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Abstract-Solution capabilities for two- and three-dimensional nonlinear finite element analysis of 
concrete structures are presented. The concrete material is modeled including the triaxial nonlinear 
stress-strain behavior, tensile cracking, axon-stiff~~g, compression crushing and str~n-sof~ng. The 
results of various sample analyses are given to demonstrate the constitutive model and the solution 
strategies. These analyses include the response predictions of a test beam and of small scale models of 
two reactor vessels. 

1. INTRODUCT’tON 

During recent years, interest in nonlinear analysis of 
concrete structures has increased steadily, because of 
the wide use of plain, reinforced and prestressed 
concrete as a structural material, and because of the 
development of relatively powerful finite element 
procedures [l]. If a realistic nonlinear analysis of a 
concrete structure can be carried out, the safety of the 
structure is increased and the cost can frequently be 
reduced. 

Concrete exhibits a complex structural response 
with various important nonlinearities; namely, a non- 
linear stressstrain behavior, tensile cracking and 
compression crushing material failures and tempera- 
ture-dependent creep strains [2-91, All these concrete 
nonlinearities depend strongly on the triaxial state of 
stress, and in addition the nonlinearities introduced 
by reinforcing and prestressing steel should in general 
be taken into account [l&13]. 

There are a number of factors that have prevented 
the wider acceptability of nonlinear finite element 
analysis procedures in the analysis of concrete struc- 
tures. A first important consideration is that the 
~nstitutive properties of concrete have not as yet 
been identified completely, and there is still no gener- 
ally accepted material law available to model concrete 
behavior. A second important factor is that nonlinear 
finite element analysis of concrete structures can be 
very costly and may require considerable user exper- 
tise. The high cost of nonlinear analysis of concrete 
structures is largely due to the difficulties encountered 
in the stability and accuracy of the solutions. These 
difficulties, however, are a direct consequence of the 
specitic numerical implemen~tion of the concrete 
nonlinearities. 

t Original figures were generated with a colour producing 
terminal and submitted in colour. 

BCo-author of Part I. 
tt Co-author of Part II. 

The objective in this paper is to present the three- 
dimensional concrete model available in ADINA and 
show some applications. The concrete model was in 
many respects already proposed in [2]. However, our 
recent improvements on the model have been very 
significant and promise to make the model much 
more attractive for practical nonlinear concrete 
analyses. 

~thou~ we could have chosen to present only our 
recent improvements on the concrete model, we 
believe that it is of more interest to have the complete 
model description in this paper with applications. 

The basic aim in the development of the model was 
to implement in ADINA a model that with the 
present constitutive descriptions, numerical methods 
and computing equipment available would satisfy the 
following two criteria. Firstly, the model should be as 
simple as possible, but reproduce the important non- 
linear and strength characteristics consistent with 
experimental results. Secondly, the model should be 
theoretically sound and numerically stable, so that 
reliable analysis results are obtained. 

The material model is a hypoelastic model based 
on a uniaxial stress-strain relation that is generalized 
to take biaxial and triaxial stress conditions into 
account. Tensile cracking and compression crushing 
conditions are identified using failure surfaces, and 
strain-softening effects are included in the compres- 
sion and the tensile regions. A particularly valuable 
property of the model is that it is defined by a number 
of input parameters that provide considerable 
flexibility in its use (and indeed the model may also 
be employed to model sand or rock structures). 

In the following sections we first present the con- 
crete model in detail. We then give some small-size 
applications, merely to demonstrate the details of the 
model behavior when it is subjected to various 
stress-strain paths. Finally, in Part II of tbe paper we 
present the results of the analyses of the Sandia 
pressure vessel, an alkali-silica reacted beam and a 
PWR prestressed concrete containment. The solution 
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Fig. I. Concrete model uniaxial stress-strain law. 

results presented in this section are particularly valu- 
able because they can be compared with and inter- 
preted against laboratory experimental results. 

An important issue in nonlinear analysis is the 
visualization of the obtained response predictions. In 
this paper we use our standard post-processing pro- 
gram ADINA-PLOT to present all of our solution 
results. 

2. PART I: THE CONCRETE MATERIAL MODEL 

The model implemented employs three basic fea- 
tures to describe the material behavior, namely (i) a 
nonlinear stress-strain relation including strain- 
softening to allow for the weakening of the material 
in compression, (ii) failure envelopes that define 
cracking in tension and crushing in compression, and 
(iii) a strategy to model the post-cracking and crush- 
ing behavior of the material. In the solution, the 
material can be subjected to cyclic loading conditions, 
i.e. the numerical solution allows for unloading and 
reloading including deactivation of tensile failures. 
However, as will become apparent, the cyclic loading 
conditions are only modeled realistically in situations 
of essentially proportional loading. 

In the following, the material model is described 
for infinitesimal displacement conditions using the 
engineering stresses ‘trii and engineering strains ‘eii . In 
order to analyze problems with large rotation condi- 
tions, the total Lagrangian stress and strain variables 
must be substituted for the engineering variables [ 11, 
and then the model is directly applicable.7 

t We use the notation of Refs [I,21 in this paper. 

2.6 

I.0 

2.1. Stress-strain relations 

The general multiaxial stress-strain relations are 
derived from a uniaxial stress-strain relation ‘6 versus 
‘e”. In this section, we describe the uniaxial and 
multiaxial stress-strain relations employed in the 
model and concentrate on the behavior prior to 
tensile cracking or compression crushing. 

In the following discussion, all uniaxial parameters 

are identified by a tilde (“) placed over them (i.e. all 
parameters that have been obtained from Fig. I carry 
a tilde). 

2.1.1. Uniaxial conditions. A typical uniaxial stress, 
‘5, to uniaxial strain, ‘6, relation (assuming continu- 
ous loading of the material) is shown in Fig. 1 (61. 
This stress-strain relation shows that there are basi- 
cally four strain phases; namely, corresponding to 
.C,>‘e’>O, &,a’~?>~,,, O>‘e’>& and &c”e’>&, 
where c?, is the strain corresponding to the uniaxial 
cut-off tensile stress d,, ?,,, is equal to t; . F,, where 5 
is an input parameter, CC is the strain corresponding 
to the minimum (crushing) stress, d,, that can be 
reached, and E?,, is the ultimate compressive strain. If 
C, 3 % > 0, i.e. the material is in tension, the 
stress-strain relation is linear until tensile failure at 
the stress d,, and a constant Young’s modulus & is 
employed, 

‘5 = &‘e^ (1) 

For ‘5 < 0, we assume the following relation, 

‘a/a, = 
b%/Jw~l~c) 

1 + A@/&) + B(‘P/&)2 + C(9/&,)) 
(3) 
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and hence, 

(E = 
$[l - B(‘e”/S$ - 2C(‘e’/&)3] 

[ 1 + A (‘6?/frc) + B(‘t?/Q + c(‘Z/ZJr]* (4) 

where 

A = &l/J% + (P3 - 2P2)&/$ - (2P3 - 3P2 + 1) 

(P2 - 2P + l)P 

B=(2$/gJ-3)-2A, C=(2-&/$)+A 

and the strength parameters &, d,, Cc, & = 6c/t?c, d,, 
&, p = &,I& and & = a./$,, are obtained from uni- 
axial tests. It may be difficult to determine somewhat 
accurate values of d, and CM;, in which case reasonable 
values should be assumed by the analyst. 

The stress-strain relation in eqn (3) assumes 
monotonic loading conditions. For unloading condi- 
tions and loading back to the stress state from which 
unloading occurred, the initial Young’s modulus i$ is 
used. For strain states beyond & in compression, it is 
usually assumed that the material cannot resist any 
load and the stresses are set to zero. However, an 
option for a gradual stress unloading beyond 5” is 
also included. 

mined, 

!f<f- (6) 

where f,, is the maximum value of the loading 
function that has been reached during the complete 
solution. In unloading, the initial Young’s modulus, 
&, is used to form the incremental stress-strain 
matrix, both for stiffness and stress calculations. 

To obtain the stress-strain relations in loading 
conditions, the principal stresses are calculated and 
for each principal stress direction a uniaxial tangent 
Young’s modulus, ‘&, corresponding to the strain in 
the principal stress direction, ‘epi, is evaluated using 
eqns (2) and (4). When using eqn (4), the current 
strain ‘epi is employed and to account for multiaxial 
stress conditions the material variables g,, 6”;, & and 
I& are replaced by the variables ai, a:, g: and Z: 
defined in eqns (13) and (14). 

Let lap,, ‘ap2 and ‘up3 be the principal stresses at time 
t, with ‘ups G Iup2 < ‘up, and ‘&, , ‘l?p:p2 and ‘i$,, the 
corresponding uniaxial Young’s moduli. Hence, the 
material is considered as orthotropic with the direc- 
tions of orthotropy defined by the principal stresses. 
The stress-strain matrix corresponding to these direc- 
tions is, considering three-dimensional stress condi- 
tions, 

1 

c=(l+“)(l-2”) 

- (1 -v) 5?,,:pl v ‘E,* v ‘E,, 0 0 0 

(1 - v)‘J$~ v ‘E23 0 0 0 

(1 -v)‘J$3 0 0 0 

$1 - 2v) ‘E,* 0 0 

symmetric gl - 2v) ‘E,3 0 

$1 - 2v) ‘E23 

(7) 

2.1.2. Multiaxial conditions. The behavior of con- 
crete under multiaxial stress conditions is very com- 
plex and has not been assessed experimentally in a 
complete manner. Various material models with con- 
siderable simplifying assumptions have been pro- 
posed in the literature. Considering the variability of 
concrete materials that need be described in practice, 
the objective in this work was to develop an effective 
but simple model that provides sufficient flexibility to 
the analyst to fit the basic material behavior. 

The stress-strain relations are evaluated differently 
depending on whether the material is loading or 
unloading. 

To characterize loading and unloading conditions 
we define a loading function ‘J 

If= ‘f (5) 

where ‘9 = (4 ‘s~‘s~) “2, ‘Sij = ‘dii - ‘a,&, ‘a, = l/3 ‘u,,, 
and 6, is the Kronecker delta. The material is loading 
except when the unloading conditions are deter- 

where v is the Poisson ratio, and the shear modulus 
in a coordinate plane is calculated from the weighted 
Young’s modulus corresponding to that plane, 

‘G, = ‘Eij 1 
= ~ 

1 ‘Upi 1 ‘$i + 1 'Upj 1 ‘Epj 

2(1+V) 2(1+V) I’UpiISI’UpjI ’ (*) 

The above stress-strain relations for material load- 
ing conditions are only employed in the calculation of 
the stiffness matrix at time t. Considering the evalua- 
tion of the stress increment, u, from time t to time 
t + At, the stress integration is approximated in the 
following manner, 

u = ee (9) 

where e is the strain increment. The stress-strain 
matrix C is as C in eqn (7) but the uniaxial Young’s 
moduli ‘$ are replaced by the moduli ‘&. These are 
evaluated using the uniaxial stress-strain relationship 
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ENStLE FAILURE 

Fig. 2. Triaxial failure envelopes reduced to two-dimen- 
sional conditions. 

in Fig. 1, namely, for ‘Go B 0 we have 

qi = $ 

and if IcPi c 0, we define 

r+Ar f 
ap1= 

(10) 

and then 

(12) 

Here, ‘+“ePi and ‘ePi are the strain components at time 
t + At and t in the directions of the principal stresses. 

(a 

Fig. 3. Triaxial tensile failure envelope. 

2.2. Material failure emelopes 

To model the failure of the material in tension and 
compression in two- and three-dimensional analysis 
and to account for multiaxial conditions in the 
uniaxial stress-strain law of Fig. 1, failure envelopes 
are employed. Figure 2 shows an example of the 
failure envelopes used corresponding to two princi- 
pal stress directions. Regarding the tensile failure it is 
noted that considering one principal stress direction 
the tensile strength of the material in this direction 
does not change with the introduction of a tensile 
stress in the other principal stress direction, but a 
compressive stress decreases this tensile strength. 

The failure envelopes shown in Fig. 2 are a special 
case of the triaxial failure envelopes for tensile and 
compressive failures shown in Figs 3 and 4. 

- INPUT TO ADINA 
---KHAN AND SlWGY 

Fig. 4. Triaxial compression failure envelope. 
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The triaxial tensile failure envelope is a straightfor- 
ward generalization of the envelope for two- 
dimensional analysis. However, the compressive 
failure envelope is more complex and requires more 
data input. The envelope can be used to represent a 
large number of different envelopes like the biaxial 
envelope of Liu et al. [7] and the triaxial failure 
surface of Khan and Saugy[8]. The shape of the 
compressive failure surface used is largely based on 
the experimental results reported by Kupfer et al. [6] 
and Launay and Gachon [9]. 

The compressive failure envelope is input using 24 
discrete stress values. Firstly, the values crb,/dc are 
input. These values define at what stress magnitudes 
‘a,, the discrete two-dimensional failure envelopes for 
additional stresses ‘upz and ‘cpr are input. These failure 
envelopes are defined by the failure stress values 
bp$/c?~ (i = 1, . . . ,6;j = 1,2,3) that correspond to the 
stress magnitudes ‘up1 = ‘tag,, ‘ap2 = /I ‘ups (B is a con- 
stant) and ‘up2 = ‘up,. 

The failure envelopes are employed to establish the 
uniaxial stress-strain law accounting for multiaxial 
stress conditions, and to identify whether tensile or 
crushing failure of the material has occurred. Having 
calculated the current principal stresses, to establish 
the uniaxial stress-strain law it is assumed that ‘up, 
and ‘up2 are held constant and the minimum stress 
that would have to be reached in the third principal 
stress direction to cause crushing of the material is 
calculated using the failure envelopes (see Fig. 4). Let 
this stress be 8: and y, = a:/~?,, then we also use 

5; =y,d, (13) 

e’: = (C, r: + C,Yl)% p:=(C,Y:+C,Yl)& (14) 

where C, and C, are constants defined by the user; 

0 0 

symm. 

COMPRESSlC+4 

STRAIN 

Fig. 5. Increase of strength parameters for model under 
multiaxial conditions. 

state in the failure envelopes. In the following we 
consider how one single plane of tensile failure devel- 
ops and how the material fails in compression crush- 
ing. 

Tensile failure occurs if the tensile stress in a 
principal stress direction exceeds the tensile failure 
stress. In this case it is assumed that a plane of failure 
develops perpendicular to the principal stress direc- 
tion. The effect of this material failure is that the 
normal and shear stiffnesses across the plane of 
failure, and the corresponding normal stress and 
shear stresses, are reduced. 

Prior to tensile failure the stress-strain material law 
is given by eqns (7)-(12). Assuming that ‘upi is larger 
than the tensile failure stress, the new material 
stress-strain matrix is in the stiffness matrix calcula- 
tion, 

0 0 0 1 
-[ I -v2 1 ‘I!& v ‘$3 ‘E2, 1 0 0 0 0 0 0 

i.2 0% 
2(1 + v) 0 0 ’ 

normally, C, = 1.4 and C, = -0.4. The constants 
8:) Cl, Pi, 5: are employed instead of the unprimed 

where the ‘Epi are the uniaxial Young’s moduli 

variables in order to establish, using eqn (4), the 
evaluated in the principal stress directions using eqns 

uniaxial stress-strain law under multiaxial conditions 
(2) and (4) and the 'E,, are evaluated using eqn (8). 

(see Fig. 5). 
The constant rl. is a small value, normally lo-‘, to 

To identify whether the material has failed, the 
reduce the stiffness normal to the tensile failure plane, 

principal stresses are used to locate the current stress 
and the constant b, normally 0.5, reduces the shear 
stiffness in the tensile failure plane. 
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For the stress calculation, the following stress- 
strain matrices are used. 

For the tensile stress normal to the tensile failure 
plane and the shear stresses in this plane, we use the 
total strains to calculate the total stresses with 

C=IyIrn. Gp/, G;] (‘6) 

where Ef and G$, G{, are evaluated as shown in 
Fig. 6. In this figure 5 is a variable, input by the user, 
that defines the amount of tension stiffening. Figure 
6 shows that G$ is a fraction of the initial shear 
modulus, &,/2(1 + v), corresponding to the total 
strain normal to the tensile failure plane. Also, Fig. 6 
assumes loading from zero stress directly into the 
tensile region. If the tensile stress is reached by 
unloading from a compressive stress, the strain nor- 
mal to the tensile failure plane is measured from the 
strain at which the stress is zero (see the example of 
Fig. 7). 

For the remaining stress components, the incre- 
ment in the stresses is evaluated from the incremental 
strains using 

’ ‘Q 0 (17) 

symm. (1 - v’)‘G,, 

where the r$i are the uniaxial Young’s moduli eval- 
uated using eqn (12) and ‘E2, and TG23 are evaluated 
using eqn (8) but with r&i instead of ‘J!&. 

Considering eqns (15), (16) and (17), we note that 
by use of eqn (16) the tensile stress normal to the 
tensile failure plane and the shear stresses in this 
plane are gradually released. Also, the equations 
show that plane stress conditions are assumed to exist 
at the plane of tensile failure. The factor tf, is not set 
exactly equal to zero in order to avoid the possibility 
of a singular stiffness matrix. The value to be em- 
ployed for nS must depend on a number of physical 
factors, and in the numerical solution it is at this 
time best to leave nJ as a variable that is input by the 
analyst. 

For visualization, the ‘plane of tensile failure’ is 
referred to as a ‘crack’, but we should interpret this 
terminology judiciously because a physical crack does 
not actually develop at the element integration point. 
Instead, the material has failed in one principal stress 
direction. 

Equations (15), (16) and (17) describe the solution 
when tensile failure occurs. To identify compression 
failure, the largest principal stress IuP, is employed to 
establish from Fig. 4 by interpolation, the biaxial 
failure envelope on ‘up2 and ‘ups. The material has 
crushed if the stress state corresponding to ‘rr,,* and 
‘a,, lies on or outside the biaxial failure envelope. 

2.3. Post-tensile cracking behavior 

Once a tensile plane of failure has formed, it is 
checked in each subsequent solution step whether the 

STRAIN NWIMAL 

RILURE PLANE 

/ 1 
I 

St t 
0 % FAILURE PLANE 

Fig. 6. Material moduli for stress calculation under tensile 
failure. (a) Calculation of Young’s modulus E,, normal to 
tensile failure plane. (b) Calculation of shear modulus in 

tensile failure plane. 

failure is still active. The failure is considered to be 
inactive provided the normal strain across the plane 
becomes negative and less than the strain at which the 
‘last’ failure occurred and is active otherwise. There- 
fore, a tensile failure plane may repeatedly be active 
and inactive. 

If a tensile failure plane has developed, which may 
or may not be active, the material stress-strain 
relations are always established as described above 
but corresponding to the principal stress directions in 
the failure plane and the direction perpendicular to 
this plane. Hence, instead of using the principal 
stresses and corresponding directions as done for the 
unfailed material, the stress conditions along and 
normal to the material tensile failure plane are used 
to evaluate the stress-strain matrix. Also, when a 
failure plane is or was active, a subsequent failure 
plane is assumed to form perpendicular to the direc- 
tion of the one that developed first, once a normal 
stress along the original failure plane has reached the 
tensile failure stress. It follows that at any integration 
point, the direction of the third tensile failure plane 
is fixed once failure has occurred in two directions. 

It may also happen that after tensile failure of the 
material (in one or two directions) the material fails 
in compression crushing, which is identified, as usual, 
by entering the compression crushing envelope in 
Fig. 4 with the principal stress(es) that act(s) along 
the tensile failure plane(s). 

If the material has crushed in compression, it is 
assumed that the material strain-softens into all 
directions. 

2.4. Post-compression crushing, strain-softening 
behavior 

Consider first uniaxial stress conditions. As shown 
in Fig. 1, for a uniaxial strain smaller than &, the 
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material has crushed and softens with increasing 
compressive strain, i.e. ‘1 is negative. 

Under multiaxial stress conditions the compression 
crushing is identified using the multiaxial failure 
envelope, and once the material has crushed isotropic 
conditions are assumed using the uniaxial 
stress-strain law with the constants a:, Pi and so on 
(see Fig. 5) corresponding to the multiaxial condi- 
tions at crushing. The Young’s modulus for the 
isotropic material law is evaluated using 

where ‘epj and eps are the strain component and 
incremental strain component at time t measured in 
the direction of the principal stress ‘rrp,. 

Note that, as shown in Fig. 1, when ‘eps becomes 
equal to or less than P:, the stresses are set to zero. 
However, an option is available for a gradual stress 
unloading in which case the constant Young’s mod- 
ulus & = -5:/c: is employed, i.e. in eqn (18) we then 
use IS=&. 

If unloading of the crushed material in the strain- 
softening region occurs characterized by e,r > 0, the 
initial Young’s modulus $ is used. In all these 
calculations the principal stresses are checked individ- 
ually whether a positive value has been reached, and 
if so, the stress in the corresponding direction is set 
to zero. 

2.5. Poisson’s ratio in the compressive region 

It has been observed in experiments that the ratio 
of lateral strain to principal compressive strain re- 
mains constant until approximately 80% of the max- 
imum compressive stress d,. 

Usually we assume in our analyses that the Poisson 
ratio is constant; however, as an option a value, vr, 
can be used when the material dilates under compres- 
sion. The value of vr is given by [lo], 

vs = v 
‘Q 

when Y~=:QY. 

v~=v,-(v~-v)/~ when y2>yo 

(19) 

where v is the initial Poisson’s ratio, v, is the maxi- 
mum value of Poisson’s ratio at failure and y. is 
usually set to 0.8. 

2.6. Temperature eflects 

In some analyses temperature strains, ‘e”, need to 
be included. These strains are taken into account by 
replacing the total incremental strain, e, in the gov- 
erning incremental equations by the strain e - elh, 
where e” is the thermal incremental strain and is 
calculated from the temperature conditions. 

2.7. Example solutions 

In the following, we present some simple, small-size 
applications to demonstrate the details of the model 
behavior when it is subjected to various load condi- 
tions. In’ all these examples a constant Poisson ratio 
v is used. 

Figure 7 summarizes the response obtained when 
subjecting a single plane stress element to biaxial 
strain-controlled loading. This solution includes ini- 
tiation, closing and reopening of a crack; loading, 
unloading and reloading with large load steps; and 
crushing of the material with strain-softening behav- 
ior. In this figure, the numbers indicate load steps 
in the analysis. Note that the material model can 
be used with relatively large load step increments. 
Figure 8 shows the material failure for different load 
steps indicated in Fig. 7. 

In the next example solution a fully constrained 
concrete specimen modeled by four 4-node plane 
stress elements is subjected to a uniform temperature 
loading ‘8. The initial temperature is zero degrees and 
the temperature is raised to 450°C leading to material 
crushing, see Fig. 9. Note the increase in the crushing 
strength of the material is due to the biaxial stress 
conditions. 

Next, in Fig. 10, a simple plane stress concrete 
element subjected to biaxial compression loading is 
considered. After crushing, the material relation of 
Sec. 2.4 is used, i.e. all Young’s moduli are set to &. 

In a further example solution, a single 2D plane 
stress element is loaded to trace the post-cracking 
behavior of the concrete material model under biaxial 
loading in comparison with uniaxial loading (see Fig. 
11). The shift in the stress-strain 1D response de- 
pends on the cr p,, up2 relation (positive/positive, posi- 
tive/negative) as well as on the magnitude of the 
Poisson ratio. It should be noted that strain-softening 
post-cracking models (r > 1.0) are to be used with 
caution since such models may lead to a nonunique 
solution [14] (see also Sec. 3.2). 

Extensive cracking and complex post-cracking be- 
havior can be observed in the analysis of concrete 
pressure vessels. In this part of the paper we present 
detailed solutions of two ‘reduced’ models. Analyses 
of the complete pressure vessel structures are pre- 
sented in Part II of the paper. 

Figure 12 shows a simple finite element model of 
a part of the Sandia pressure vessel. This model repre- 
sents a slice of the vessel at the elevation 5.969 m. The 
slice is subjected to boundary and loading conditions 
corresponding to the whole structural behavior when 
the vessel is under internal pressure. Three eight-node 
axisymmetric elements were used to model the con- 
crete of the pressure vessel. The l-node axisymmetric 
and 2-node truss elements were used to model the 
steel reinforcements. Figure 13 shows crack distribu- 
tions for different load levels. In Fig. 14 a comparison 
with experimental data is presented. Note that in 
Fig. 13 cracks are plotted at the integration points, 
the size of a cracking symbol depends on the con- 
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Fig. 12. A finite element model for a slice of the Sandia pressure vessel at elevation 5.969 m (see 
19). Top: 2D axisymmetric concrete elements. Bottom: prestressing truss elements. 

also Fig. 

tributing volume at the integration point, circles 
represent hoop cracks and two parallel lines a short 
distance apart represent cracks in the Y-Z plane. A 
smaller distance between the parallel lines is used 
when the crack is closed. 

A simple model of a part of the PWR pressure 
vessel (this vessel is also considered in Part II of the 
paper, see Fig. 30) is shown in Fig. 15. As for the 
Sandia vessel, a slice of the PWR vessel is considered. 
This slice now corresponds to the height 22.30 m. 
Two 8-node axisymmetric finite elements were used 
to model the concrete of the vessel. The steel hoop, 
longitudinal and radial reinforcement is modeled 
using l-node axisymmetric and 2-node truss ele- 
ments. The model is subjected to boundary and 
loading conditions that correspond to the response of 
the complete structure. The crack distributions for 
different solution times are shown in Fig. 16. Note 
that three cracks have been formed at some of the 
integration points at the final load level. In Fig. 17 the 
solution results are compared with the results of an 
analysis using a simple force-balancing method. 

2.8. Concluding remarks 

The objective of Part I of this paper was to 
summarize the current status of our concrete material 

model. The model can be employed in a number of 
important concrete analyses, notably for collapse 
analyses of two- and three-dimensional concrete 
structures. One important aspect is the generality of 
the model with respect to the stress-strain law and 
failure surfaces used. Also, the model is deemed 
computationally efficient because relatively large in- 
cremental load steps can be employed (see Figs 14 
and 17). 

Although a powerful model already, further im- 
provements to the concrete model are surely desir- 
able. Some features that would appropriately gain 
further research attention are the modeling of time- 
dependent behavior, a more accurate representation 
of the post-crushing response and further refinements 
in modeling the tensile-stiffening behavior, the effects 
of Poisson’s ratio and cyclic loading conditions. 

3. PART n: APPLICATIONS OF ADINA 5.0 TO THREE 
TEST STRUCFURE5 

Taylor Woodrow plc (TW), a worldwide engineer- 
ing group, has been involved in the design and 
construction of nuclear power structures for over 30 
years. During this period much knowledge has been 
gained on the short- and long-term behavior of 
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Fig. 14. Displacement-pressure response of the Sandia pressure vessel. 

concrete and a comprehensive degree of expertise has 
been accumulated in the design, analysis and testing 
of a wide range of concrete structures. TW has 
extensive in-house testing facilities which at first were 
used in support of the nuclear industry and later have 
been involved in a wider range of concrete structures 
including the offshore, civil and conventional 
building areas. This test work has supplemented 
the analytical work which itself has augmented the 
testing. 

To increase its analytical capabilities it was decided 
to acquire a nonlinear finite element system which 
included a concrete material model. After reviewing 
a number of alternatives TW obtained the ADINA 8 1 
code in 1983. In using the package on a wide range 
of reinforced concrete structures a number of poten- 
tial improvements to the concrete model could be 
envisaged, and TW decided to add in extra features 
and change existing ones (see [lo, IS]). The form of 
these changes and their influence were shared with 
ADINA R & D, Inc. and have been incorporated 

within some of the improvements to the concrete 
material model that are found in the latest ADINA 
5.0 code. 

The work presented in this section was originally 
carried out using the modified ADINA 8 1 system but 
has subsequently been rerun using the latest ADINA 
5.0 version, these later results being presented now. 
Three applications are given of which two represent 
situations where the original analysis was carried out 
prior to the test results being available. The third 
analysis supplemented the design but will eventually 
be used in conjunction with a physical model at 
present under construction in the Taylor Woodrow 
Laboratories. 

3.1. One-sixth scale model of a reinforced concrete 
containmeht 

The U.S. Nuclear Regulatory Commission (NRC) 
has initiated the construction and testing of a series 
of scale models of containment buildings. This 
formed part of a containment integrity program, one 

i. 

Fig. IS. A finite element model for a slice of the PWR pressure vessel at elevation 22.30 m (see also Fig. 32). 
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t FORCE-BALANCING METHOD 

Fig. 17. Loadclisplacement response for the PWR model of Fig. 15. 
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Fig. 18. General arrangement of the Sandia pressure vessel. It is a 1/6th scale model. 
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Fig. 19. Finite element mesh of the Sandia pressure vessel. 

I I 

Fig. 20. Compressive failure envelope used for analysis of the Sandia pressure vesse1. Comparison of 
experimental values, ADINA input values used in the analysis and ADINA default values. 
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item of which was the construction of a one-sixth 
scale model of a reinforced concrete containment. 
This structure was to be analyzed prior to testing by 
a number of participating organizations, four from 
the U.S. and six from Europe. One of the groups 
submitting an analysis was sponsored by the Central 
Electricity Generating Board (CEGB) of the United 
Kingdom. Work was carried out for the CEGB by the 
Nuclear Design Associates (NDA), a joint venture of 
Taylor Woodrow and Sir Robert McAlpine. 

The analysis formed part of a ‘Round Robin’ 
pretest series of analyses, these being documented in 
a NRC document [16] and formed part of the NDA 
validation work for the use of the ADINA code [ 17) 
Details of the test structure are shown in Fig. 18. It 
can be seen that whilst in general being an axisym- 
metric structure, some degree of divergence from this 
occurs at major penetrations, and with the disposi- 
tion of reinforcement. The ADINA analysis carried 
out was assumed to be axisymmetric, the local threc- 
dimensional effects being investigated by separate 
linear analyses. 

The finite element mesh produced for the ADINA 
analysis is shown in Fig. 19. The concrete properties 
used in the analysis were as follows, 

initial E value ($) = 24,800 MN/m2 
crushing stress limit (8,) = -41 MN/m2 
crushing strain (&) = -0.00186 
ultimate stress (6”) = -30 MN/m2 
ultimate strain (&) = -0.0032 
tensile limit (5,) = 4.1 MN/m2 
Poisson’s ratio (v) = 0.2. 

Compressive failure envelopes were based on pub- 
lished results [18], these being shown in Fig. 20 in 
order to indicate how they deviate from the ADINA 
default values. In general TW has used these failure 
curves for most analyses as it is felt they fit a wider 
range of test results than the default values, although 
the deviation is only of concern in the higher triaxial 
stress states. As an aside, it is TW’s policy when using 
ADINA to try to have a standard approach wherever 
possible, therefore when dealing with conventional 
reinforced concrete most input parameters are un- 
changed from one analysis to the next apart from the 
compressive limit. This even covers the choice of 
tensile limit where, unless otherwise directed by cir- 
cumstances or direct evidence, the value is assumed 
to be 10% of the compressive limit. 

The reinforcement was treated as a multilinear 
elastic model. The main vertical and hoop reinforce- 
ment could be modeled easily but towards the bottom 
of the wall there existed diagonal seismic reinforce- 
ment. It was considered sufficiently accurate to model 
this as an equivalent extra set of vertical and hoop 
bars. Orthogonal bars in the base were likewise 
replaced by equivalent replacement hoop and radial 
bars. 

The physical model contained a steel liner. 
ADINA does not as yet contain an axisymmetric 
shell element, therefore the liner was modeled using 
hoop and meridional truss elements with due al- 
lowance for the Poisson’s ratio effect that would be 
in the plate but which is missing in the equivalent set 
of truss elements. 

Finally the soil was modeled as a set of spring 
elements. Due to the relatively large thickness of the 
bottom cap the choice of spring stiffnesses was not 
expected to significantly influence the final ultimate 
load. 

The model was constructed by Sandia National 
Laboratories and tested in July 1987, by which time 
all analysis work had been carried out, supplied to the 
NRC and disseminated in a report of May 1987 [ 161. 
The test consisted basically of an initial low pressure 
cycle up to 1.15 times design pressure. With design 
pressure at 0.317 MN/m2 this represents an initial 
loading of 0.365 MN/m2. After returning to zero 
pressure a high pressure test was performed up to the 
ultimate pressure sustainable by the structure. In the 
analysis the initial cycle was not included, the loading 
consisting of a gradual application of pressure until 
failure was indicated. 

The following commentary will help to describe 
both the ADINA analysis findings and the complex 
behavior predicted. 

0.138 MN/m’-Cracking occurs at the wall base 
junction due to bending. This represents less than 
44% of design pressure, but subsequent cracking in 
this area progresses across the section in a controlled 
manner. The outcome is that a ‘plastic’ hinge forms 
here. 

0.345 MN/m2-Vertical cracking (that is cracks 
due to hoop stresses) commence at the mid-height 
and quickly spread to reach the dome spring line at 
0.365 MN/m2. 

0.400 MN/m2-Horizontal cracking (due to bend- 
ing and axial tension) appears on the outside face of 
the wall and quickly spreads through the thickness 
and along the wall towards the dome and wall base 
junction. By about 0.55 MN/m2 the dome and wall 
are almost completely cracked through, the pressure 
being resisted by the liner and reinforcement. 

0.552 MN/m2-Cracking occurs at the middle of 
the underside of the bottom cap. By 0.855 MN/m2 
these cracks have extended across the entire under- 
side. 

0.565 MN/m2-Initial yield of the liner at mid- 
height in hoop direction, again rapidly extending up 
and down the structure. 

0.855 MN/m*-Inside hoop reinforcement at mid- 
height reaches first yield. 

0.890 MN/m*-All layers of hoop reinforcement at 
mid-height have yielded resulting in rapid expansion 
of the wall. 

1.000 MN/m2-By this pressure most reinforce- 
ment has yielded. 
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Fig. 21. Analysis and experimental displacement response at the mid-height of the radial movement. 

1.100 MN/m*-Crushing of outer wall at wall-base 
junction followed by complete failure at this location. 

It should be pointed out that in most work to date 
TW has preferred not to use iterations but to progress 
the load at a controlled and sufficiently slow rate with 
holds of pressure at chosen pressure levels. This, 
particularly with our earlier work, seemed to allow 
the analysis to progress further but care was neces- 
sary especially at points of rapid change and near 
ultimate. 

A few figures have been produced to illustrate the 
behavior of the containment. Figure 21 shows the 
comparison between analysis and experiment of the 
mid-height radial movement. This is the dominant 
movement in the structure and so a good choice for 
comparison purposes. As can be seen the actual test 
reached 1.0 MN/m2 at which stage excessive leakage 
occurred, probably through a large liner tear near to 
a major penetration. The correlation between the two 
curves is very high, especially as the small deviation 
over the range O-O.4 MN/m* can be accounted for by 
the initial low pressure test carried out. Reference to 
the table of events indicates that much cracking could 
have occurred, therefore on repressurization these 
regions would have zero tensile strength. 

Two other plots (Figs 22 and 23) show global views 
of the displaced shape and the extent of cracking. 
Figure 22 shows global views of the displaced shape 
at various pressure levels, all displacements being 
drawn to the same scale. Figure 23 shows the extent 
of cracking at various pressure levels. 

3.2. Alkali-silica reacted beam 

During the period 1984-1989 the Road Directorate 
of Denmark initiated a project to study the load 
carrying capacity of structural members subjected to 
alkali-silica reaction (ASR). One item of this in- 
volved studying the shear strength of concrete beams 
subject to ASR. 

At a conference in Denmark in 1988, attendees 
were invited to predict the failure load of one of the 
beams that had been tested, but for which the results 
had not yet been disclosed. The results of this test 
were revealed in a subsequent report [19] together 
with photographs of crack patterns on similar tested 
beams. 

The analysis was carried out on the test beam 
shown in Fig. 24. The beam deviates from a conven- 
tional test by virtue of the ASR, and from the lack 
of shear reinforcement in the zone of maximum shear. 
The mesh used is shown in Fig. 25. The relevant 
properties chosen for the concrete were based on 
cores removed from the beam. Both vertical and 
horizontal cores were taken, the former being 40% 
stronger. Being unable to incorporate this non- 
isotropic behavior a mean compressive strength of 
33.0 MN/m* was used together with a tensile strength 
of 3.3 MN/m*. 

The analysis reached an ultimate load of 132 kN at 
each load position. In the experiment the specimen 
first failed with a shear failure on one side at 
127.4 kN. 

Figure 26 shows the load-deflection curve at mid- 
span and it can be seen that the final failure was fairly 
abrupt even though a great deal of cracking had 
occurred in both the flexure and shear zones. This 
could be interpreted as basically indicating a shear 
failure. Figure 27 shows the extent of cracking at 
various load levels whilst Fig. 28, which plots the 
largest strains, gives a clear picture of the gradual 
flexural damage, initiating on the mid-section bottom 
face very early on, and progressing slowly through 
the depth and outwards towards the supports. The 
subsequent shear damage is seen to be. quite sudden. 
Comparisons with a similar beam can be made in 
Fig. 29 which shows the same form of progressive 
damage with a rapid change on the left hand side at 
ultimate load. 

On studying the Danish report it was seen that the 
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Fig. 22. Global view of the displaced shapes of the Sandia pressure vessel. Displacements magnified by 
a factor of 167. 
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Fig. 23. Global view of the extent of cracking in the Sandia model. In the original, yellow-l crack, 

blue-2 cracks, red-3 cracks. 
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Fig. 24. Alkali-silica reacted beam. Geometry, reinforcement and load diagram. 

Fig. 25. Finite element model, 8-node plane stress elements for the beam of Fig. 24. 
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Fig. 26. Load-displacement response as predicted by ADINA for the alkali-silica reacted beam. 
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Fig. 29. Experimental results of developments of cracks during loading of an alkali-silica reacted beam. 

ASR beams were judged against unaffected speci- 
mens. On testing these it was found that very early 
shear failure initiated in the shear zone resulted in 
lower strengths even though the unaffected concrete 
had a higher strength. It was judged that the ASR 
caused a great deal of micro-cracking of the concrete 
making the beam more ductile, hence redistributing 
the stresses more efficiently in the shear zone. 

To investigate this it was decided to rerun the 
analysis with a higher concrete strength of 
58.2 MN/m2, this being the quoted cylinder strength 
of the undamaged concrete. Just making this change 
resulted, as expected, in an increase in ultimate load, 
contrary to the test results. On reflection, the shear 
zone is basically unreinforced concrete, therefore 
cracking should be concentrated in fewer cracks and 
should propagate more rapidly. This is very similar to 
the situation of no tensile stiffening after failure and 
a reduced shear reduction factor and hence a run was 
made to use a tensile stiffening factor of 1.2 instead 
of 8 and a shear reduction factor of 0.01 instead of 
0.5. Whilst the problem showed much more distress 
in the shear zone it reached higher than expected 
loads. 

Study of the crack dispositions and strains still 
indicates a smearing of cracks instead of the expected 
dominant single crack. Whilst of not too much 
significance in conventionally reinforced structures, 
this phenomenon could be more important in analyz- 
ing problems involving mass concrete. 

3.3. Size&l ‘B’ PWR prestressed concrete contain- 
ment 

The main difference between this containment and 
the Sandia test structure is that the Sizewell structure 
is prestressed by longitudinal, radial and hoop ten- 
dons. Nonlinear analyses have been applied to the 
full scale structure now under construction at 
Sizewell, United Kingdom and to a tenth scale model 
which, at the time of writing, is under construction at 
the Taylor Woodrow Laboratories. 

Figure 30 shows the form of the structure which is 
in essence axisymmetric except for the major wall 
penetration (not indicated on this diagram), the 
tunnel in the base and the disposition of prestress. 
The latter is provided by hoop tendons that cover 
overlapping 240” segments of the wall and the lower 
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Fig. 32. Finite element mesh for the PWR containment model. 

portion of the dome together with longitudinal ten- 
dons that cross the dome orthogonally in plane. The 
hoop tendons are anchored on three buttresses and 
the longitudinal tendons at the prestressing gallery 
below the base. 

The model details are shown in Fig. 31 which 
follows closely the full size structure except for details 
in the bottom cap. The mesh used for the tenth scale 
model analysis is shown in Fig. 32. A similar mesh 
was employed on the full size structure, which was 
also being subjected to a more detailed analysis in 
which the element size was roughly halved through- 
out. A comparison of the two sets of results showed 
that for this structure the use of two elements through 
the wall was sufficient. 

Figures 33 and 34 show progressive deflection 
behavior and crack build up at various pressure 
levels. The accuracy of these predictions will only be 
apparent after the forthcoming pressure tests but 
during the design process certain hand checks were 
made. One of these involved the radial displacement 
of the wall at mid-height which is sufficiently removed 
from the wall-base junction and the dome spring line 
as to make the behavior amenable to solution as a 
long cylinder. 

C.A.S. 32,M-G 

During the pressurization process there are well 
defined stages at which the stress distribution could 
be calculated, these being during the early elastic 
period when the load is shared by the concrete, 
reinforcement and prestress, following the total 
cracking of the concrete with transfer of the load fully 
onto the reinforcement and prestress and finally after 
yielding of the reinforcement when the load is carried 
solely by the prestress. These conditions result in spot 
checks and are shown in Fig. 35 which plots the 
predicted radial deflection of the actual vessel at 
mid-height against the pressure. Close agreement is 
indicated with the ADINA analysis, the latter show- 
ing the effect of the post-tension stiffening during the 
period in which the load is transferred from the 
concrete onto the steel. 

As in most analyses, there are areas of approxima- 
tion and concern where known behavior has by 
necessity been ignored. In this analysis one such 
approximation is centered around the prestressing 
system. The three-dimensionality of the prestressing 
system both from the hoop and particularly in the 
meridional prestressing could be addressed by means 
of three-dimensional analyses although due to the 
various cyclic symmetries involved this may need to 
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Fig. 33. Progressive deflection behavior at various pressure levels for the PWR containment model as 
predicted by ADINA. Disphcements magnified by a factor of 66. 
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Fig. 34. Progressive crack build up at various pressure levels for the PWR containment model. In the 
original, yellow-l crack, blue-2 cracks, red-3 cracks. 
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Fig. 35. Radial deflection of the PWR containment at 
mid-height as a function of applied pressure. 

be at the best a 180” analysis and may even require 
a full 360” investigation. The test structure includes 
all the features of the main structure that could 
influence this and the need for a full three- 
dimensional analysis should be evident after the 
pressure test. 

A more complicating feature in this instance is the 
fact that the prestress is unbonded. This is partly 
overcome for the vertical portion of the prestress as 
only end loads are considered but for the curved 
tendons the interaction between displacements and 
prestress forces is, whilst not being impossible, a very 
complex calculation. ADINA contains means of car- 
rying this out as loads can be made deflection depen- 
dent and this has been demonstrated to be applicable 
to unbonded prestress, but the algorithm to cover the 
general situation is rather formidable. 

3.4. Discussion and conclusions 

The three structures detailed in the previous sec- 
tions have helped to build up a high degree of 
confidence in the ADINA system and the concrete 
model. There is still the need of expertise in its 
successful application and there are areas that need 
further investigation. In particular the effect of more 
discrete cracks as would occur in mass concrete needs 
more study and from work (not yet published) involv- 
ing explosive loadings, there is a need to model the 
concrete past the ultimate strain state as a com- 
paction material. This may simply (Taylor 
Woodrow’s word, not ADINA R & D’s) involve 
marrying the concrete model with the 
Drucker-Praeer cao model. Other tonics for future 

consideration are solution strategies, especially with 
new automatic loading methods becoming available, 
bond between reinforcement and concrete and non- 
orthogonal cracking. 

Concrete in all its many forms still remains a very 
complex material to model numerically but given the 
open exchange of ideas and mutual respect between 
code developers and structural analysts each success- 
ful application helps to meet tomorrow’s challenges 
with an extra degree of confidence. 
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