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The current version of the computer program NONSAP for linear and nonlinear, static and dynamic finite element 
analysis is presented. The solution capabilities, the numerical techniques used, the finite element library, the logical 
construction of the program and storage allocations are discussed. The solutions of some sample problems con- 
sidered during the development of the program are presented. 

1. I n t r o d u c t i o n  

The endeavor to perform nonlinear analyses has steadily 

increased in recent years [1 -4 ] .  The safety o f  a struc- 
ture may be increased and the cost reduced if  a non- 
linear analysis can be carried out. Primarily, nonlinear 
analyses o f  complex structures have become possible 
through the use of  electronic digital computers operat- 
ing on discrete representations of  the actual structure. 
A very effective discretization procedure has proven to 
be the finite element method [5]. Based on this method,  
various large-scale general purpose computer  programs 
with nonlinear capabilities are now in use [6]. 

The development of  a nonlinear finite element analy- 
sis program is a formidable challenge. The proper 
formulation of  the nonlinear problem and its idealiza- 
tion to a representative finite element system demands 
a modern background in structural mechanics. For the 
solution of  the equilibrium equations in space and 
time, stable and efficient numerical techniques need 
be employed.  The efficiency of  a nonlinear program 
depends largely on opt imum usage of  computer  hard- 
ware and software where, specifically, the appropriate 
allocation of  high- and low-speed storage is important .  

* Invited paper M3/1 * presented at the Second International 
Conference on Structural Mechanics in Reactor Technology, 
Berlin, Germany, 10-14 September, 1973. 

The earliest at tempts to obtain nonlinear analysis 
programs essentially involved simple modifications of  
established programs for linear analysis, much in the 
same way as the linear structural theory was modified 
to account for some nonlinearities. However, to ana- 
lyze systems with large geometrical and material non- 
linearities, the program should be designed specifically 
for the required iteration process and not be merely 
an extension of  a linear analysis program. Naturally, a 
linear analysis program should be flexible and easy to 
modify or extend; however, this applies even more to 
a nonlinear analysis program. In particular, it should 
be realized that a great deal of  research is still required 
and currently pursued in the nonlinear static and 
dynamic analysis o f  complex structures. Therefore, 
unless the general nonlinear analysis code is easy to 
modify, it may be obsolete within a few years of  
completion. 

The nonlinear analysis program NONSAP presented 
in this paper is not an extension of  the linear analysis 
program SAP [7], but rather a completely new develop- 
ment [8]. Program NONSAP is designed with two 
primary objectives. The first aim is the efficient solu- 
tion of  a variety of  practical nonlinear problems with 
the current capabilities of  nonlinear analysis procedures 
and computer  equipment.  The second objective is to 
have a program which can be used effectively in the 
various research areas pertaining to nonlinear analysis. 



K.J. Bathe, E.L. Wilson, Nonlinear structural analysis program 267 

Because of continuous improvements in nonlinear 
analysis procedures, both objectives are attained simul- 
taneously by the development of an efficient, modular, 
and easily modifiable general analysis code. The pro- 
gram is designed for a general incremental solution of 
nonlinear problems, but naturally can also be used for 
linear analysis. 

The structural systems to be analyzed may be com- 
posed of combinations of a number of different finite 
elements. The program presently contains the follow- 
ing element types: 

(a) three-dimensional truss element, 
(b) two-dimensional plane stress and plane strain 

element, 
(c) two-dimensional axisymmetric shell or solid 

element, 
(d) three-dimensional solid element, and 
(e) three-dimensional thick shell element 
The nonlinearities may be due to large displacements, 

large strains, and nonlinear material behavior. The 
material descriptions presently available are: 

(1) For the truss elements: linear elastic and non- 
linear elastic. 

(2) For the two-dimensional elements: isotropic 
linear elastic; orthotropic linear elastic; Mooney-  
Rivlin material; elastic-plastic materials, yon Mises or 
Drucker-Prager yield conditions; variable tangent 
moduli model; and curve description model (with 
tension cut-off). 

(3) For the three-dimensional elements: isotropic 
linear elastic and curve description model. 

Program NONSAP is an in-core solver. The capacity 
of the program is essentially determined by the total 
number of degrees of  freedom in the system. How- 
ever, all structure matrices are stored in compacted 
form, i.e. only nonzero elements are processed, result- 
ing in maximum system capacity and solution 
efficiency. 

The system response is calculated using an incre- 
mental solution of the equations of  equilibrium with 
the Wilson 0 or Newmark time integration scheme. 
Before the time integration is carried out, the con- 
stant structure matrices, namely the linear effective 
stiffness matrix, the linear stiffness, mass and damping 
matrices, whichever is applicable, and the load vectors 
are assembled and stored on low-speed storage. During 
the step-by-step solution the linear effective stiffness 
matrix is updated for the nonlinearities in the system. 

Therefore, only the nonlinearities are dealt with in 
the time integration and no efficiency is lost in linear 
analysis. 

The incremental solution scheme used corresponds 
to a modified Newton iteration. To increase the solu- 
tion efficiency, the user can specify an interval of time 
steps in which a new effective stiffness matrix is to be 
formed and an interval in which equilibrium iterations 
are to be carried out. 

There is practically no high-speed storage limit on 
the total number of finite elements used. To obtain 
maximum program capacity, the finite elements are 
processed in blocks according to their type and 
whether they are linear or nonlinear elements. In the 
solution low-speed storage is used to store all informa- 
tion pertaining to each block of finite elements, which, 
in the case of nonlinear elements, is updated during 
the time integration. 

The purpose in this paper is to present the general 
program organization, the current element library, the 
numerical techniques used and some sample solutions. 
The different options available for static and dynamic 
analyses are described. In the presentation emphasis 
is directed to the practical aspects of the program. 
For detailed information on the formulation of the 
continuum mechanics equations of motion, the finite 
element discretization, and the material models used, 
see refs [9] and [10]. 

2. Incremental equilibrium equations of structural 
systems 

The incremental nodal point equilibrium equations 
for an assemblage of nonlinear finite elements have 
been derived in refs [9] and [10]. At time t we have 

Mt+At~ + Ct+Atii + tKu = t+At R _ tF, (1) 

where M is the constant mass matrix; C is the constant 
damping matrix; tK is the tangent stiffness matrix at 
time t; t÷AtR is the external load vector applied at 
time t 4 At; tF is the nodal point force vector equi- 
valent to the element stresses at time t ;  t+At~, t+At~ 
are vectors of  nodal point velocities and accelerations 
at time t + At; and u is the vector of nodal point dis- 
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placement increments from time t to t + At. i.e. 
tl = t+Atll tll. 

As discussed in refs [9] and [10], the solution of 
eq. (1) yields, in general, approximate displacement 
increments u. To improve the solution accuracy, and, 
in some cases, to prevent the development of instabili- 
ties, it may be necessary to use equilibrium iteration 
in each or preselected time steps. In this case we con- 
sider the equilibrium equations 

M t+Atil(O + ct+At{i (i) + tK  AU (i) 

= t + A t  R t + A t F ( i -  1) i = 1.2, 3 . . . (2) 

where M, C, tK, and t+ZXtR are as defined above, and 

t+Ati~(i) ' t+At{l(i)" t+Atu(i) = t+Atu(i- l)  +Au(i)  

are the approximations to the accelerations, velocities, 
and displacements obtained in iteration i. The first 
iteration, i.e. i = 1 in eq. (2), corresponds to the 
solution of eq. (1), where 

At/(1)  = U, t+Atu(O)  = t u ,  t + A t / / ( l )  = t+Ati~ ' 

t+At t j (1)  = t+At/~,  t+AtF(O)  = tF. 

The vector of nodal point forces t+ZXtF(i- 1) is equi- 
valent to the element stresses in the configuration 
corresponding to the displacements t+Atu( i - t ) .  The 
approximations to the velocities and accelerations, 
t+At{l(i) and t+Atil(O, respectively, depend on the 
time integration scheme used [11]. It should be 
noted that the solution scheme used in eq. (2) corres- 
ponds to a modified Newton iteration [3, 5]. 

In program NONSAP, the Wilson 0-method or the 
Newmark method is used for the step-by-step solution 
[11, 12]. Table 1 summarizes the algorithm in linear 
or nonlinear, static or dynamic analysis [10]. The 
specific operations performed during the step-by-step 
solution are discussed in section 7. 

2,1. E l emen t  to structure matrices and force  vectors 

The structure matrices in table 1 are formed by direct 
addition of the element matrices and vectors [5, 13]; 
for example 

K : ZKrn ,  (3) 

where K m is the stiffness matrix of the rnth element. 
AlthoughKm is formally of the same order as K, only 
those terms in K m which pertain to the element de- 

grees of freedom are nonzero. The addition of the ele- 
ment matrices and vectors can, therefore, be performed 
by using the element matrices in compact form to- 
gether with identification arrays which relate element 
to structure degrees of freedom. 

In program NONSAP, either a diagonal or consistent 
mass matrix may be used. In addition, concentrated 
masses corresponding to selected degrees of  freedom 
can be specified. Rayleigh damping is assumed with 
the addition of concentrated nodal point dampers. 
The assumptions used in lumped mass analysis and 
Raleigh damping have been discussed on various 
occasions [5, 14, 15]. 

2. 2. Boundary  condit ions 

If a displacement component is zero, the correspond- 
ing equation is not retained in the structure equilibrium 
equations, eq. (2), and the corresponding element 
stiffness and mass terms are disregarded. I f  a nonzero 
displacement is to be specified at a degree of freedom 
i, say ui = x, the equation 

ku i = kx  (4) 

need be added into eq. (2), where k >> k i i .  Therefore, 
the solution of eq. (2) must give u i = x.  Physically, 
this can be interpreted as adding at the degree of 
freedom i a spring of large stiffness k and specifying a 
load, which, because of the relatively flexible structure 
at this degree of freedom, produces the required dis- 
placement x. This approach simplifies programming 
problems which are normally associated with specifying 
displacements. 

A special boundary element could have been in- 
corporated into NONSAP [7]. However, in the current 
version of NONSAP only translational displacements 
are considered (since only isoparametric elements are 
available, see section 4). Therefore, nonzero displace- 
ment boundary conditions can be specified by using 
the truss element to provide the stiffness k in eq. (4) 
and applying the load kx .  

3. Program organization 

The complete solution process in program NONSAP 
is divided into three distinct phases: 

(1) Input phase. This phase consists of three steps: 
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Table  1. 

S u m m a r y  o f  s t ep-by-s tep  in tegra t ion .  

269 

In i t i a l  c a l cu l a t i ons  

(1) F o r m  l inear  s t i f fness  m a t r i x  K, mass  m a t r i x  M and damp ing  m a t r i x  C; in i t ia l ize  ° u ,  ° t i ,  off. 
(2) Ca lcu la te  the  fo l lowing  cons t an t s :  

to l  < 0 .01;  n i t e m  ~ 3; in s ta t ic  ana lys i s  O = 1 and  go to  (3). 
Wilson O-method:  0 >1 1.37, usua l ly  0 = 1.4, ~- = OAt 

a 0 = 6 /¢  2 a I = 3/r  a 2 = 2a I a 3 : 2 

a4 = 2 a s = r /2  a6 = ao/O a7 = -a2 /O  

as  = 1 - 3/0 a 9 = A t / 2  a t o  = A t 2 / 6  

N e w m a r k  m e t h o d :  0 = 1.0, 6 /> 0.50,  a /> 0 .25(0 .5  + ~,)2, r = A t  

a 0 = 1 / ( a A t  2) a 1 = 8 / ( a A t )  a 2 = 1 / ( aAt )  a 3 = 1 / (2a )  - 1 

a4 = 6 /a  -- 1 as = & t ( 6 / a  - 2) /2  a 6 = a 0 a 7 = - a  2 

a8 = - a 3  a9 = At(1 - 6)  a l o  = 8 A t  

(3) F o r m  ef fec t ive  l inear  s t i f fness  m a t r i x :  K = K + ao M + a i C .  

(4) In l inear  ana lys i s  t r i a n g u l a r i z e / ( .  

Fo r  each t i m e  s tep  

(A) 

(B) 

In  linear analysis  

(i) F o r m  ef fec t ive  load  vec tor :  

t+r/~ = t R + o ( t + A t R  _ tR )  + M ( a o t u  + a2 t~ + a3t i i )  + C ( a  I t u + a4t t j  + as tij). 

(ii) Solve for d i s p l a c e m e n t  i nc remen t s :  

/ ~ r + ~  u = t + r / ~ ;  u = r + ~ u  - tu. 

(iii) Go to (C). 

In  non l inear  analysis  

(i) I f  a new s t i f fness  m a t r i x  is to be fo rmed ,  u p d a t e / ~  for non l inea r  s t i f fness  e f fec t s  to  o b t a i n  
t/~; t r i angula r ize  t ~ :  

tt? = L D L  r .  

(ii) F o r m  effec t ive  load vec tor :  

t+r[~ = t R + o ( t + A t R  _ tR )  + M ( a 2 t u  + a3t i i )  + C(a4tdt + as t i i )  _ tF. 

(i i i)  Solve for  d i s p l a c e m e n t  i n c r e m e n t s  us ing la tes t  D, L fac tors :  

L D L  Tu = t+,[~. 

(iv) I f  requi red ,  i t e ra te  for d y n a m i c  e q u i l i b r i u m ;  then  in i t ia l ize  u (°) = u,  i = 0 

(a) i = i +  1. 
(b) Ca lcu la te  (i  - 1)st a p p r o x i m a t i o n  to  acce le ra t ions ,  ve loci t ies ,  and  d i sp l acemen t s :  

t+rii(i--I ) = a o u ( i - l )  _ a2t f i  _ a3t i i ;  t + r ~ ( i - l )  = a l u ( i - l )  _ a 4 t u  _ ast i i ;  

t+ru(i-- l )  = u(i--1) + tu. 

(c) Ca lcu la te  (i - 1)st e f fec t ive  ou t -o f -ba lance  loads:  

t + r / ~ ( i - l )  = t R + o ( t+AtR  _ tR )  _ M t + Z i i ( i - l )  _ c t + r / j ( i - l )  _ t + r F ( i - l ) "  



270 K.J. Bathe, tL l.. Wilson. Nonlinear structural analysis program 

Table 1 (con t inued) .  

(d) Solve for i th cor rec t ion  to d i sp l acemen t  inc rements :  

L D L  T Au(Z) = t+r/~(i-- 1). 

(e) Calcula te  new d i sp lacemen t  i nc remen t s :  

lt(l) = u ( i -  1) + Au(i). 

(f) I te ra t ion  convergence  if II ~u(i)lI2/llu (i) + tull2 < tol. 

If convergence :  u = u (i) and go to (C); 
If no  convergence  and  i < nitem: go  to Ca); o therwise  res tar t  using new s t i f fness  ma t r ix  
a n d / o r  a smaller  t ime s tep size. 

(C) Calcula te  new accelera t ions ,  velocit ies,  and  d i sp l acemen t s  

Wilson 0 - m e t h o d :  

t+ ~ti i  =a6 u + avtft + as t / i ,  

t+At~l = t(l + a9(t+Ati i  + t/~), 

t+~tu  = tu + ~ t  t~ + a l o d + ~ t i i  + 2t//). 

N e w m a r k  m e t h o d :  

t+ at i i  = a6 u + aTtft + asti i ,  

t+Atu  = tu + a9tii  + a lo t+a t i i ,  

t+~tu  = tu + U. 

(a) The control information and nodal point input 
data are read and generated by the program. In this 
phase the equation numbers for the active degrees 
of freedom at each nodal point are established. 
(b) The externally applied load vectors for each time 
(load) step are calculated and stored on tape (or 
other low-speed storage). 
(c) The element data are read and generated, the 
element connection arrays are calculated and all 
element information is stored on tape. 
(2) Assemblage of constant structure matrices. Be- 

fore the solution of eq. (2) is carried out, the linear 
structure stiffness, mass, and damping matrices are 
assembled and stored on tape (or other low-speed 
storage). In addition, the effective linear structure 
stiffness matrix is calculated and stored (see table I ). 

(3) Step-by-step solution. During this phase the 
solution of eq. (2) is obtained at all time points. In 
addition to the displacement, velocity, and accelera- 
tion vectors (whichever is applicable), the element 
stresses are calculated and printed. Before the time 

integration is performed, the lowest frequencies and 
corresponding mode shapes may be calculated. Details 
of the step-by-step solution are presented in section 7. 

It should be noted that these basic steps are inde- 
pendent of the element type used and are the same 
for either a static or dynamic analysis. However, only 
those matrices actually required in the analysis are 
assembled. For example, no mass and damping matrices 
are calculated in a static analysis. 

Program NONSAP is an in-core solver and the high- 
speed storage capacity of  the program is determined 
by the maximum storage that is required during the 
three phases. Figs 1 3 show the dynamic storage alloca- 
tions used in each phase. We note that, in general, 
maximum high-speed storage is required during the 
step-by-step solution. However, in some cases the 
storage required during the input phase may govern 
the system size that can be solved. 

Figures 1-3  show that the lowest high-speed storage 
locations are reserved throughout the solution for 
element group information. For the analysis, the finite 



K.J. Bathe, E.L. Wilson, Nonlinear structural analysis program 271 

ADDRESSES DIMENSION ARRAYS 

NUMEST 

N1 -----------@ NDOF*NUMNP 

N2---------- NUMNP( ~ ) 

N3-- I- NUMNP 

N 4 - - - ~  NUMNP 

N 5 - - - - ~  NEQ( 2 ) 

N 6 - - - ~  NPTM 

N 7 - - ~  NPTM 

N8 - NLCUR*NSTE 

N 9 - - ~  NLOAD 

N I O - ~  NLOAD 

NIl l- NLOAD 

N l 2 ~ ~  NLOAD _.....41 

TOTAL I -  

Element property 
storage 

(These storage 
locations used consecu- 
t ively by each element 
group. ) 

ID = boundary condition codes, 
NDOF 5 6 

X = X-coordinates 

Y = Y-coordinates 

Z 

R 
XMN 

= Z-coordinates 

: load vector or 
: diagonal mass matrix 

RV 

TIMV ~ ~; 
o ~  

NOD ~ u 

) ' 4 - }  

IDIRI~ ~ > 

NCUR "-= 

FAC 

Fig. 1. Storage allocation during input phase. (I)NUMNP = number of nodal points, (2)NEQ = number of equations. 

elements of  the complete assemblage need be divided 
into element groups according to their type, the non- 
linear formulation (see section 4), and the material 
models used (see section 5). One element group must 
consist of the same type of elements, must use one 
nonlinear formulation and only one specific material 
model. The data pertaining to each individual element 
group need to fit into the NUMEST storage locations, 
fig. 1. Therefore, the minimum that NUMEST should 
be specified is equal to the locations required to store 
the data pertaining to any one of the elements. 

The use of element groups reduces input-output  
transfers during the solution process, since the data 
of the elements is retrieved in blocks during the solu- 

tion of eq. (2) and element stress calculations (see 
section 7). Usually, NUMEST is some reasonable frac- 
tion of the total number of high-speed storage locations 
available, and is not reset for each problem. During 
the input phase the program calculates the exact num- 
ber of high-speed storage locations required for each 
element group, and NUMEST is reset to MAXEST, 
which is the actual maximum number of locations 
needed, see figs 2 and 3. Therefore, an optimum of 
high-speed storage allocation is obtained during the 
step-by-step solution. Fig. 4 shows the tape storage 
used for the element group information. 

To further improve high-speed storage capacity, 
NONSAP is an overlaid program. The overlay structure 
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ADDRESSES DIMENSION ARRAYS 

N1 ~ O  

N2 ~ O  

MAXEST 

NEQ+I 

NWK 

NEQ (~) 

Element proper ty  
storaqe 

MAXA = addresses of  diagnnal 
elements of the 
s t i f f ness  matr ix  

S t i f fness  or 
mass matr ix  

,4 F 

TOTAL 

NEQ 

Concentrated nodal "] 
masses or dampers i 

I f-I 
Lumped mass matr ix  ! 

For dynamics on]y 

Fig. 2. Storage allocation during matrix assemblage phase. (1)NEQ = number of equations. 

has been chosen to correspond to the three phases of 
execution listed above, the element library, the mater- 
ial models available, and the frequency calculation 
option. Fig. 5 shows the overlay structure of NONSAP. 

3.1. Nodal point input data and degrees o f  freedom 

The nodal point data read during the first step of the 
input phase consists of the boundary condition codes 
(stored in the ID array) and the global X, Y, Z co- 
ordinates of each nodal point. The same input is also 
required for program SAP [7]. A maximum of three 
boundary condition codes need currently be defined, 
since a finite element node can have at most three 
(translational) degrees of freedom (see section 4). As 
shown in fig. 1, all nodal point data is retained in 
high-speed storage during the complete input phase, 
i.e. during the calculation of the externally applied 
load vectors and the reading and generating of the 
element group information. 

It need be noted that the user should allow only 
those degrees of  freedom which are compatible with 
the elements connected to a nodal point. The program 

can deal with a maximum of six possible degrees of 
freedom (three translations and three rotations) at 
each nodal point, and all non-active degrees of freedom 
need be deleted. Specifically, a ' I '  in the ID array de- 
notes that no equation shall be associated with the 
degree of freedom, whereas a '0' indicates that this 
is an active degree of freedom [7]. Fig. 6 shows for 
the simple truss structure the ID array as it was read 
and/or generated by the program. Once the complete 
1D and X, Y, Z arrays have been obtained, equation 
numbers are associated with all active degrees of free- 
dom, i.e. the zeros in the ID array are replaced by 
corresponding equation numbers, and each one is 
replaced by a zero, as shown in fig. 7 for the simple 
truss example. 

3. 2. Calculation o f  external load vectors 

The loading in the analysis can consist only of  con- 
centrated nodal point loading, i.e. all distributed body 
or surface loading must be transformed to nodal point 
loading prior to using NONSAP. The load correspond- 
ing to a degree of freedom is assumed to vary with 
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ADDRESSES DIMENSION ARRAYS 

Nl I- 

N2 - - - ~  

N3 - ' :  

MAXEST 

NEO+I 

NEQ (~) 

NEQ 

NWK N 4 ~  6 

N 5 ~ Q  NEQ 

N6 [ :  NEQ 

NT-- I- NEQ 

N8-- ~ NEO 

N9 [- NEQ 

Element property 
Storage 

MAXA addresses of diagnnal 
elements of the 
stiffness matrix 

DISP displacements 

R loads or 
DISPI displacement increme~}ts 

Effective stiffness 
or mass matrix 

RE! 
, ~#orking vectors 

WV i 

VEL = velocities 

ACC acceleratinns 

×M diagonal mass 
matrix 

o 

I .L  

TOT;,L 

Fig. 3. Storage allocation during time integration. (1)NEQ = number of equations. 

time as expressed by a time function and a load multi- 
plier, both defined in the input. 

3.3. Read-in o f  element data 

In the last step of the input phase, element information 
for each element group is read and generated. Speci- 
fically, the element coordinates, the material properties 
and the element connection arrays are established. 
Also, working vectors which store required element 
strains, stresses and other variables are initialized. For 
each element group this information is processed in 
the first NUMEST high-speed storage locations and 
then written together in one block on secondary stor- 
age. During the next phases of the solution, therefore, 
the required element data can be read in blocks, sequen- 

tially one block at a time, into the same high-speed 
storage locations. 

The element connection array, i.e. vector LM of an 
element, is established from the ID matrix and the 
specified nodal points of the assemblage pertaining to 
the element. The connection array for a typical ele- 
ment of the truss example is shown in fig. 8. 

It should be noted that the reading and generation 
of the element data of one group requires only one 
call of the specific element overlay needed since all 
elements in one group are of the same kind. After all 
element information has been established, the ID and 
X, Y, Z arrays are no longer required, and the corres- 
ponding storage area is used for the formation of the 
constant structure matrices and later for the solution 
of the equations of equilibrium. 
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TAPE l TAPE 2 

Linear Element Nonlinear Element 
Group Storage Group Storage 

TAPE 9 

Nonlinear Element 
Group Storage 

Linear element 
group l 

Linear element 
group 2 dJ 

Linear element 
group "NEGL" 

---LI 
Storage 
Locations 

~ L  2 

~LNEGL 

LI,NLI,L2,NL 2 . . . . .  LNEGL,NLNEGN L < MAXEST ~ NUMEST 

i 

Nonlinear element 
group I f 

' Nonl inear element 
group 2 

Nonlinear element 
group "NEGNL" 

f N L ~  
Storage 

Locations 

-----NL~ 

Nonlinear element 
group l 

Nonlinear element 
group 2 

Nonlinear element 
group "NEGNL" 

X'~Sequential reading a n d /  
writing during time integration 

Fig. 4. Auxiliary storage organization for element group information. 
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TRUSS ELEMENT 
X Y IN FIGURE 8 

NODAL POINT LAYOUT OF TRUSS 

i -i 
2 1 
3 1 

ID= 4 1 0 

5 1 0 

6 1 0 

7 1 0 
# 

NODAL POINT 
NUMBERS 

3 4 5 6-~. 

1 1 1 

1 1 1 

0 1 l 

0 1 1 

0 1 1 

0 1 I 

0 1 1 

DEGREES 
OF FREEDOM 

Fig. 6. Nodal point layout of truss example and ID array as 
read and/or generated. 

ID • 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 ] 2 0 0 0 
0 3 4 0 0 0 
0 5 6 0 0 0 
0 7 8 0 0 0 
0 9 ]0 0 0 0 

Fig. 7.11) array of truss example after allocation of equation 
numbers to active degrees of freedom. 

4 ~ L  POINTS o 

I 

4 ! 
LM = J 

0 

, J 
5 

6 

Fig. 8. Connection array (vector LM) for a typical element 
of the truss example. 

3. 4. Formation o f  constant structure matrices 

All structure matrices which are not time dependent 
are calculated before the time integration is carried 
out. At this stage it is necessary to distinguish between 
the different kinds of  analyses possible, namely whether 
a linear or nonlinear, static or dynamic analysis is re- 
quired. The storage allocation during this phase was 
given in fig. 2, where it is shown that all required linear 
structure matrices are assembled using the same high- 
speed storage locations. 

Figure 9 lists the sequence o f  assemblage and the 
tape storage used for the constant structure matrices 
corresponding to the different analyses. Note that 
only those matrices to be used later in the step-by- 
step solution are stored on tape. The assemblage of  a 
structure matrix is effected by reading the data of  all 
required element groups in succession, and by cal- 
culating and adding the element matrices to the struc- 
ture matrix, as was discussed in section 2.1. 

It should be noted that in linear analysis the struc- 
ture stiffness or effective stiffness matrix is triangular- 
ized before storage on tape. In the step-by-step solu- 
tion only forward reductions and back substitutions 
of  the (effective) load vectors are then required (see 
section 7). 

3.5. Compacted storage scheme 

An important aspect is the efficient storage of  the 
structure matrices and an effective solution o f  the 
equilibrium equations. The storage scheme need be 
optimized to obtain maximum capacity. The effective 
solution of  the equations is necessary to reduce total 
solution cost. 

In program NONSAP a compacted storage scheme is 
used in which all structure matrices are stored as one- 
dimensional arrays, and only the elements below the 
skyline of  a matrix are processed [16]. Fig. 10 shows, 
as an example, the element pattern in a typical stiffness 
matrix before and after triangularization. It should be 
noted that, in general, zero elements within the sky- 
line do not remain zero during the equation solution 
and must be stored, whereas all elements outside the 
skyline do not need to be considered. Therefore, by 
storing and processing in the equation solution only 
the elements within the skyline, a minimum number 
of  high-speed storage locations is used. 
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3. 6. Equat ion  solution 

The solution of equations is obtained using the linear 
equation solver COLSOL. This subroutine uses Gauss 
elimination on the positive definite symmetrical sys- 
tem of equations [ 16]. Tile algorithm performs -- for 
practical purposes - a minimum number of arithmetic 
operations, since only the elements within the skyline 
of the matrix are processed. The algorithm is used 

in all analysis types, i.e. in linear, nonlinear, static or 
dynamic analysis, and consists of the L D L  v decom- 
position of the stiffness matrix (or effective stiffness 
matrix), and the reduction and back substitution of 
the (effective) load vector. For example, in linear 
static analysis, the equations are K u  = R and the pro- 
gram calculates 

K = L D L  T, (5) 

L v -~ R, (6) 

DL'ru = v, (7) 

where L and D are a lower triangular and a diagonal 
matrix, respectively. 

The linear elastic analysis does not allow for any 
nonlinearities, whereas the materially nonlinear only 
analysis includes material nonlinearities, but no geo- 
metric nonlinearities [10]. The different linear and 
nonlinear material models currently available in NON- 
SAP are described in section 5. The total Lagrangian 
and updated Lagrangian formulations may include all 
nonlinearities, and which formulation should be em- 
ployed depends essentially on the definition of the 
material model used [10]. 

In the following, the finite elements currently 
available in NONSAP are briefly described. It should 
be noted that a particular element group must consist 
of finite elements of the same type, described by one 
of the four element formulations above, and must use 
one material model only. Since all four formulations 
and all material models have not been implemented 
for all element types, it is important to identify the 
nonlinear formulations and material models currently 
available in NONSAP for a specific element type, as 
illustrated in figs 11-  13. 

41 .  Truss e lement  

4. Element library 

In the current version of program NONSAP all finite 
elements are isoparametric (or subparametric) elements 
[5]. Corresponding to the nonlinearities in the system, 
four different analysis procedures may be considered 
for a finite element: 

(1) Linear elastic analysis. The displacements of 
the element are assumed to be neglig|bly small and the 
strains infinitesimal. The material is isotropic or ortho- 
tropic linear elastic. 

(2) Material nonlinear only analysis. The displace- 
ments of the element are negligibly small, and the 
strains are infinitesimal. The material stress-strain 
description is nonlinear. 

(3) Total Lagrangian formulation. The element may 
experience large displacements and large strains. The 
material stress-strain relationship is linear or nonlinear. 

(4) Updated Lagrangian formulation. The element 
may experience large displacements and large strains. 
The material stress-strain description is linear or 
nonlinear. 

A three-dimensional truss element is available in 
NONSAP. The element is assumed to have constant 
area, and may be used in linear elastic analysis, materi- 
ally nonlinear and/or large displacement geometrically 
nonlinear analysis. In the large displacement analysis, 
the updated Lagrangian formulation is used, but small 
strains are assumed in the calculation of element 
stresses. The nonlinear elastic model is described in 
section 5. As noted earlier, the truss element can be 
used to specify nonzero boundary displacements [7]. 

4.2. Plane stress and plane strain e lement  

A variable-number-nodes isoparametric finite element 
is available for two-dimensional plane stress and plane 
strain analysis. The element may have from 4 to 8 nodes, 
where any one of the nodes 5 - 8  can be omitted. The 
variable-number-nodes option allows effective modelling 
from coarse to finer finite element meshes. The plane 
stress and plane strain element can be used in all four 
formulations. The material models available are de- 
scribed in section 5. 
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LINEAR ANALYSIS 

STATIC ANALYSIS DYNAMIC ANALYSIS 

l)  Calculate linear structure 
stiffness matrix K. 

2) Triangularize K and 
store on tape 7. 

Tape 4: 

Tape Layout 

(not used) 

Tape 7: K = LDL T 

Tape lO: (not used) 

l )  Calculate linear structure 
stiffness matrix K. 

2) I f  Rayleigh damping is specified 
store K on tape 4. 

3) I f  frequency analysis is to 
be performed, store K on 
tape lO. 

4) Add mass and damping effects 
to K to obtain linear 
effective stiffness matrix K. 

5) Triangularize K and store 
on tape 7. 

6) Calculate mass matr ix M 
and store on tape 4 ( i f  con- 
s is ten t  mass matr ix)  or tape 
7 ( i f  diagonal mass mat r i x ) .  

7) I f  concentrated nodal dampers 
specified, store nodal damp- 
ing vector C d on tape 4. 

Tape Layout 

Tape 4: K ( i f  Rayleigh damping) 

M (consistent mass 
case only) 

C d ( i f  nodal damping) 

Tape 7: ~ = LDL T 

M (diagonal mass 
case only) 

Tape I0: K (for frequency. 
analysis only) 

Fig. 9. Assemblage of  constant structure matrices. 
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NONLINEAR ANALYSIS 

STATIC ANALYSIS DYNAMIC ANALYSIS 

I) Calculate linear structure 
stiffness matrix K, i . e . ,  
that part of the total 
structure stiffness matrix 
which corresponds to the 
linear element groups. 

2) Store K on tape 4 and on 
tape 7. 

Tape Layout 

Tape 4: I K 

Tape 7: K 

I) Calculate linear structure 
stiffness matrix K. 

2) Store K on tape 4. 

3) I f  frequency analysis is to 
performed, store K on 
tape lO. 

4) Add mass and damping effects 
to K to obtain linear ef- 
fective stiffness matrix ~. 

5) Store K on tape 7. 

6) Calculate mass matrix M and 
store on tape 4 ( i f  consist- 
ent mass matrix) or on tape 7 
( i f  diagonal mass matrix). 

7) I f  concentrated nodal dampers 
specified, store nodal damp- 
ing vector C d on tape 4. 

Tape 4: 

Tape Layout 

Tape 10: (not used) 

K 

M (consistent mass 
case only) 

C d ( i f  nodal dampinq) 

Tape 7: 

M 

Tape lO:[  K 

(diagonal mass case 
only) 

(for, frequency, I . anaJysls on~)  I 

Fig. 9 (continued). 
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Fig. ]0. Typical element pattern in a stiffness matrix. X = 

nonzero element ,  and 0 = zero element.  
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NONLINEAR FORMULATIONS MATERIAL MODELS 

I. LINEAR ANALYSIS 1 LINEAR ISOTROPIC ELASTIC 
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ONLY 
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4 CURVE DESCRIPTION NONLINEAR MODEL 
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5. PLASTICITY MODELS 
(VDN HISES OR DRUCKER- 
PNAGER YIELD CONDITION) 

6 NONLINEAR, ISOTROPIC 
INCOMPRESSIBLE ELASTIC 
(MOONEY-RIVLIN MATERIAL) 

Fig. 12. Two-dimensional  plane stress, plane strain and axi- 
symmetr ic  elements.  

/ 
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NONLINEAR FORMULATIONS MATERIAL MODELS 

I. LINEAR ANALYSIS 1. LINEAR ISOTROPIC 
ELASTIC 

2. MATERIALLY NONLINEAR 2. CURVE DESCRIPTION 
ONLY NONLINEAR MODEL 

Fig. I I. Truss element. Fig. 13. Three-dimensional solid and thick shell element. 
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4. 3. Axisymmetric shell or solid element 

The variable-number-nodes element described above is 
also available for axisymmetric two-dimensional analy- 
sis of shells or solids (with axisymmetric loading). 

linear material models. In the definition of a material 
model, it may have been assumed that a specific non- 
linear formulation is used. The application of the 
different material models is discussed in ref. [10], 
where the assumptions used are pointed out. 

4.4. Three-dimensional solid or thick shell element 

A general three-dimensional isoparametric element 
with a variable number of nodes from 8 to 21 can be 
used. The first eight nodes are the corner nodes of the 

element, nodes 9 - 2 0  correspond to midside nodes and 
nodes 21 is a center node. The element can be used 
for three-dimensional analysis of solids and thick shells. 
As for the two-dimensional elements, the possibility of  
choosing different element node configurations allows 
effective finite element modelling. The three-dimen- 
sional element can currently only be used in linear iso- 
tropic analysis and in nonlinear analysis with material 
nonlinearities. 

5. Material models 

The largest number of material models is available for 
two-dimensional analysis, since it is anticipated that 
the two-dimensional elements will be used in most 
analyses. For the same reason, also all three nonlinear 
formulations can be used for the two-dimensional 
elements. All material models available in NONSAP 
are discussed in ref. [10]. 

5.1. Truss element material models 

The truss element material behavior can be described 
by means of two models: 

(1) Linear elastic material. The material can be 
linear elastic defined by Young's modulus only. 

(2) Nonlinear elastic material. The nonlinear elastic 
material behavior is defined by specifying the stress as 
a piecewise linear function of the current (infinitesimal) 
strain. Thus, the total stress and the tangent modulus 
are directly defined in terms of the total strain. 

5. 2. Two-dimensional element material models 

The stress-strain relationship of the two-dimensional 
elements can be described by various linear and non. 

5.2.1. lsotropic and orthotropic linear elastic material 
The stress-strain relationships are defined by means 
of the constant Young's moduli and Poisson's ratios 

[281. 

5. 2. 2. Mooney Rivlin material model 
A hyperelastic incompressible material model is avail- 
able for the analysis of rubber-like materials [3, 17]. 
The stress-strain relationship is defined using the 
Mooney-Rivlin material constants. In NONSAP the 
model can only be used in plane stress analysis. 

5. 2. 3. Elastic-plastic material models 
Elastic-plastic analysis using a plastic potential func- 
tion can be carried out. The plasticity relations available 
are those based on the use of the yon Mises yield con- 
dition and the Drucker-Prager yield condition. Both 
forms of describing material behavior have been em- 
ployed extensively in practice [2, 18-20],  Using the 
von Mises criterion, linear isotropic hardening can be 
assumed. In analysis using the Drucker-Prager yield 
condition, the material is assumed to be elastic- 
perfectly plastic. 

5. 2. 4. Variable tangent moduli model 
The variable tangent moduli model is available for the 
analysis of  geological materials [21 ]. The model c~es- 
cribes an isotropic material, in which the bulk and 
shear moduli are functions of  the stress and strain 
invariants. The functional relationship used replaces 
an explicit yield condition. 

5. 2. 5. Curve description model 
The curve description model is used in essentially the 
same way as the variable tangent moduli model. The 
model also describes the response of geological mater- 
ials. In the model, the instantaneous bulk and shear 
moduli are defined by piecewise linear functions of 
the current volume strain. An explicit yield condition 
is not used, and whether the material is loading or un- 
loading is defined by the history of the volume strain 
only. 
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In the analysis of some problems, tensile stresses 
due to applied loading cannot exceed the gravity in 
situ pressure. In such conditions the model can be 
used to simulate tension cut-off, i.e. the material 
model assumes reduced stiffness in the direction of 
the tensile stresses which exceed in magnitude the 
gravity pressure. 

5. 3. Three-dimensional element material models 

In principle, most two-dimensional models would 
also be applicable in three-dimensional analysis. How- 
ever, in the current version of NONSAP, only the iso- 
tropic linear elastic model and the curve description 
model (without tension cut-off capability) are available. 

6. Eigensystemsolution 

tion and vector inverse iteration in an optimum man- 
ner to calculate the required eigenvalues and eigen- 
vectors; these are obtained in sequence starting from 
the least dominant eigenpair (~2,4~x). An efficient 
accelerated secant iteration procedure which operates 
on the characteristic polynomial 

p(¢..O 2)  = det(K - 602M) (1 1) 

is used to obtain a shift near the next unknown eigen- 
value. The eigenvalue separation theorem (Sturm 
sequence property) is used in this iteration. Each 
determinant evaluation requires a triangular factoriza- 
tion of the matrix K - c02M. Once a shift near the 
unknown eigenvalue has been obtained, inverse itera- 
tion is used to calculate the eigenvector and the eigen- 
value is obtained accurately by adding the Rayleigh 
quotient correction to the shift value. 

In dynamic analysis it is necessary to select a suitable 
time step At. The time increment must be small enough 
for solution accuracy, but for a cost effective solution, 
it should not be unnecessarily small. To estimate an 
appropriate time step, it may be necessary to solve for 
the fundamental frequencies of  the system [1 1]. For 
this purpose an eigenvalue solution routine has been 
incorporated into NONSAP. 

The algorithm considers the solution of the general- 
ized eigenvalue problem 

°X~b = ¢o2M~b, (8) 

where OK is the tangent stiffness matrix at time 0, M 
is the mass matrix of the system and co and ~b are free 
vibration frequency and mode shape, respectively. The 
mass matrix can be diagonal (lumped mass assumption) 
or banded (consistent mass assumption), and the stiff- 
ness matrix OK is assumed to be positive definite. The 
solution to eq. (8) can be written as 

°K~D = Mtl~l-~ 2 , (9) 

where ~ is a matrix with its columns equal to the mass- 
orthonormalized eigenvectors and ~2 is a diagonal 
matrix of the corresponding eigenvalues, i.e. 

~ =  [~1~b2...~bn]; ~2  = diag (w/2). (10) 

The solution algorithm used in NONSAP is the 
determinant search method presented in ref. [22]. 
Basically, the algorithm combines triangular factoriza- 

7. Step-by-step solution 

The main phase in the analysis is the step-by-step 
solution of the equilibrium equations, eq. (2). The 
algorithm used was presented in table 1. The aim in 
this section is to describe in more detail the actual 
computer solution. Since the program can perform 
static and dynamic, linear and nonlinear analysis, it is 
convenient to consider in the following the different 
analysis types separately. 

7.1. Linear static analysis 

In a linear static analysis, all element groups are linear 
and only the linear stiffness matrix is calculated in the 
matrix assemblage phase. The stiffness matrix is tri- 
angularized before entering the step-by-step solution 
phase. It should be noted that this solution corresponds 
to a linear dynamic analysis, in which mass and damp- 
ing effects are neglected. Therefore, by specifying time 
varying loads, the solution can be obtained for multiple 
load conditions. Fig. t4 shows the tape operations 
used in the analysis. 

7.2. Linear dynamic analysis 

In a linear dynamic analysis all elements are linear, 
with mass and possibly damping effects included. The 
mass matrix may be diagonal (lumped mass analysis) 
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START 

READ TRIANGULARIZED 
LINEAR STIFFNESS MATRIX 
FROM TAPE 7 

LOW SPEED 
STORAGE FILES 

[ 
_I 

FOR EACH TIME STEP - - I  

I READ LOAD 
FROM TAPE 

L 

VECTOR I 3 

CALL COLSOL FOR | 
DISPLACEMENT SOLUTION 

J 
1 . 

L © 

Q 

CALCULATE ELEMENT 
STRESSES 

1 
END 

Fig. 14. Flow chart for step-by-step solution in linear static 
analysis. 

or banded (consistent mass analysis) and additional 
concentrated masses may be specified at selected 
degrees of freedom. The damping matrix C is assumed 
to be of the form. 

C = a M  + [JK + Ca, (12) 

where ~ and/3 are the Rayleigh damping coefficients 
and Ca is a diagonal damping matrix, assembled from 
concentrated dampers which are specified at selected 
degrees of freedom [ 14]. In eq. (12), K and M are the 
linear stiffness and mass matrices of the complete 
element assemblage. 

The tape operations performed during a linear dyna- 
mic analysis depend on the characteristics of the mass 
and damping matrices employed. Fig. 15 illustrates the 
various possibilities for storage and retrieval of the 
matrices used. 

Z 3. Nonlinear static' atudysis 

In nonlinear static analysis linear and nonlinear element 
groups are defined. Damping and mass effects are 
neglected. 

Before the step-by-step solution, the linear stiffness 
matrix corresponding to the linear elements of the 
complete element assemblage was calculated (see 
fig. 9). This matrix is now updated in preselected load 
steps by the stiffness matrices of the nonlinear ele- 
ments to form the current tangent stiffness matrix. 
The interval of load steps in which a new tangent stiff- 
ness matrix is to be formed is input to the program. 

Depending on the nonlinear formulations and the 
nonlinear material models used, and also depending 
on the magnitude of the load steps, the accuracy of 
the solution may be significantly increased using equili- 
brium iteration. In the program the interval of load 
steps, in which equilibrium iterations are to be per- 

START 

1 
L READ MASS MATRIX FROM 

TAPE 7 (FOR LUMPED MASS CASE) 

i 
READ TRIANGULARIZED EFFECTIVE 
STIFFNESS MATRIX FROM TAPE 7 
{IF NO CONSISTENT MASS OR DAMPING) 

_1 
FOR EACH TIME STEP --~ 

_ _  ! 
FIND EFFECTIVE LOAD VECTOR: 

I) IF RAYLEIGH DAMPING SPECIFIED, 
READ STIFFNESS MATRIX FROM TAPE A, 

2) FOR CONSISTENT MASS CASE, 
READ MASS MATRIX FROM TAPE 4. 

3) IF NOOAL DAMPING SPECIFIED, 
READ DAMPING VECTOR FROM TAPE 4. 

SEE TABLE 1 FOR OPERATIONS 
REQUIRED WITH ABOVE MATRICES) 

4) READ LOAD VECTOR FROM TAPE 3 

- 1 
~ .  READ TRIANGULARIZED EFFECTIVE 

STIFFNESS MATRIX FROM TAPE 7 
(IF. NOT ALREADY DONE BEFORE TIME STEPS) 

1 
CALL COLSOL TO FIND DISPLACEMENT, 
VELOCITY AND ACCELERATION SOLUTION 

E CAlCULaTE ELEMENT S , R E S S E S  

ENO 

LOW SPEED 
STORAGE PILES 

F 

Fig. 15. Flow chart for step-by-step solution in linear dynamic 
analysis. 
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START 
A -! 

CALCULATE LINEAR EFFECTIVE LOADS: 

I) READ LINEAR STIFFNESS FROM 
TAPE 4 AND CALCULATE NODAL 
FORCES EQUIVALENT TO ELEMENT 
STRESSES. 

2) READ LOAD VECTOR FROM TAPE 3. 

CALCULATE NONLINEAR STIFFNESS MATRIX 
AND NONLINEAR EFFECTIVE LOADS: 

I) READ LINEAR STIFFNESS MATRIX FROM 
TAPE 7 (IF NEW NONLINEAR STIFFNESS 
TO BE CALCULATED IN THIS TIME STEP) 
OR READ TRIANGULARIZED NONLINEAR 
STIFFNESS DIRECTLY FROM TAPE 10. 

2) READ NONLINEAR ELEMENT GROUP 
INFORMATION FROM TAPE 2 OR TAPE 9, 
UPDATE LINEAR STIFFNESS MATRIX FOR 
NONLINEARITIES, ANO CALCULATE NON- 
LINEAR EFFECTIVE LOAD VECTOR. 

1 
DISPLACEMENT SOLUTION 

J 
-i 

ITERATE FOR STATIC EQUILIBRIUM: 

I) READ LOAD VECTOR FROM TAPE 3, 
LINEAR STIFFNESS MATRIX FROM TAPE 4, 
AND NONLINEAR ELEMENT GROUP 
PROPERTIES FROM TAPE 2 OR TAPE 9 
IN ORDER TO FIND CURRENT NONLINEAR 
EFFECTIVE LOAD VECTOR. 

2) READ TRIANGULARIZED NONLINEAR 
STIFFNESS FROM TAPE 10 AND CALL 
COLSOL TO FIND DISPLACEMENT INCREMENT. 

l IF REQUIRED CALCULATE ELEMENT STRESSES l 

END 

LOW SPEED 
STORAGE FILES 

F 

r \  ,) 

Fig. 16. Flow chart for step-by-step solution in nonlinear static analysis. 
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START 

IN LUMPED MASS ANALYSIS 
READ MASS MATRIX FROM TAPE 7 

CALCULATE LINEAR EFFECTIVE LOADS: 

I )  READ LINEAR STIFFNESS MATRIX 
FROM TAPE 4. 

2) READ MASS MATRIX FROM TAPE 4. 
(CONSISTENT MASS CASE ONLY) 

3) IF NODAL DAMPING IS SPECIFIED, 
READ DAMPING VECTOR FROM TAPE 4. 

(SEE TABLE 1 FOR OPERATIONS 
REQUIRED WITH ABOVE MATRICES) 

4) READ LOAD VECTOR FROM TAPE 3. 

CALCULATE NONLINEAR EFFECTIVE S T ! F ~ %  
AND NONLINEAR EFFECTIVE LOADS: 

I )  READ LINEAR EFFECTIVE STIFFNESS 
MATRIX FROM TAPE 7 (IF NEW 
NONLINEAR EFFECTIVE STIFFNESS IS 
TO BE GENERATED ON THIS TIME STEP) 
OR READ TRIANGULARIZED NONLINEAR 
EFFECTIVE STIFFNESS DIRECTLY 
FROM TAPE I0. 

2) READ NONLINEAR ELEMENT GROUP 
INFORMATION FROM TAPE 2 OR TAPE 9, 
UPDATE LINEAR EFFECTIVE STIFFNESS 
FOR NONLINEARITIES, AND FIND 
NONLINEAR EFFECTIVE LOAD VECTOR. 

CALL COLSOL TO FIND DISPLACEMENT, 
VELOCITY AND ACCELERATION SOLUTION 

STORE TRIANGULARIZED EFFECTIVE 
NONLINEAR STIFFNESS ON TAPE I0 

_1 
7 

ITERATE FOR DYNAMIC EQUILIBRIUM 

IF REQUIRED, CALCULATE ELEMENT STRESSES 

END 

LOW SPEED 
STORAGE FILES 

9 
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Fig. 17. Flow chart for step-by-step solution in nonlinear dynamic analysis. 
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formed, can be defined in the input control data. The 
storage of the matrices and tape operations carried out 
in the analysis are shown in fig. 16. 

nitem = 15, 0 = 1.4, 6 = 0.50 and a = 0.25. Since only 
relatively small order systems have been considered the 
solution times have always been small [10]. 

7.4. Nonlinear dynamic analysis 10.1. Static and frequency analysis o f  a tower cable 

A nonlinear dynamic analysis is carried out essentially 
in the same way as a nonlinear static analysis, but mass 
and possibly damping effects are included. The mass 
and damping matrices are defined as in linear dynamic 
analysis, where the Rayleigh damping coefficient/3 is 
now applied to the linear stiffness matrix of the ele- 
ment assemblage. It should be noted that the structure 
mass and damping matrices are calculated before the 
step-by-step solution, see fig. 9. The tape storage 
scheme and program flow in a nonlinear dynamic 
analysis are given in fig. 17. 

8. Analysis restart 

In nonlinear analysis it is often the case that the re- 
sponse of a structure has been calculated for some 
time (load) steps and that on interpretation of the 
results, it is decided to analyze the structure for more 
time (load) steps. If this is anticipated, the program 
can be used to restart at the end of the successfully 
completed analysis. 

9. Data check run 

In the analysis of large structures it is important to be 
able to check the data read and generated by the pro- 
gram. For this purpose an option is given in which the 
program simply reads, generates, and prints all data. 
This printout should be used to carefully verify the 
input data, since the program itself does not perform 
extensive data checking. 

10. Sample analyses 

In the following the solutions of some problems are 
presented that have been considered during the develop- 
ment of  NONSAP. Additional problem solutions are 
given in refs [9] and [10]. All solutions have been ob- 
tained using the algorithm presented in table 1, in 
which the selected parameters were tol = 0.001, 

The cable stretched between a ground anchor point 
and a tower attach point shown in fig. 18 was analyzed 
for static displacements and frequencies of vibration. 
The cable was modelled using 12 truss elements of 
linear elastic material. The total vertical load acting 
on the cable nodes was 5677.83 lb which includes the 
insulator weights and the cable selfweight. 

Figure 18 shows the cable in the static equilibrium 
configuration with the total load applied. The non- 
linear displacement response of node 8 is shown in 
fig. 19. 

For the frequency analysis a lumped mass matrix 
of the cable has been assumed to which the masses of 
the insulators have been added. The periods of vibra- 
tion of the cable about the static equilibrium con- 
figuration are given in table 2. 

10.2. Static and dynamic displacement analysis o f  a 
can tilever 

The cantilever in fig. 20 under uniformly distributed 
load was analyzed using a finite element idealization 
of five eight-node plane stress elements. The material 
of the cantilever was assumed to be isotropic linear 
elastic. 

The static response of the cantilever using 100 load 
steps to reach the final equilibrium configuration is 
shown in fig. 21, in which the NONSAP solution is 
compared with an analytical solution by Holden [23]. 
Excellent agreement between the solutions has been 
obtained. The dynamic response of the cantilever is 
shown in fig. 22, where also the importance of equili- 
brium iterations in an analysis using a relatively large 
time step At is demonstrated [10]. 

10. 3. Static large displacement analysis o f  a spherieal 
shell 

The spherical shell subjected to a concentrated apex 
load shown in fig. 23 was analyzed for static response. 
The NONSAP solution could be compared with the 
response predicted by Stricklin [24] and Mescall [25]. 
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Table 2. TOWER ATTACH POINT 

periods of cable in static equilibrium , ~ - -  Vibration 

/ / !  
Mode number Period (sec) / / I 

. . . .  INITIAL PRESTRESS '~/ / I 
I 4 42 7S20.O ,b ~ "  / I 

/ ( 
3 1.21 A °0.36),n' _ " Y "  I l 
4 1.16 Z WEIGHT=O.IOOB6, *w Y / ] -  ' 

- - - - /  ~ y 7 ..L I zooin I 

SULATOR (TYP) . 

NODE NUM BER~---'-~I ~ J 

ANCHOR POINT / / ~ 0  Ib ~ 510 Ib 

8191.20 in 

Fig. ! 8. Static configuration of tower cable. 
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Fig. 19. Load deflection curve of tower cable. 

Figure 23 shows the static load-deflection response 
calculated by NONSAP. Good correspondence with 
the solutions obtained by Stricklin and Mescall is 
observed. 

TOP SURFACE f P/2 Jb/in 

t 
_ _  . . . . . .  

L:  I0 m E = 1 2xPO 4 Iblm z 

h= l in  v=O2  

b = 1)n p = IC)61b soc2/Fn 4 

Fig. 20. Cantilever under uniformly distributed load. 

10. 4. Large displacemen t and large strain static 
analysis o f  a rubber sheet 

The rubber sheet shown in fig. 24 was analyzed for the 
uniform end loading indicated. The material was as- 
sumed to be of  the Mooney--Rivlin type, for which 
experiments by Iding et al. gave Cl = 21.605 lb/in. 2 , 
C 2 = 15.743 lb/in. 2 [17]. 

Figure 25 shows the static displacement response of 
the sheet. It is noted that the final displacement at the 
loaded end is o f  the order of  the original length of  the 
sheet, at which stage Green-Lagrange strains of  1.81 
are measured. The final configuration o f  the sheet was 
reached in four equal load steps with an average of  
five equilibrium iterations in each step. Excellent 
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Fig. 21. Large deflection analysis of  cantilever under uniformly 
distributed load. 

agreement between the experimental results by Iding 
et al. [17] and those predicted by NONSAP has been 
obtained. 

10.5. Elastic-plastic static analysis o f a thick-walled 
cylinder 

The thick-walled cylinder in fig. 26 subjected to 
internal pressure was analyzed using four eight-node 
axisymmetric elements. The material of the cylinder 
was assumed to obey the von Mises yield condition 
with elastic perfectly plastic response. The same 
analysis was also carried out using the Drucker-Prager 
yield condition with material variables corresponding 
to those used in the von Mises condition. Since dis- 
placements and strains are small, the analysis of the 
cylinder was carried out using the materially nonlinear 
only formulation. Fig. 27 shows the radial displace- 
ment response of the cylinder as a function of the 
applied load, and fig. 28 gives the stress distribution 
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F i g .  22. Large displacement dynamic response of  cantilever under uniformly distributed load, Newmark method ~ = 0 . 5 0 ,  a = 0 . 2 5 .  
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Fig. 23. Load-deflection curves for spherical shell. 

through the wall o f  the cylinder at a given level of  
internal pressure. Excellent agreement with the solu- 
tion given by Hedge and White has been obtained [26]. 

10. 6. Elastic-plastic small displacement dynamic 
analysis era simply-supported beam 

The beam shown in fig. 29 was analyzed for the step 
loading indicated. The material of  the beam was taken 
to be elastic perfectly plastic using the yon Mises yield 
condition. In the analysis small displacements were 
assumed, i.e. materially nonlinear only solutions were 
calculated. 

The dynamic response o f  the beam is shown in 
fig. 30, in which the NONSAP solutions are compared 
with solutions provided by Baron et al. [27] and 
Nagarajan and Popov [28]. 
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Fig. 24. Large displacement and large strain static analysis of 
a rubber sheet. 
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Fig. 25. Displacement and stress response of a rubber sheet. 
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10. 7. Static analysis o fan underground opening 

A simplified analysis of an undergorund opening under 
static overburden pressure was carried out. Fig. 31 
shows the underground opening, the finite element 
mesh and the material data used. The analysis was 
performed using the materially nonlinear only formula- 

I- - " ' , ,o  ±, "° "I 
TOP AND SlOE VIEWS 

ENLARGED TOP VIEW AND 
AXISYMM ETRIC MESH 

ELASTIC-PERFECTLY PLASTIC MATERIAL 

VON MISES YIELD CONDITION DRUCKER-PRAGER YIELD CONDITION 
G • IOI /3  Ib/in = G = lOS/3 Ib/ in = 
v = 0 3  v = O . 3  
O'y = 17132 Ib/in = ANGLE OF FRICTION = 0100 

COHESION =8.66 Ib/in = 

Fig. 26. Finite element mesh of thick-walled cylinder. 

tion, i.e. large displacement effects were neglected. 
The rock material was assumed to be a no-tension 
material with constant Young's modulus and Poisson's 
ratio. 

Figure 32 gives the load-deflection relations for two 
points of the opening. The influence of the no-tension 
material assumption on the displacements can be ob- 
served. Fig. 33 shows the crack regions around the 
opening at two load levels. 
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Fig. 27. Elastic-plastic displacement response of  thick-walled 
cylinder. 
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Fig. 28. Elastic-plastic stress distribution through thickness of thick-walled cylinder at P = 12.5 lb/in 2. 
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Fig. 29. Elastic-plastic dynamic analysis of simply-supported 
beam. 

11. Concluding remarks 

The objective in this paper was to present a brief de- 
scription of the current version of  the computer  pro- 
gram NONSAP. The program is a general analysis tool 
for the linear and nonlinear, static and dynamic analysis 
of  complex structures. A few applications of  the pro- 

gram have been presented. 
Although NONSAP can be a powerful analysis tool,  

it should be realized that depending on the problem 
considered, the program may not be easy to use and, 
for example, much more difficult to handle than the 
linear analysis program SAP IV [7]. The use of  NONSAP 
requires a thorough understanding of  the theoretical  
basis of  the program, of  the numerical techniques 
employed and their computer  implementation.  This 
is particularly the case because not many nonlinear 
solutions are yet  possible on a routine basis [4, 10]. 
Therefore, it is necessary to apply the program only 
under the conditions and assumptions for which it 

was developed. 
One important  opt ion which NONSAP does not 

have available is efficient pre- and postprocessing. 
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Fig. 30. Initial elastic-plastic displacement response of simply-supported beam. 
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Fig. 31. Finite element mesh for analysis of underground opening. 
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Preprocessing is impor tan t  for generat ion and check- 

ing of  data, whereas postprocessing result ing in effi- 

cient display o f  the calculated response can be essential 

for obtaining a good understanding o f  the structural  

behavior.  

With regard to future work on NONSAP,  it is hoped 

that the program can be fur ther  developed in various 

areas, It can be impor tan t  to have out-of-core  solut ion 

capabili ty,  the e lement  l ibrary need be increased and 

addit ional  material  models  are required.  Al together ,  

the program provides a basis for further  work  in a 

variety o f  problem areas, such as in thermal e l a s t i c -  

plastic and creep analysis, buckling analysis, and soil 

response calculations.  
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