Using this principle in the total Lagrangian formulation, the governing equilibrium equation at time t + At 
for a body undergoing large displacements and exhibiting constitutive nonlinearities is [19,20], 

f t + A t q  e t+At  O-- t + A t c ~  oo0o oe6 ev = , (1) 
Ov 

where the t+a~Si/are the components of the 2nd Piola-Kirchhoff stress tensor referred to the body configura- 
tion at time 0, and the t+a~ei/are the components of the Green-Lagrange strain tensor, 

t+A~eij = l [ t+A t .  + t+Attd t+At u t+At .  ~ t+At.  -- ~t+Atui/OOx j (2) 
~1 OUi,j 0 j , i  + 0 k,i OUk,j) , OUi,] -- , 

where the t+ Atui ' i= 1, 2, 3 are the displacemen, t components at time,,t + At, and the °xj,j~ 1,2, 3, denote the 
coordinates of the body at time 0. The symbol /5 in eq. (1) means variation in , and t c~ is the total external 
virtual work that is performed by the body forces and surface tractions when the body is subjected to a variation 
in the displacements at time t + At. 

In the incremental solution of eq. (I) ,  we assume that the solution is known at time t. Then, linearizing eq. (1) 
about the state at time t, and using a modified Newton-Raphson iteration for the solution at time t + At, we ob- 
tain the governing equation (for static analysis or dynamic analysis with implicit time integration) [20] 

f oCi/rs 8 oei/A o e(k,rs °do+ f 6s,z  x one,?)°do= ,+ toe_ f 8 t+at~(k-l)o~6 °do, (3) 
0 V 0V OV 

where the oCiirs are the components of the tangent constitutive tensor at time t, the ~Si! are components of the 
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2nd Piola-Kirchhoff stress tensor at time t, and 

t Aoef~) =½(A~,,(k) + A^',(k.) + ~ut,i AoUt~) + oUt,/ AoUf~ )) Ao~ffc) = ~AoUt,i AoU,,/ trot ,1 tr~/ ,l , , 

t+Atu(~k) = t+Atu!k--1) + AU! k) . (4) 

t+At e(k-1) t+At  ~(k-l) Also, the ooq and ocq are components of the 2nd Piola-Kirchhoff stress tensor and Green-La- 
grange strain tensor corresponding to the displacements t+At~l!k--1).  

It should be noted that in eq. (3), the displacements are updated until the right-hand-side of the equation is 
zero. At this point, the equilibrium configuration corresponding to the loading at time t + At has been established. 

For the finite element solution, we are using isoparametric finite element discretization, in which at any time t 
[2], 

N N 

'x,. = G 'u, : G h: 'ui, 
j=l j=1 

(s) 

where tx i is the coordinate and tu i is the displacement of element nodal point ] at time t and in direction i; i = I, 
2, 3 in three-dimensional analysis. Substituting the relations in eq. (5) into eq. (3) and introducing inertia forces 
as part of the body forces, we obtain the discretized equilibrium equations 

M t + A t ( j ( k )  + (~KL + ~KNL ) Av(k)  = t+z~t R _ t + A ~ F ( k - 1  ) , (6) 

where M is the time independent mass matrix, the t K  L and ~KNL are the linear and nonlinear strain stiffness ma- 
trices, t+atR is the externally applied nodal point force vector, the vector U lists the nodal point displacements, 
and t+AtoF(k-l) is the nodal point force vector that is work equivalent to the element stresses. Table 1 summarizes, 
for a single element, the calculation of the matrices dKL, ~KNL and vector t+a~F(k-O used in eq. (6). 

In the finite element solution using eq. (6), we iterate, in essence, until the finite element system is in equilib- 
rium. Since a displacement-based compatible finite element discretization is employed, the compatibility condi- 
tions are also satisfied. Hence, any errors in the solution beyond the finite element discretization errors which of 
course are encountered in linear analysis also, are those introduced in the inaccurate calculation of the constitu- 
tive relations. Since the stress-strain relationships depend on the stress and strain histories, it is important to inte- 
grate the stresses and strains accurately in the incremental solution and, in general [20] 

t+At  (k - - l )  
t+Atc (k - -1 )  f Oe~s 

o0,)" = 6Si/ + oCii~s ders , 

~6r3 

(7) 

where t+At~(k-l) OCrs are the total Green-Lagrange strains corresponding to the loading at time t + At and at the 
start of iteration (k). 

Eq. (6) holds for large displacements and large strains, but the appropriate constitutive relations must be 
defined. Concrete and rock materials cannot sustain large relative deformations and it is appropriate to assume in 
most analyses infinitesimal displacement conditions. In these analyses, all nonlinear strain terms are neglected, i.e., 
the nonlinear strain stiffness matrix ~KNL and the nonlinear strain contributions in t+A~F(k--l) are not included 
in the solution, and the 2nd t Piola-Kirchhoff stresses oSij reduce to the engineering physical stresses, toq. How- 
ever, although the material can only sustain small relative deformations, in some cases, rigid body rotations of the 
material may be significant. These large rotation effects are directly taken into account in the total Lagrangian 
formulation, because the 2nd Piola-Kirchhoff stresses are numerically equal to the rotated physical engineering 
stresses. Hence the constitutive relations once formulated for infinitesimal displacement conditions can directly 
be employed in the total Lagrangian formulation in order to account for large rotation effects. 



388 K.J. Bathe, S. Ramaswarny / 3D nonlinear analysis of  concrete structures 

Table 1 
Evaulation of stiffness matrix and nodal point force vector equivalent to element stresses 

f ~ oe~ k) 6 oei/- °do 

Ov 

f  °dv 
Ov 

t+At~(k--1) f t+ A(~S~/~-1) 6 0~£i 0do 
0V 

~K L AU (k) = ( f 1~ BT 0 C I~BL Ode) AU (k) 

OV 

~KNLaU(k) ( [  t T t r 0 = 6BNL 0 s 6BNL do) AU (k) 
J 

Ov 

Ov 

~B L = linear strain-displacement transformation matrix corresponding to time t. 

(~BNL = nonlinear strain-displacement transformation matrix corresponding to time t. 

~S = stress matrix of stresses at time t. 

t + ~ ( k - 1 )  = stress vector of stresses corresponding to time t'+ At and iteration (k - 1). 

t+~B[k-  1) = linear strain-displacement transformation matrix corresponding to time t + at  and iteration (k - 1). 

3. The concrete or rock material model 

The model implemented employs three basic features to describe the material behavior, namely, (i) a nonlinear 
stress-strain relation including strain-softening to allow for the weakening of  the material under increasing com- 
pressive stresses, (ii) a failure envelope that defines cracking in tension and crushing in compression, and (iii) a 
strategy to model the post-cracking and crushing behavior of  the material. In the solution, the material can be 
subjected to cyclic loading conditions, i.e., the numerical solution allows for unloading and reloading including 
deactivation of  tensile failures. 

In the following, the material model is described for infinitesimal displacement conditions using the engineer- 
ing stresses toq and engineering strains teij. In order to analyze problems with large rotation conditions, the total 
Lagrangian stress and strain variables must be substituted for the engineering variables [20]. 

3.1. Stress-strain relations 

The general multiaxial stress-strain relations are derived from a uniaxial stress-strain relation t~ versus r~" [ 4 -  
7]. In this section, we describe the uniaxial and multiaxial stress-strain relations employed in the model prior to 
tensile cracking or compression crushing. 

In the following discussion, all uniaxial parameters are identified by a curl (~)  placed over them, (i.e., all param- 
eters that have been obtained from fig. 1 carry a curl). 

3.1.1. Uniaxial conditions 
A typical uniaxial stress tff to uniaxial strain t6 relation (assuming loading of  the material) is shown in fig. 1. 

This stress-strain relation shows that there are basically three strain phases; namely, corresponding to t~-/> 0, 
0 2> t~ ~> e'c and ec 2> t~. ~> gu where e'c is the strain corresponding to the minimum (crushing) stress, ac, that can be 
reached, and e'u is the ultimate compressive strain. If tg 2> 0, i.e. the material is in tension, the stress-strain rela- 
tion is linear and a constant Young's modulus, Eo, is employed. 

t~ = ~fio t~,  (8) 

d t~ ~ 
~7~ = E o .  (9) 
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Fig. I. Material model uniaxial stress-strain law. 
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For t~ ~< O, we assume the following relation, 

(go/g~)e~/~c) 
t ° / ° c  = 1 + A (t~'/~c) + B( t~ l~c)  2 + Cff~l'~c) a ' 

and hence, 

t f f= Eo[1 - B ( '~ ITc)  2 - 2C(7/7c)31 

where 

A =  

[ 1 + A ff'E]~c) + B(tbT~c)2 + c('~l~c) 315' 

(10) 

(11) 

[ffo/Eu + (pa _ 2p2)~-o//~ s _ (2p3 _ 3p2 + 1)] 
B = [ ( 2 E o / ~ s  - 3)  - 2 , 4 1 ,  

[ (p~ - 2p  + 1 ) p ]  

c = [(2 - E o / E s )  + A ] ,  

and the strength parameters Eo, oc, e'c, Es = oc/e'c, Ou, eu, P = eu/e'c and Eu = ffu/e'u are obtained from uniaxial tests. 
The stress-strain relation in eq. (10) assumes monotonic loading conditions. For unloading conditions and load- 

ing back to the stress state from which unloading occurred, the initial Young's modulus E0 is used. 

3.1.2.  Mul t iax ia l  cond i t i ons  

The behavior of  concrete and rock materials under multiaxial stress conditions is very complex and has not 
been assessed experimentally in a complete manner. Various material models with considerable simplifying assump- 
tions have been proposed to characterize the behavior of  concrete and rock materials using plasticity relations, hy- 
poelastic descriptions and the endochronic theory of inelasticity [ 9 -16 ] .  However, considering the variability of  
concrete materials that need be described in practice, and recognizing that the model should also be useful to 
represent the behavior of  some rock materials, the objective in this work was to develop an effective but simple 
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model that provides sufficient flexibility to the analyst to fit basic material behaviors. 
The stress-strain relations are evaluated differently depending on whether the material is loading or unloading. 

The Poisson ratio is assumed to be constant under all stress conditions. 
To characterize loading and unloading conditions we define a loading function 

t f  = t~- + 3o¢ torn , (12) 

- - I t  where a is a constant (usually negative), to m - ~ Oii, tg = ( l  tsi j tsij)l/2 ' tgi j = toi j _ ~ij ttTm and 6ij is the Kron- 
ecker delta. The material is loading if 

t f  ~ fma x , (13a) 

and unloading if 

t f  < fma x , (13b) 

where fma× is the maximum value of  the loading function that has been reached during the complete solution. In 
unloading, the material is assumed to be isotropic and the initial Young's modulus, Eo, is used to form the incre- 
mental stress-strain matrix, both for stiffness and stress calculations. 

To obtain the stress-strain relations in loading conditions, the principal stresses are calculated and for each 
principal stress direction a uniaxial tangent Young's modulus,  t/~pi , corresponding to the strain in the principal 
stress direction, t ep i  , is evaluated using eqs. (9) and (11). When using eq. (11), the current strain tepi is employed 
and to account for multiaxial stress conditions the material variables Oc, ou, ec and ~u are replaced by the variables 
~ p  ~ ,  ~ t  - t  . . t t t - • (~c, Ou, ec and e u defined m eq. (20). Let o-1, on2 and 0-3 be the principal stresses at time t, with top3 ~ top2 
t t~  t~  t~ ~. e e , Opl and Epl, Ep2 and Ep3 the corresponding uniaxial Young s moduli. The material is considered as isotropic 
with an equivalent multiaxial Young's modulus when subjected to tension or low compression, where such a state 
is defined by top3 >1 KOc. The variable K is typically 0.4. For the material the equivalent multiaxial Young's mod- 
ulus, tE, is then obtained using the following weighting scheme, 

rE= ItOpl [ tE~pl + It°P2 [ tEp2 + It°p3[ tE~p3 (14) 

i topl l + [tOp2l qu [tOp3l 

and the Poisson ratio is assumed to be constant as noted earlier. 
If the material is under high compression, i.e., top3 < K~ c, an orthotropic stress-strain matrix with the direc- 

tions of  orthotropy defined by the principal stress directions is employed. The stress-strain matrix corresponding 
to these directions is, considering three-dimensional stress conditions, 

1 - v) tEpl v tEl2 p tel3 0 0 0 

(1 - v )  tEp2 utE23 0 0 0 

1 (1 - v) tEp3 0 0 0 

C -  (1 + v)(1 - 2v) sym. ½(1 - 2u) tEl2 0 0 ' 

I(1 - 2p) te l3 0 

½(1 - 2v) tE2~ 

(15) 

where v is the constant Poisson ratio, and the shear modulus in a coordinate plane is calculated from the weighted 
Young's modulus corresponding to that plane, 

tEq _ 1 It°pil tffpi+ ]top/[ tEpj (16) 
tGiJ-2(1 +13) 2(1 +p) [tOpi[+ [tOpj[ 
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The above stress-strain relations for material loading conditionsare only employed in the calculation of the 
stiffness matrix at time t. Considering the evaluation of the stress increment from time t to time t + At, the inte- 
gration in eq. (7) is approximated in the following manner, 

= ~?e. ( 1 7 )  

If the material was under tension or low compression at time t, i.e., top3 ~ K 0;, the stress--strain matrix C" in 
eq. (17) corresponds to an isotropic material with Young's modulus rE and constant Poisson ratio v, 

T E _  I ' O p l  I r E p l  -I-Itop2lrEp2 "F Itop31%3 (18) 
ItOpl ] "l" Itop21 + It%al 

In eq. (18), the uniaxial Young's moduli rEpi corresponding to the current strain increment e are evaluated using 
the uniaxial stress-strain relationship in fig. 1, 

rff~pi = {Olat tepi+epi- Olat tepi}/epi, (19) 

where the  tepi and epi are the strain components and incremental strain components at time t measured in the 
directions of the principal s t resses  tOpi. 

If the material was under high compression at time t, the stress-strain matrix employed in eq. (17) is the one 
defined in eq. (15) but using the Young's moduli rffpi given in eq. (19). Also, in this case the stress and strain vec- 
tors in eq. (17) must correspond to the axes of orthotropy used in eq. (15). 

3. 2. Material failure envelopes 

To model the failure of the material in tension and compression in two and three-dimensional analysis and to 
account for multiaxial conditions in the uniaxial stress-strain behavior, failure envelopes are employed. Based on 
the current knowledge of concrete material behavior, the tensile and compression failure envelopes shown in figs. 
2 and 3 have been implemented. The tensile failure envelope given in fig. 2 is commonly employed. It is noted that 

- , ~ , ~ ' , 0 , 0 )  

• (O,~c',O), 
~ ~ ~ ; :  ~ t  

_ _ )(,_ ~,,) 
(o,~ ,~'o) ~;:o (o,o,~-;) 

°t '  = UNIAXIAL CUT-OFF TENSILE STRESS UNDER 
M ULTIAXIAL CONDITIONS 

~'t = UNIAXIAL CUT-OFF TENSILE STRESS 

~c' = UNIAXIAL COMPRESSIVE FAILURE STRESS UNDER 
MULTIAXI AL CONDITIONS 

t ,t(z ,t,r =PRINCIPAL STRESSES IN DIRECTIONS I, 2 
°'pl p2 p] AND 3 AT TIME T 

Fig. 2. Triaxial tensile failure envelope of model. 
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Fig. 3. Triaxial compressive failure envelope of model. 

considering one principal stress direction the tensile strength of  the material in this direction does not change with 
the introduction of  tensile stresses in the other principal stress directions, but compressive stresses change this 
tensile strength. 

Considering the compression failure envelope, it should be noted that the failure envelope shown in fig. 3 can 
be used to represent a large number of  different envelopes like the biaxial envelope of  Liu et al. [7] and the triax- 
ial failure surface of  Khan and Saugy [8]. The shape of the compressive failure surface used is largely based on the 
experimental results reported by Kupfer et al. [6] and Launay and Gachon [9], but the flexibility provided in the 
envelopes used here makes it possible to model various concrete and rock materials. The envelope can be employed 
to model a Mohr-Coulomb or Drucker-Prager failure surface. 

The compression failure envelope is input using 24 discrete stress values. Firstly, the values Oipl/~c are input. 
These values define at what stress magnitudes tOp l the discrete two-dimensional failure envelopes for additional 
stresses top2 and top3 are input. These failure envelopes are defined by the failure stress values d~/Oc (i = 1 ..... 6; 
j = 1,2,  3) that correspond to the stress magnitudes ttTp2 = topl , top2 = fl top3 ([3 is a constant) and ~Op2 = top3. 

The failure envelopes are employed to establish the uniaxial stress-strain law accounting for multiaxial stress 
conditions, and to identify whether tensile or crushing failure of  the material has occurred. Having established the 
current principal stresses, to establish the uniaxial stress-strain law it is assumed that top! and tap2 are held con- 
stant and the minimum stress that would have to be reached in the third principal stress direction to cause crush- 

t t ing of  the material is calculated using the failure envelopes, see fig. 3. Let this stress be ac, and 71 = o c/ac, then we 
also use 

% = 7 1  , e c=717ec ,  eu = "/l')'eu (20) 

where 7 is a constant. The constants Oc, au, ec, eu are employed instead of  the unprimed variables in order to esta- 
blish using eq. (11), the uniaxial stress-strain law under multiaxial conditions (see fig. 4). 

To identify whether the material has failed, the principal stresses are used to locate the current stress state in 
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Fig. 4. Increase of strength parameters for model under multiaxial conditions. 

the failure envelopes. In the following we consider how one single plane of tensile failure develops and how the 
material fails in compression crushing. 

Tensile failure occurs if the tensile stress in a principal stress direction exceeds the tensile failure stress. In this 
case it is assumed that a plane of  failure develops perpendicular to the principal stress direction. The effect of  this 
material failure is that the normal and shear stiffnesses across the plane of  failure are reduced, and the correspond- 
ing normal stress is released (see fig. 5). Assume that the material is subjected to low compression conditions, then 
before tensile failure the stress-strain relation is, considering three-dimensional analysis, 

t E 

(1 + v)(1 - 2v) 

-(1 - v )  v v 0 0 

(1 - v )  v 0 0 

(1 - v )  0 0 

sym. I(1 - 2 v )  0 
C=  

1(1 - 2v)  

0 

0 

0 

0 

½(1 - 2v) 

where tE was evaluated in eq. (14). Assuming that top 1 is larger than the tensile failure stress, the new material 

0 0 

0 0 

0 0 0 

½,7~0 - ,,) o o 

stress-strain relation is 

~n V~n /~n 0 

1 v 0 

rE 1 
C -  - -  

(1 - v  2) sym. 

-~ns(l - v) 0 

-~(I - ,'1 

(21) 

(22) 
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Fig. 5. Illustration of tensile failure at an integration point. 

where, typically, ~n = 0.001 and r/s = 0.5, and it should be noted that plane stress conditions are assumed to exist 
at the plane of  tensile failure. The factor 7/n is not set exactly equal to zero in order to avoid the possibility of a 
singular stiffness matrix. The value to be employed for ~s must depend on a number of  physical factors, and fur- 
ther research is necessary to determine appropriate values [ 16,22]. In the numerical solution it is at this point 
best to leave 7? n and ~s as variables that are input at the start of  solution. 

In previous publications, the "plane of  tensile failure" has been referred to as a "crack" [ 13,16], but we choose 
not to employ this terminology because a physical crack does not actually develop at the element integration point. 
Instead, the material has failed in one principal stress direction. 

If the material is subjected to high compression in orthogonal principal directions, i.e. tap3 < KOc, the same 
solution procedure is followed to incorporate a tensile failure, but the matrix Cin eq. (21) is replaced by the ma- 
trix given in eq. (15). 

Considering the loading function in eq. (12) to describe loading or unloading of  the material, we note that 
after a tensile failure in loading fmax is set equal to the value of  the loading function corresponding to the stress 
state in which the stress release has been taken into account. 

Eqs. (21) and (22) describe the solution when tensile failure occurs. To identify compression failure, the largest 
principal stress tOpl is employed to establish from fig. 3, by interpolation, the biaxial failure envelope on top2 and 
top3. The material has crushed if the stress state corresponding to top2 and top3 lies on or outside this biaxial fai- 
lure envelope. 

3.3. Post tensile cracking and post compression crushing behavior 

Once a tensile plane of  failure has formed, it is checked in each subsequent solution step whether the failure is 
still active. The failure is considered to be inactive provided the normal strain across the plane becomes negative 
and less than the strain at which the failure occurred initially and is active otherwise (see fig. 9). Therefore, a ten- 
sile failure plane may repeatedly be active and inactive. 

If a tensile failure plane has developed, which may or may not be active, the material stress-strain relations 
are always established as described above but corresponding to the principal stress directions in the failure plane 
and the direction perpendicular to this plane. Hence, instead of  using the stresses principal stresses and correspond- 
ing directions as done for the unfailed material, the stress conditions along and normal to the material tensile 
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failure plane are used to evaluate the stress-strain matrix. Also, when a failure plane is or was active, a subsequent 
failure plane is assumed to form perpendicular to the direction of the one that developed first, once a normal 
stress along the original failure plane has reached the tensile failure stress. It follows that at any integration point, 
the direction of  the third tensile failure plane is fixed once failure has occurred in two directions. 

It may also happen that after tensile failure of  the material (in one or two directions) the material fails in com- 
pression crushing, which is identified, as usual, by entering the compression crushing envelope in fig. 3 with the 
principal stress(es) that act(s) along the tensile failure plane(s). 

If  the material has crushed in compression, it is assumed that the material strain-softens into all directions until 
the minimum principal strain, tep3 , reaches e u .  When tepa becomes equal to eu, all stresses are completely released 
and from then on the material has no more stiffness. 
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Fig. 6. Strain-softening analysis procedure. 
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3. 4. Strain-softening behavior 

Consider first uniaxial stress conditions. As shown in fig. 1, for a uniaxial strain smaller than ~c, the material 
has crushed and softens with increasing compressive strain, i.e. tff is negative. The difficulty of  including this ma- 
terial behavior lies in that the stiffness matrix can become indefinite if a negative Young's modulus is used. The 
solution of the finite element equations can become difficult and subject to relatively large errors when the stiff- 
ness matrix of  the element assemblage is not positive definite. To circumvent this difficulty if tff in eq. (11) is 
negative, in this study a zero value (actually a small positive value) for tff is employed instead. However, in the cal- 
culation of the stress increments the actual negative value of tff is used. It should be noted that this solution strat- 
egy, as illustrated in fig. 6, is a direct generalization of  the common incremental procedures employed to analyze 
perfectly-plastic conditions and conditions of  complete stress release [ 10,20]. 

Under multiaxial stress conditions the compression crushing is identified using the multiaxial failure envelope, 
and once the material has crushed isotropic conditions are assumed. As in uniaxial conditions, in the subsequent 
solution steps the Young's modulus is assumed to be zero in the stiffness matrix calculations, but the stress incre- 
ments are computed from the uniaxial stress-strain law with the constants ~c, ec and so on (see fig. 4) correspond- 
ing to the multiaxial conditions at crushing. The Young's modulus rE corresponding to the current strain incre- 
ment ep3 is evaluated using the uniaxial stress-strain relationship in fig. 1, 

rE = {°lat tep3+ep3 -- O'lat tep3} / ep3 ,  (23) 

where the tep3 and ep3 are the strain component  and incremental strain component  at time t measured in the 
direction of the principal stress top3. To obtain the stress increment, eq. (17) is used where the matrix ~ corre- 
sponds to isotropic material conditions with Young's modulus rE. 

If  unloading of the crushed material in the strain-softening region occurs, characterized by ep3 >1 O, the stress 
increments are assumed to be zero. 

4. Computer implementation of material model 

The material model has been implemented in the computer program ADINA [17,21]. The following material 
model parameters have to be input to the program: 

(a) the uniaxial stress-strain law parameters fro, Or, Oc, ec, Ou, eu, defined in section 3.1 ; 
(b) the constant Poisson ratio, v; 
(c) the triaxial compressive failure envelope defined by six values @1/~'c, eighteen values @~/Oc and the con- 

stant/3, described in section 3.2 and shown in fig. 3; 
(d) other analysis control parameters: 3' = a constant used for scaling b" c and b" u under multiaxial conditions, K = 

a control parameter that defines when to use isotropic or orthotropic stress-strain relations, a = a constant multi- 
plier for the hydrostatic component  in the loading function; these three parameters are described in section 3.1; 
~Tn, r~s = normal and shear stiffness reduction factors, defined in section 3.2. 

Considering an incremental analysis, the complete solution for the calculation of  the stresses and the stress-  
strain relations is summarized in table 2. 

The basic equation considered in this table is, 

t+Ato = Ce + to.  (24) 

Assuming that all stresses and the tensile failure and crushing conditions at time t are known, the table summa- 
rizes the evaluation of  Cand  t+/,ta. It should be noted that the stresses at time t + At are calculated using, firstly, 
the material moduli corresponding to the current strain increment and secondly, any new conditions of  tensile 
failure and crushing that have to be taken into account. 

In some analyses temperature strains, e th, and creep strains, e c, need be included. These strains can be taken 



Table 2 397 
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into account by replacing the total incremental strain, e, in eq. (3) (and in table 2) by the strain increment, e - 
e TM - e c, where e th and e c must be calculated depending on the temperature, stress and strain conditions [20]. 

5. Modeling of steel reinforcement, prestressing and steel liners 

As a structural material, concrete is used with steel reinforcement, prestressing cables, and steel liners. In the 
computer program ADINA, depending on the structure to be analyzed, steel reinforcement can be modeled by 
discrete truss elements or plane stress elements. Steel liners are represented by plane stress elements. Prestressing 
cables are modeled using cable elements with initial forces. In order to represent the time lag between the appli- 
cation of  different prestressing, an element birth option is employed in which an element becomes active only 
from its time of  birth. 

The elements available in ADINA for modeling concrete and the reinforcement are depicted in fig. 7. 

6. Sample solutions 

The model described in the previous sections has been implemented in the computer program ADINA and was 
used to analyze a number of  problems. In this section, we report some of  the solution results. In almost all the 
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Fig. 7. Finite elements available in ADINA for analysis of concrete and rock structures. 
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analyses, the material model was used to model concrete structures because some comparisons with analytical or 
experimental results are available. 

In all the following analyses, the three-dimensional compressive failure envelope shown in fig. 3 was used. 

6.1. Demonstrative analyses o f  a concrete or rock sample 

Some simple loading conditions were analyzed in order to numerically identify the essential characteristics of  
the material model that are summarized in figs. 1 - 6  and to identify typical numerical solution errors. We present 
here the one-dimensional stress and strain response of  a simple 4-node plane stress element. 

Fig. 8 shows the single 4-node element which was subjected to a linearly increasing stress in the first analysis 
and to a strain-controlled loading in the second analysis. The comparison of  the response predicted with the anal- 
ytical stress-strain law (which is input to the program) shows that, as expected, in each analysis the calculated 
stress-strain points are on the analytical curve. In the strain-controlled analysis the strain-softening branch is also 
traced out. 

Considering the analysis results obtained in the stress-controlled loading only the response up to the maximum 
stress, Oc, could be predicted, and the strain-softening region could not be reached, because a reduction in applied 
stress is considered as unloading (using L'o). In addition, fig. 8 shows that, as would be anticipated, the predicted 
stress is smaller than the applied stress if equilibrium iteration is not employed. 

The same element was then also subjected to cyclic one-dimensional strain-controlled loading as shown in fig. 
9. The response sequence shows how unloading from compression at point A, cracking at point B with subsequent 
stress release to point C is predicted. Next, the element was unloaded further to point D and then reloaded to 
points E and F to reach the original maximum load level. Finally, the element was loaded to crushing at point G 
and into the strain-softening region until ultimate material failure at point H. 

6.2. Two and three-dimensional analysis o f  a simply-supported concrete beam 

The simply supported beam shown in fig. 10 was modeled using the following finite element idealizations: 
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Fig. 9. Uniaxial behavior of model with unloading and reloading in compression. 

Gauss numerical integration was employed. The steel reinforcement, 2 in. 2, was modeled using the 6-node mem- 
brane elements. 

Case 2: five 6-node two-dimensional elements with Gauss numerical integration order 3 X 3. The steel reinforce 
ment, 2 in. 2, was modeled using 3-node truss elements. 

Case 3: ten 6-node two-dimensional elements with Gauss numerical integration order 2 X 2. The steel reinforce- 
ment, 2 in. 2, was modeled using 3-node truss elements. 

Case 4: the element idealization of  case 3 was used but the steel reinforcement was 0.62 in.2. 
The objective was to compare the beam response predicted in this analysis with the response calculated by 

Suidan and Schnobrich [13] and an analytical solution [23]. 
Fig. 11 shows the midspan displacement of  the beam, and fig. 12 gives the maximum steel stress as a function 

of the applied load. It is seen that using the three different finite element idealizations of  cases 1 to 3 essentially 
the same response is predicted. The loading procedure used is also shown in fig. 11. An average of  three equilib- 
rium iterations were required in these analyses. The case 4 analysis results are compared in fig. 11 with the results 
published by Suidan and Schnobrich [I 3]. 

The zone of  tensile failure at the constant moment section of  the beam as a function of the applied load P is 
shown in fig. 13, in which the response predicted by ADINA is compared with the analytical results obtained by 
Krahl et al. [23]. 

The case 3 model was also analyzed for its nonlinear dynamic response when subjected instantaneously to con- 
centrated loads. A constant lumped mass matrix was used in the analysis. For the time integration, Newmark's 
method was employed. The nonlinear displacement response predicted by ADINA is shown in fig. 14 in which 
also the linear dynamic response and the static response are given. 

6.3. Large displacement analysis o f  a concrete beam 

The simply-supported concrete beam considered in the previous analysis (fig. 10) but with a span of  236 in. 
was analyzed including the effect of  an axial load, Q. This axial load was applied at the centroid of  the beam 
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Fig. 10. Analysis of a simply-supported reinforced concrete beam. 

cross-section. Fig. 15 shows the finite element model used and the predicted load displacement response of the 
beam with and without the axial load Q. In one analysis, small displacements were assumed, hence the axial load 
causes only a compressive normal stress in the uncracked beam; and in another analysis, large displacement effects 
were included. In this case, the load Q also introduces a bending moment in the beam model as the structure 
deflects, and a smaller ultimate load is predicted. Fig. 16 shows the rebar stress at the midspan of the beam as pre- 
dicted in the analyses. 

Although the decrease in the ultimate load predicted in this prohlPm i~ not drastic when including large dis- 
placement effects, the analysis does indicate that it may be important to account for large displacement effects in 
the analysis of some column and shell structures. 
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Fig. 11. Load displacement curve for the simply-supported beam. 

6.4. Analysis o f  a prestressed concrete reactor vessel 

The prestressed concrete reactor vessel (PCRV) for which experimentally obtained test results were reported in 
ref. [24] and numerical results were given in ref. [ 10] was analyzed. Fig. 17 shows the test vessel and the finite ele. 
ment mesh employed in the idealization. The different finite elements used to model the concrete and prestressing 
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Fig. 12. Load rebar stress diagram for the simply-supported beam. 
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cables and the material properties employed are also shown. Small displacement conditions were assumed in the 
analysis. 

The loading procedure used in the analysis is given in fig. 18. In the first step only the circumferential prestress- 
ing of 144 000 psi was applied as initial forces in the ring elements. In the next step the longitudinal prestressing 
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Fig. 14. Nonlinear dynamic response of  the simply-supported beam, Newmark method, 6 = 0 .50 ,  a = 0.25 
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cable to introduce a prestress of  900 000 psi was applied. From the third step onwards the internal pressure was 
applied. 

Figs. 18 and 19 show the response predicted in the analysis of the vessel. Two solutions were performed with a 

160 

128 

~ 9 6  

o. 

d 6 4  g 
d 

5.2 

YIELD 
I/ STRESS 

- - X - -  LATERAL LOAD, P ONLY / / I  
- - 0 -  - Q + P ,  SMALL DISR ,/0 x 
__~__Q +P,LARGE DISCo/"  / 

d ~  
o J Z",I'/ ~ I ~ I ~ 1 , I I~ [ ._ 
- I 0  0 I0  20 :50 40 44 50 

REBAR STRESS, ksl 

Fig.  16.  M i d - s p a n  rebar  stresses in the  concre te  b e a m .  



K.J. Bathe, S. Ramaswamy / 3D nonlinear analysis o f  concrete structures 405 

20" 

I- 
~i ~ THIRTY I / Z "  17"~, S ROUND STRAND 

I !'-~( WITH 3 0 0 0 0  lb 
INITIAL LOAD 

i 
| - 

- - 0 . 0 2 9  in 2 WIRE AT 
I / 3 "  SPACING WITH 
4 8 0 0  Ib INITIAL LOAD 13 

D I O "  

BASE ~LJ 

LONGITUDINAL SECTION OF THE PRESTRESSED CONCRETE REACTOR VESSEL 

32 ISOPARAMETRIC 
CONCRETE ELEMENTS 

21 RING ELEMENTS FOR 
CIRCUMFERENTIAL 
PRESTRESSING 

MATERIAL PROPERTII 
CONCRETE : 

"Eo : 4 3 0 0  k s i  

u : 0.15 

~ t  : 0.5,0.61,5 ksi 

~¢ = -6 .9  ksi  

"e'c : - 0 . 0 0 2 5  i n / i  

STEEL; 
E = 2 8 , 5 0 0  Ilsi 
Gy = 2 2 5  ksi 

r/n = O,0 I 
r/s = 0.5 K= i. 

MATER IAL 

I TWO-NODE TRUSS 
ELEMENT FOR 
LONGITUDINAL 
PRESTRESSING 

RING 
ENTS 

EXPLODED VIEW OF 
REGION AA 

PROPER~ES AND FINITE ELEMENT MESH 

Fig. 17. Finite element model of reactor vessel. 

uniaxial tensile strength of  ot equal to 500 psi and 615 psi, respectively, because the splitting test indicated a ten- 
sile strength of  ot = 500 psi [24], whereas the ultimate tensile strain of  the material indicated a tensile strength of  
615 psi [10]. Fig. 18 shows that the ADINA solutions predict reasonably well the ultimate load of  the structure 
but that the calculated displacements at the ultimate load are much too small. In the analyses, an average of  two 
equilibrium iterations per step were performed. 
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Fig. 18. Displacements of the slab at mid-span. 

6.5. Analysis o f  a corner supported concrete slab 

A materially nonlinear only analysis of  a reinforced concrete slab was performed. The slab was supported at its 
four corners and subjected to a concentrated center load. Fig. 20 shows the slab and the finte element model used. 
It should be noted that the concrete material below the reinforcement layer was neglected in the finite element 
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p = 7 0 0  p s i  

P 
Fig. 19. Zones of tensile failure of the reactor vessel. 
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model. Also, the weight of  the plate was not included in the load application. Experimental and finite element 
solutions for this problem have been obtained by Jofriet and McNeice [25] and Lin and Scordelis [15], respec- 
tively. 

Fig. 21 gives the loading procedure used in the ADINA analysis and compares displacements predicted in this 
study with the experimental results. Essentially, the same analysis results were also obtained with a total of  10 
load steps. It is seen that the calculated and experimentally observed displacements at large load levels compare 
reasonably well. In the analysis, very large displacements were predicted at p = 3.5 kips indicating collapse of the 
slab. 

7. Conclusions 

A finite element model for geometric and material nonlinear three-dimensional analysis of  concrete and some 
rock structures has been presented. The model is based on a nonlinear uniaxial stress-strain relation that is gener- 
alized for two- and three-dimensional stress conditions. Tensile cracking and compression crushing, strain-soften- 
ing and cyclic loading conditions are considered. The model has been implemented and some sample solutions 
have been presented. 

When developing material nonlinear solution capabilities the two major difficulties encountered are that appro- 
priate nonlinear material descriptions must be employed and that these descriptions must be numerically tract- 
able, i.e., a stable and effective implementation must be possible. It is, of  course, imperative that physically appro- 
priate material descriptions be employed in a finite element formulation, but it is also important to operate on 
these descriptions in a stable, accurate and efficient manner, because otherwise the predicted response may be 
meaningless and can certainly not be interpreted with confidence. In the work reported in this paper, emphasis 
was placed on both of  these aspects of  material nonlinear finite element analysis. 

The model proposed in this paper can already be employed effectively for the solution of  various problems. 
The objective in the paper was to describe the basic model and some applications. However, it is realized that sig- 
nificant further studies, evaluations and improvements of the model are needed. For example, a detailed compari- 
son of  the model with other concrete and rock material models, the evaluation of  the model in situations with sig- 
nificant strain softening effects, and the evaluation of  the model to predict fracture discontinuities and strain 
localizations is important [26,27]. Such studies are currently being pursued and are expected to lead to further 
insight and improvements in the model. 
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