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SUMMARY 
A general step-by-step solution technique is presented for the evaluation of the dynamic response of structural 
systems with physical and geometrical nonlinearities. The algorithm is stable for all time increments and in the 
analysis of linear systems introduces a predictable amount of error for a specified time step. Guidelines are given 
for the selection of the time step size for different types of dynamic loadings. The method can be applied to the 
static and dynamic analysis of both discrete structural systems and continuous solids idealized as an assemblage 
of finite elements. Results of several nonlinear analyses are presented and compared with results obtained by other 
methods and from experiments. 

INTRODUCTION 

The development of numerical methods for the nonlinear analysis of structures has attracted much attention 
during the past several years.1-6 Most of the investigations have been concerned with the analysis of a 
particular type of structure and nonlinearity. The purpose of this paper is to present a general solution 
scheme for the static and dynamic analysis of an arbitrary assemblage of structural elements with both 
physical and geometrical nonlinearities. The structural elements may be beam elements or two- and three- 
dimensional finite elements which are used to idealize continuous solids. 

There are various approximations involved in the representation of a continuous body as an assemblage 
of finite elements.' In this paper only the errors associated with the solution of the discrete system nonlinear 
equations of equilibrium are discussed. An incremental form of the equations is given, which can be used to 
obtain a check of equilibrium in the deformed configuration. 

For dynamic analysis an efficient algorithm for the integration of the equations of motion is needed. 
Various different techniques are in As is well known, the cost of an analysis relates directly to the size 
of the time step which has to be used for stability and accuracy. In this paper an unconditionally stable scheme 
is presented, which therefore can allow a relatively large time step to be used. Naturally, the accuracy of the 
numerical integration depends on the size of the time step. For linear systems, the errors associated with the 
numerical integration result in elongation of the free vibration periods and in decrease of the vibration ampli- 
tudes. With this in mind, guidelines can be given for the selection of an appropriate time step size in a 
practical analysis. 

INCREMENTAL FORM OF EQUATIONS OF MOTION 

The dynamic force equilibrium at the nodes (or joints) of a system of structural elements at any time can 
be written as 

Fi+Fd+Fe = R ( 1 )  
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where 
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Fi = inertia force vector 
Fd = damping force vector 
Fe = internal resisting force vector 
R = vector of externally applied forces 

Linear systems 

structural elements, namely 

where M, C and K are the mass, stiffness and damping matrices, and u, u and ii are the nodal point displace- 
ment, velocity and acceleration vectors of the system. The elements in M, C and K are constant, so that 
equation (1) which may be rewritten as 

For linear systems the force vectors can be expressed directly in terms of the physical properties of the 

Fi = MU, Fd=CU, Fe=Ku (2) 

Mii+CU+Ku = R (3) 
constitutes a set of linear differential equations in the displacement vector u. 

If the damping of the system is assumed to be of a restricted form which does not introduce modal 
coupling,1° equation (3) can be solved by the mode superposition method. However, the step-by-step 
integration presented later may give a more efficient solution in cases where a large number of modes partici- 
pate in the response. 

Nonlinear systems 
In the case of nonlinear behaviour, equation (1) is conveniently written at  time t+At  as 

(F; + AF;) + (Ff + AFf) + (Ff + AFf) = R,+A, (4) 
where the subscript t denotes the time at the beginning of the time increment At. The force vectors Ff, Ff and 
F! need to be evaluated using the displacements, velocities and accelerations at time t. The force changes over 
the time interval At are assumed to be given by 

AQ = MtAii,, AFf = C,AUt, AFf = K,Au, ( 5 )  
where M,, C, and K, are the mass, damping and stiffness matrices at  time t;  AU, A ~ I  and Au are the changes 
in the accelerations, velocities and displacements during the time increment. Hence equation (4) becomes 

where 
Mi Aii, + C, AU, + K, Au, = R?+t;,, 

Rth,,, = R,,,, - Ff - Ff - Ff 

(6)  

(7) 
The numerical integration scheme to be presented relates Aii ,and Au, to Au~.  Therefore equation (6) can 

It should be noted that the relations in equation ( 5 )  are only approximations. But the residual force 
be solved for Au,. This also gives A~I,  and Aut. 

is a measure of how well equilibrium is satisfied at  time t+At.  In order to satisfy equilibrium to a prescribed 
tolerance at  the end of each time step, it may be necessary to use iteration. 

EVALUATION OF MATRICES FOR NONLINEAR SYSTEMS 

In the preceding section nonlinear mass, damping and stiffness effects have been considered. The solution 
procedure is now specialized to the analysis of systems with nonlinear stiffness only. This is the most frequent 
requirement. In this case equation (6)  becomes 

where M and C are the constant mass and damping matrices used in equation (2). The evaluation of matrices 
K, and F; is discussed below. 

MAiit + CAUt + K, A u ~  = Rt+At - Miit - C$ - Ff (9) 
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The tangent stifness matrix K, 

matrix Ki and the geometric stiffness matrix K, 
The tangent stiffness matrix of an element at a particular time is the sum of the incremental stiffness 

K1 = Ki+K, (10) 
The calculation of K i  for each element follows the standard approach.6 Note that the calculation must be 

performed in the deformed geometry. Also, for nonlinear materials and large strains the incremental stress- 
strain relationship associated with the strains at  that time must be used. 

Many investigators have derived geometric stiffness matrices for various structural components.4-6 The 
general mathematical expression of virtual work which leads to the definition of the matrix is 

in which rii is the stress in the deformed position and T~~ is the quadratic part of the strain tensor. It follows 
that the geometric stiffness matrix K, can be negligible as compared to Ki when the magnitude of the stresses 
is not large. However, at a high stress level this stiffness effect can be significant, and the distribution of the 
stresses should be defined accurately. 

The suggested approach to evaluate the tangent stiffness matrix K, of an element at  a given time is as 
follows: 

1. Compute the nodal point displacements and the co-ordinates of the nodal points of the element in the 

2. Compute total large strains using the ‘exact’ nonlinear strain-displacement relationship. 
3. From the appropriate stress-strain relation and the history of strain calculate the new material constants 

4. Compute the incremental stiffness matrix based on the incremental properties at that state of stress. 
5 .  Compute the geometric stiffness matrix and add to the incremental stiffness matrix to obtain the tangent 

deformed position. 

and the stresses which correspond to that strain level and strain rate. 

stiffness matrix of the element. 

The internal resisting force vector Ff 
It is possible to calculate the force vector F; by simply adding up the incremental force changes AFf. 

However, because the stiffness matrix K, is, in general, only an approximation, significant errors can 
accumulate in this procedure. 

It is preferable to compute the force vector F; directly using the virtual work principle.1l This principle 
leads for the discrete element system at time t to the following equation 

where 6u is a virtual nodal displacement vector, 6eii is the corresponding virtual small strain and T~~ is the 
actual element stress in the deformed configuration (force per unit of deformed area). The summation sign 
indicates that the integral is computed over the volume of all elements. 

Therefore, the vector F; is obtained as follows: 
Within each element calculate the strain distribution from the total displacements by the direct 
application of the ‘exact’ nonlinear strain-displacement equations. If the change in geometry of the 
structural system is not appreciable, only the linear part of the strain-displacement equations need be 
considered. 
From the appropriate large deformation stress-strain relationships compute the corresponding stresses. 
These stresses exist in the deformed geometry of the structural system. For systems with material 
nonlinearities the stresses may be history dependent. 
Using equation (12) the nodal forces of each element can be calculated from the stress distribution 
obtained in step 2. 
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Similar to the calculation of the system tangent stiffness matrix from the element matrices, the vector F; is 
now formed by a direct assembly of the element force vectors. 

SOLUTION OF EQUATIONS 

In this section the step-by-step integration method for solving the equations of motion is presented. The 
accuracy which can be obtained in the numerical integration is studied, and guidelines are given for the 
selection of the size of the time step. 

The step-by-step integration 
Let u,, ut and U, be known vectors. To obtain the solution at time t+At ,  we assume that the acceleration 

varies linearly over the time interval T = OAt, where 0 2  1.0. When 0 = 1.0 the algorithm reduces to the 
standard linear acceleration method. However, as discussed later, a more suitable 0 should be used. 

Using the linear acceleration assumption it follows that 

(13) 

(14) 

7 
u,+, = u, +z (U,+, + ii,) 

5-2 

6 u,+, = u, + TU, + - (U,+, + 24) 

which gives 
6 6 

ii,+, = -$ (u,+, - u,) - - u, - 24  
7 

and 
ut+, = ;(U,+,-Ut)-2U,--U, 3 .. 

2 

The equations of motion, equations (3) and (9), shall be satisfied at time t + ~ ;  therefore we have 

and 
MU,+, + Cut+, + Ku~+, = I%,+, 

MAU, + CAut + Kt Au, = I%,+, - Miit - Cut - Ff 

where I%,+7 is a 'projected' load equal to R,+B(R,+A,-R,). Equation (3*) is solved for u,+, by simply 
substituting for Ut+, and $+, using equations (15) and (16). To solve for u,+, from equation (9*), we further 
use the relationships Au, = u,+, - u,, Aiq = 6,+, -lit and AU, = Ut+, - Up With u,+, known the accelerations and 
velocities at time t + ~  are obtained using again equations (15) and (16). 

At the desired time t + At the required accelerations, velocities and displacements are given by the linear 
acceleration assumption : 

(1 9) 
At2 
6 = U, + Atfit + - (Uf+At + 24)  

An efficient computer oriented formulation of the step-by-step analysis of linear systems is given in 
Table I. In order to minimize computer storage the damping matrix is assumed to be a linear combination 
of the stiffness and mass matrix. Also, the equations are solved for a vector u: which does not have physical 
significance. However, the use of this vector eliminates the need to store the original stiffness matrix K 
during the solution procedure. 
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Table I. Summary of step-by-step algorithm for linear structural systems 

Initial calculations 
1. Form stiffness matrix K and mass matrix M. 
2. Calculate the following constants (assume C = aM + BK) : 

T = Oat, 0 2  1.37 b, = 2+$b,  

bo = (l+;p) 6 
b7 = 

3 6 b --#3b,-- - 7 8 7 2  

3. Form effective stiffness matrix K* = K + b2 M. 
4. Triangularize K * .  

For each time increment 
1. Form effective load vector R* 

R: = Rt + &&+At - RJ + M[b,  Ut + 6 5  Bt + be Ut] 

2. Solve for effective displacement vector ut 
K*u: = R: 

3. Calculate new acceleration, velocity and displacement vectors, 
&+At = b7 U: + bs Ut + bs + blo Ut 

&+At = Ct + bii(Ut+at + Ut> 

U t + ~ t  = Ut + A& + b,,(Ut+At + 2Ut) 

4. Calculate element stresses if desired. 
5 .  Repeat for next time increment. 

The algorithm for the dynamic analysis of structural systems with physical or geometrical nonlinearities 
is summarized in Table 11. 

Stability and accuracy of the step-by-step integration 
It is most important that the integration method be unconditionally stable for general application. This 

essentially means that a bounded solution is obtained for any size of time step At. A conditionally stable 
scheme requires for a bounded solution a time step smaller than a certain limit. Naturally, the accuracy 
of the solution always depends on the size of the time step, but using an unconditionally stable scheme the 
time step is chosen with regard to accuracy only and not with regard to stability. This generally allows a 
much larger time step to be used. 

A stability analysis of the integration method shows that it is unconditionally stable provided B 2 1-37. 
In order to obtain an idea of the accuracy which can be obtained in the numerical integration we consider 

the analysis of a linear system with n degrees of freedom. The equations governing free vibration conditions 
with damping ignored are 

MU+KU = 0 (20) 
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Table 11. Summary of step-by-step algorithm for nonlinear structural systems 
- ~~ ~ 

Initial calculations 
1.  Form stiffness matrix K and mass matrix M. 
2. Solve for initial displacements, strains, stresses and internal 

3. Calculate the following constants: 
forces due to static loads. 

7 = $At, 8G1.37 
a,, = 6 1 ~ ~  a, = a,/8 a, = At12 
a, = 3/r as = -a,/$ a, = At2/6 
ap = 2a, aa = 1-318 
a3 = 712 

For each time increment 
1. Calculate tangent stiffness matrix Kt. 
2. Form effective stiffness matrix K: = Kt + a, M + a, C. 
3. Triangularize K:. 
4. Form effective load vector R: 
R: = Rt + &&+At - R,) - Ft + M(az dl + 2Ut) + C(24 + a3 iit) 

5 .  Solve for incremental displacement vector Au, 
K: Au, = R: 

6. Calculate new acceleration, velocity and displacement vectors : 
&+At = a4 Au, + a5 8, + a, ii, 
i t + , ,  = l i t  + a,(iit+A, + 6,) 
U t + ~ t  = Ut + At& + a8(&+At + 2Ut) 

7. Calculate strains, stresses, and internal force vector Ft+~t. 
8. For next step return to 1 or 4. 

Let the matrix t$ contain the n eigenvectors of the system, then equation (20) can be transformed into n 
uncoupled equations 

x+SPx = 0 (21) 

where u = +X, !2 = diag(w$), w i  = 2.ir/Ti and the Ti are the natural periods of the system. It is obvious that 
the integration of equation (20) is equivalent to the integration of equation (21). But the advantage of using 
equation (21) is that the accuracy which is obtained in the integration of this equation can be assessed by 
studying the accuracy which is obtained in the analysis of a single degree of freedom system. 

As an example, Figures 1 and 2 show the errors associated with the solution of the initial value problem 
indicated in the figures as a function of At/T and 8, where T is the natural period of the single degree of 
freedom system. The numerical errors are conveniently measured as a percentage period elongation and 
amplitude decay. It is seen that for AtlTsmaller than about 0.01 the numerical error is small; but for At/T> 0.2 
the amplitude decay is very large. Therefore, in the solution of equation (21) with equivalent initial conditions 
the vibration modes with periods smaller than about 5At may be said to be filtered out of the solution. 

These observations about the numerical integration errors are quite general, although only the solution 
of one particular initial value problem was presented.12 The observations can be used in the selection of an 
appropriate time step size in a practical analysis of a linear or ‘slightly’ nonlinear system. 

Selection of time step size 
In the dynamic analysis of most structures only frequencies in a specified range are of practical interest. 

In general the type of loading defines which frequencies are significant, and how small a time step should be 
used. 
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For example in the case of earthquake loading, in  which excitation components with periods smaller than 
about 0-05 s generally are not accurately recorded, there is very M e  justification to include the response 
in these higher frequencies in the analysis. Figures 1 and 2 can be used as a guide to select a time step At which 
produces an acceptable integration error in the low mode response and filters out the higher mode response. 

Af/ T 
Figure 1 .  Percentage period elongation as a function of At/T 

Af/T 
Figure 2. Percentage amplitude decay as a function of Ar/T 

In general, to select an appropriate integration time step for a given problem, it is necessary first to evaluate 
the frequency components of the loading which can be predicted accurately. Next, the form of the finite 
element idealization must be selected in order to define accurately these frequencies. Particular attention 
needs to be given to the fact that the highest frequencies of the lumped parameter system are always in error 
when compared to the continuous problem. Finally, a time step must be selected which accurately represents 
the frequency components in the load and which suppresses the higher frequencies of the lumped parameter 
system. The period elongations and amplitude decays resulting from the numerical integration should be 
small compared with the physical damping which exists in the real material for all frequencies of significance. 

EXAMPLES 

Linear undamped forced vibration of a cantilever beam 
A demonstration of the effectiveness of the numerical method presented in this paper is provided by a linear 

dynamic analysis of a cantilever beam. The finite element idealization of the beam and the time variation of 
the load applied at point A, are shown in Figures 3 and 4. Figure 5 gives the time variation of the normalized 
displacement of the beam tip. It is shown that the well known linear acceleration method, which is condition- 
ally stable, fails to yield a bounded response. But the integration method presented in the paper approximates 
the ‘exact’ solution well for the relatively large At/T ratio chosen. As expected, the accuracy of the method is 
better for the smaller value of 8. 
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Settlement of soil under dynamic pressure 
The dynamic analysis of a confined cylindrical nonlinear soil sample, with dimensions 3 in. by 6 in. as 

shown in Figure 6, is considered next. The time varying pressure, shown in Figure 7, was applied at the top 
of the sample, and the time step used in the numerical integration was 0.005 s. 

The stress-strain relationship of the soil is nonlinear and divided into bulk and shear parts. It can be shown 
that given the initial shear modulus, the only relation required for approximately defining the nonlinear 
hysteretic behaviour of soil under dynamic pressure is the hydrostatic pressure-volume change diagram. 
For the soil in this example the pressure-volume relation is given in Figure 8. The results of a linear and two 

6 x  20"= 120" 

I I I I 1 

E=  30X106 PSI Y= .3 

m = .000733 I b,/in 
Figure 3. Finite element idealization of a cantilever beam 

1 b TIME 

Figure 4. Time variation of the load 
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Figure 5. Deflection of a cantilever beam 



NONLINEAR DYNAMIC ANALYSIS OF COMPLEX STRUCTURES 249 

nonlinear finite element analyses together with experimental data are given in Figure 9. For this example it 
is difficult to obtain the same results in analysis and experiment due to the various types of approximations 
and errors involved in both procedures. However, the nonlinear analyses capture the main behaviour of the 
specimen which is a finite settlement. The linear analysis shows undesirable behaviour since the model cannot 
permit permanent strain. Note that for B = 2-0 the response is smoother, but when 0 = 1.5 the results from 
analysis and experiment are closer. 

l.5l' i-- 
I 

1% p = .000173 I bm/lN3 

Figure 6. (a) Soil sample; (b) Finite element model 

9 00 f 

Figure 7. Time variation of blast pressure 

Dynamic snap-through of an arch 
The last example is a dynamic Iarge displacement analysis of a circular arch subjected to a uniform time 

varying pressure. The finite element and load idealizations are shown in Figures 10 and 11 respectively. The 
following data have been used in the example: 

/3 = 30" 
h = 2.0 in. 
R = 72.95 in. 

p = 0.00625 Ib,/in3 
E = 3326.2 lb/in2 

At = 0.025, 0.0125 and 0.00625 s 
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Figure 12 shows a comparison between the results obtained by HumphreyP and results obtained in the 
analysis of the finite element assemblage using the integration technique presented in the paper. Three 
analyses with time steps equal to 0.025, $(0*025) and a(0.025) were carried out. These indicate convergence 
of the step-by-step integration analysis of the finite element assemblage as At becomes small. The remaining 

VERTICAL STRAIN (O/o) 

Figure 8. Stress-strain diagram for soil 

0 20 40 60 80 100 I20 I40 
TIME ( m S E C )  

Figure 9. Dynamic response of soil sample 
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discrepancy between Humphreys’ series solution and the finite element analysis arises from other approxima- 
tions involved in both procedures. Note, for example, that Humphreys truncates the series solution at a 
finite number of terms, and that the geometry of the arch is not modelled exactly in the finite element analysis. 

Figure 10. Finite element idealization of arch 

t 

b 
8At TIME (SEC) 

Figure 1 I. Load idealization 

2.5 

.4 .8 I .2 
TIME (SEC) 

Figure 12. Deflection of arch versus time 
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CONCLUSIONS 

An efficient solution technique for the nonlinear static and dynamic analysis of an assemblage of structural 
elements has been presented. In the solution, the nonlinear equations of motion are written in an incremental 
form, which lends itself to a check of dynamic equilibrium in the deformed configuration. The equations are 
integrated using an unconditionally stable scheme. To obtain an idea of the accuracy of the numerical 
integration a linear system was considered. This led to the presentation of practical guidelines for the selection 
of the time step size for different types of dynamic loadings. Finally, the example analyses showed the 
effectiveness of the solution technique. 

Although this solution technique can already be used in many different practical analyses, more research is 
required in important problem areas. A most difficult problem in many nonlinear analyses is the evaluation 
of appropriate tangent mass, damping and stiffness matrices. The numerical solution given here assumes that 
the linearization over the time increment is adequate and that at most a few iterations will reduce the residual 
force vector in equation (8) to a negligible quantity. Unless this dynamic equilibrium condition is satisfied, 
we cannot expect any accuracy in the solution. 

Another area in which more research is required is the evaluation of better estimates for the solution 
accuracy. The guidelines given in the paper for the selection of the time step size can only be used when 
systems with small nonlinearities are analysed. If the system is strongly nonlinear, for example, because 
sudden changes in the material properties occur, a much smaller time step may be necessary. At present, in 
most analyses the time step increment is determined by trial and error, which can be a very expensive process. 
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