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SUMMARY 

We present in this paper a procedure to establish Reissner-Mindlin plate bending elements. The procedure is 
based on the idea to combine known resuits on the approximation of Stokes problems with known results on 
the approximation of elliptic problems. The proposed elements satisfy the mathematical conditions of 
stability and convergence, and some of them promise to provide efficient elements for practical solutions. 

1. INTRODUCTION 

In this paper we present a family of finite element approximations of Reissner-Mindlin plates. The 
elements in the family are based on a mixed interpolation and include some already known 
elements, namely, the MITC4'. 2 *  and the MITC9  element^.^ We introduce many possible other 
elements and some of the new elements, as we shall see, have interesting and valuable features and 
might be useful in practical applications. Essentially. the whole family is based on a common idea, 
which is to combine in a proper way some known results on the approximation of Stokes 
problems with other known results on the approximation of linear elliptic problems. Such a 
combination, as we shall see, can be summarized in a list of five properties P1 to P5 that we may 
require for a finite element approximation of Reissner Mindlin plate problems. Examples of 
approximations that satisfy our five properties are not difficult to find. and we detail some of them. 

An outline of the paper is as follows. 
In Section 2 we consider a sequence of plate bending problems (Uf) with thickness t going to 

Lero. The sequence has the property that the corresponding solutions stay bounded (and do not 
vanish) when t goes to zero. In the subsequent sections we use the sequence to study the shear 
locking phenomenon for various discretizations f P r h }  of the problems of the sequence. We should, 
in principle, show that if an approximation satisfies our properties PI to P5 then the solution of Pth 
converges to the solution of P, (as h tends to Lero) uniformly in t. This was done for instance in the 

*The abbreviation MITC4 is used to designate our clement based on 'mixed interpolated tensorial components with four 
nodes' and we use similar abbrcviations for the other elements we introduce 
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special case of the MITC4 element in Reference 4. However, it is difficult to perform such analysis 
in the general case and the technical details (as displayed in Reference 4) would be rather 
complicated. We choose here to perform a sirnpliticd analysis, as we did in Reference 3. Namely. 
we consider just the two limit problems Po and P,, and we analyse convergence and error 
estimates only in this case. It is clear that, if Prh displays a 'good behaviour uniformly in t', then Po, 
must also behave properly. Since the converse is not true, our analysis is not complete. However, 
we conjecture that the good behaviour for t = 0 is a very reasonable test that can be of great help in 
designing a new element. 

In Section 3 we introduce two examples of discretieatiolls of Pth, one based on the MITC7 
element, a triangular element, and one based on the MITC9 element, a quadrilateral element. 

In Section 4 we introduce the abstract properties PJ to P.5 and we show that both the MITC7 
element and the MITC9 element easily satisfy them. 

In Section 5 we show. in an abstract framework, that if a finite element approximation Pth 
satisfies PI to P5 then POh converges to Po as h tends to 0, and we estimate the error for the 
rotations and transverse displacements. The abstract results arc then applied to the two examples 
of the previous sections. 

Finally, in Section 6,  we show how P1 to P5 can be used as guidelines for designing new 
elements that have good stability and convergence properties (at least for the limit case f =I 0). 
Some other examples of finite element discretizations that satisfy PI to P5 are built to illustrate the 
procedure. 

Throughout the paper we shall use, for a vector u = (D~, c?) the notation v L  = ( r 2 ,  - u l ) .  
Different constants which are independent of h might be indicated by the same letter c. 

2. THE SEQUENCE OF PROBLEMS AND THE LIMIT PROBLEM 

We consider the spaces 0 = jHh[i[2))2 and W = HA(Q) and a load functionfgiven in L2(QL The 
sequence of problems under consideration iss 

t J  11 

B e @ ,  W € W  2 2 
Pt:  Inf - - -a($,@+- l l o - ~ w 1 1 ~ - - 1 3 ( ~ w )  

where $t3a($, 0) is the bending energy, A t / \  8 -VwI/; is the shear energy and )I / j O  and ( , ) 
represent respectively the norm and the inner product in LZ(Q).  

Assume now that we are giten finite element subspaces Oh c= 0 and W, c W. The correspond- 
ing discretized problem is described by 

t3 i, t 
e h :  Inf - a ( H , , ~ , ) + - ~ ~ 6 ~ - - V w h / ~ ~ - t J { ( f , w , )  

B , E @ , ,  U h E  Wh 2 2 

In general, E,, 'locks' for small t.' A common procedure i s  to reduce somehow the influence of the 
shear energy. We consider here the case in which the reduction is carried out in the following way: 
we assume that we are given a third finite element space, rh, and a linear operator R which takes 
values in I-,. Then we use ( 1  R(8,  - Vw,) 11; instead of /I oh-vwh i i i  in the shear energy. For the sake 
of simplicity we shall assume that 

RVw,  = Vw, for all W,G W, (1) 

We shall also assume that R is a bounded operator, in the sense that there exists a constant c, 
independent of h, such that 

I IR~II,  G ~ ~ ~ v l l l  \ J ' I / E @ ,  ( 2 )  
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The discretized problem then takes the final form 

t3 I t  
P t h :  h f  -a(@,, O h ) + -  l lRd,-VWhIIz-t3(,f, wh) 

O h € @ , ,  W * F  w, 2 2 
Setting 

the Euler equations of Pt and Prh are respectively 

7 = / W 2 ( @ - V w )  and yh  = K 2 ( R B h - V w L )  

I a ( O , r ) + ( ? , ? - V i )  = ( L O  V V E @ ,  V 5 E W  
y = V w )  

and 

Remark. It is not difficult to show that ( 6 )  and (7) are the limit problems of (4) and (5) 
respectively, see for instance Reference 4. In particular, the limit w will be the solution 
corresponding to the Kirchhoff model. Note also that the limit y h  that appears in (7) will still 
belong to R(d,) - V( Wh). Although we are not studying here the convergence of Y h  to 7, the results 
given in Reference 6 with the discussion below give some insight into the behaviour of y h .  CI 

3, THE MITC7 AND MITC9 ELEMENTS 

Following the discussion of the previous section, the finite element discretization is characterized 
by the choice of the finite element spaces Oh, W,,, I', and by the choice of the linear operator R. It is 
obvious that these four choices are not independent. In particular, we need that 

R(O,) c I-, (8) 
and we already assumed in (1) that 

( R - l I ) ( V W h )  = {O} 
where I is the identity operator. 

We now present two possible choices for O h ,  w h ,  r,, and R.  

The M I T C 7  element7 

We assume that we are given a regular sequence (Th)  of decompositions of R into triangles T 
(Reference 8) (for the sake of simplicity we assume that 51 is a polygon). For each triangle T we set 

(9) S7(T)  = ( V I ~ P E P ~ ,  (ple€P2 on each edge e of T> 
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Clearly S, is a finite dimensional linear space of dimension 7. It can also be characterized as 
S7 = Pz 0 { A l A 2 A 3 }  where A1A2A3 is the cubic bubble in T. As degrees of freedom in S7(T)  we can 
clearly choose the values at the vertices, at the midpoint of the edges and at the barycentre of T. 

RTl(T)={616, = a l  +b,x+c ,y+y(dx+ey)  

We also set, in each triangle T, 

(10) 
6,= a , + b , x + c 2 y - x ( d x + e y ) }  

The space RT, ( T )  is a kind of ‘rotated Raviart-Thomas” space of order one. 
We are now able to define our spaces. We set 

where z is the tangential unit vector to each edge of each element. 

as follows: for q smooth in T, R y  in T is the unique element in RT, ( T )  that satisfies 
We have finally to introduce the reduction operator R. Its action on the current element is given 

[c(q-Ry).zpl(s)ds = 0 V e  edge of T (14) 

V P  1 (4 E PI (4 
r 

It is easy to see that (14) and (15) characterize Rq in Tin a unique way.’ It is also clear that, if y is 
continuous in R, then the R y  constructed element by element through (14). (15) actually belongs to 
rh (because (14) ensures the continuity of (Kq). .r  at the interelement boundaries). 

The propertics of the MITC7 element will be discussed in the next section. 

The MITC9  element3 

Assume, for the sake of simplicity, that R is now a rectangle divided into rectangles K .  We set 

where Qz is the space of polynomials of degree < 2 in each variable (corresponding to a 9 node 
element) and Q; is its usual serendipity reduction (corresponding to an 8 node element). In order 
to introduce the space I-,, we define first the space of polynomials 

which is some kind of rotated Brezzi-Douglas Fortin -Marini space.’O 
We introduce now the space rh: 

r, = (616,eG V K ,  6 . z  continuous at the interelement boundaries, 6 . 7  = 0 on 2Q) (19) 
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Further, we define the action of the reduction operator R on the current element K in the following 
way: for y smooth in K ,  Ryl,  IS the unique element in G that satisfies 

le(y-Ry)-.pl(s)ds = 0 Ve an edge of K (20) 
Vpl(s) polynomial of degree < 1 on e 

j , ( , iRq)drdY = 0 (21) 

Here again (1) is satisfied. 

Remark. Note that both (14) and (20) can be satisfied (for ~ € 0 , )  by tying the values 
y ’ z  = (Ry) .z  at the two Gauss points of each edge. On the contrary (15) and (21) cannot be 
satisfied by simple one-point tying. If we change these conditions into the condition ‘q = R y at the 
centre of the element’ our analysis IS not applicable anymore, although numerical experiments 
may show good element behaviour even in this case.” 

It is also clear that for non-affine elements R should be defined by covariant interpolations (see 
0 References 1. 2 and 11). 

4. PROPERTIES PI TO P5 

We shall now introduce our five properties PI to P5 and check that they are satisfied with the 
n choices of the previous section. 

The first property was already introduced in (l), which is equivalent to asking that 

vwh c rh (PI) 

It is very easy to check, in each application, whether P1 is satisfied or not. First of all, let us note 
that if W, is a piecewise polynomial subspace of H:(!2) (and hence its members are continuous at 
the interfaces and vanish on an) then for any < E  wh we have that (V;).z is continuous at the 
interfaces and vanishes at c?Q. Hence for the MITC7 element we have only to check that 
V i l T ~ R T I (  T )  (for all r )  whenever ( E P ~  in T(which is obvious). Similarly, for the MITC9 we have 
only to check that V[lK E G (for all K )  whenever [ E  Q; in T (which is also obvious). We also point 
out that, as we have seen, to check if P1 holds or not in a particular case is very easy but, 
nevertheless, P1 is a very strong assumption that can severely limit our choice of available 
elements. 

The next properties introduce a new space that we call Q,. The space Qh is never used in the 
computations but its existence (with the suitable properties given below) is crucial for our analysis. 
We anticipate that for both elements, i.e. the MITC7 and MITC9 elements, the space Qh will be 

Qh = { piecewise linear, u priori discontinuous functions) (22) 

rot r, c Qh (P2) 

We are now able to introduce our second property, 

We recall that in R2 for a vector 6 and a scalar i we have, by definition, 

(231 
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To check that P2 is satisfied by the MITC7 and MITC9 elements with the choice (22) is 
elementary. We point out, however, that the continuity of 6 .  z at the interfaces ensures that rot 6 
does not have Dirac delta measures at  the interfaces. 

Whether P2 is restrictive or not can be appreciated only after stating the next property. 

'The pair Oh, Qh is good for the Stokes problem' (P3) 
Property P3 clearly needs some explanation. What. we really need is that for any 0 smooth 

enough in (H$(52))' with rot 8 = 0 there exists 8' in 0, such that 

11 0--8' 1 1  = O(h') for some r > 0 (25)  

Obviously, the larger is r,  the better our Reissner Mindlin element will be. 
In order to identify the relationships between P3 and (25), (26) we can argue in the following 

way. Let us assume that we are given a smooth 8 E (HA (!2~)~ with rot 8 = 0 in 0. Set x: = - A0 and 
consider the problem 

find (e, p ) ~ ( H ; ( s 2 ) ) '  x L'/R such that) 
-Ag+rotp=X ] i n Q  . 
rot8 = o 

It is obvious that (27) has a unique solution = 8, p = 0. On the other hand the numerical 
approximation of (27) is clearly as difficult (or as easy) as for a Stokes problem. Let us consider the 
following discretization of (27): 

Find (o', PhjE @ h  X Qh/[W such that 
,. ,. " 

J 
It is clear that if (Gh, Q,,) make (28) a stable and convergent approximation for problem (27) (which 
is surely true if the pair (ah, Q h )  is a good pair (velocities, pressure) for approximating Stokes 
problems) then the solution 0' will satisfy (25), (26). 

Let us see what happens for the MITC7 and MITC9 elements. For the MITC7 element we refer 
to the Crouzeix-Raviart element, whose stability and convergence properties for Stokes problems 
(and hence for (27)) are well known (see Reference 12). For the MTTC9 element we refer to the 
Q2-P1 element which is also known to be very good.6, 13 ,  l4 Hence in both cases P3 is satisfied. 
Moreover, we have Y = 2 in (25). 

Remark. It is clear that a sufficient condition in order to satisfy P3 is the inf-sup condition: 

with c independent of h. n 

The relationship between Stokes problems and the Reissner-Mindlin problem is actually 
deeper than it may appear here. The interested reader can find much more detail on this subject in 
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Reference 15, where the Reissner-Mindlin problem is actually represented as two Poisson 
problems and one Stokes problem. 

The fourth property could be stated as 

The pair r,, Qh is good for elliptic problems 

However, we want to state this property in a more precise way. For this purpose we define the L2- 
projection operator P,: L2 -+ Qh as 

(phq, qh) = (4, qh) vqEL2, V q h E Q h  (30) 

(P4) 

Then our fourth property is 

For all y ~ ( f f ' ( f i ) ) ~  we have rot Ry = ph rot?  

Note that, since Ry E r,, rot Ry will automatically be in Q,  because of property (P2). The question 
is whether rot R? is equal to p,, rot q or not. 

Let us check whether this property is fulfilled for the MITC7 element. Using (30) we have to 

Clearly, (32) implies (31), which is equivalent to P4. 

use (18), (19) instead of (14), (15) respectively. 
The proof that the MITC9 element also satisfies P4 is formally identical to (32). We have just to 

Re&&k. The property P4 is called the commuting diagram property (see Reference 16) in the - context of mixed methods for second order elliptic problems. U 

The last property is also restrictive, in particular when joined with P1. 

IfSh~rh is such that rota, = 0 
then 6, E V W, 

Kote that, in R2, the condition 

rot 6, = 0 (33) 
already implies that 

6, = VY for some <E HA (34) 
In particular the condition [ = 0 on 5R comes from the property '6,. z = 0 on BIR' in the definition 
of r,. 

What  wc have to check here is that such a [ actually belongs to w,. 
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Let us consider the MITC7 element first. If 8hEl-h then, in each triangle, ~ , E R T ,  (see (13)) and 
therefore 6, has the form (10). It is easy to check that the condition rot = 0 implies, in particular, 
d = e = 0 in (10). Hence 6 ,  is actually a polynomial of degree < 1 in each T. Therefore, the 
function [ in (34) must be a polynomial of degree < 2 in each T and hence it belongs to wh (see 

Let us now check that the MITC9 element also satisfies P5. This is easier. If 6, E rh it Will have 
the form (18) in each K .  It is easy to check that this implies that [ in (34) is a polynomial in Qz that 
does not contain the term xzy2. Hence [ I K  E Q; and [ E wh (see (1 7 ) ) .  

( 1 2)) .  

5. ABSTRACT ERROR ANALYSIS ASSUMING P1 TO P5 

Let us go back to problems (6) and (7) which we restate here for the convenience of the reader: 

and 

We have the following abstract result. 

Theorem 1 

Let (0, w)  and ( o h ,  wh)  he the solutions of ( 3 5 ) ,  (36)  respectively. Assume that there exists a space Qh 

such that the system (ah, wh, r h ,  R, Q h )  satisfies P I  to P5. Then we huve the,following error hounds: 

Proof: We recall first that there exists a positive constant CI such that 

a h ? )  2 4 v l l :  V 4 E @  (39) 
Then we consider P3 and we have the existence of an dement 0' in 0, that satisfies (26). If we write 
(26) in the form 

Ph rot 0' = 0 (40) 
(which is allowed by (30)) we can now use P4 and obtain 

rot RBI = 0 (41) 
Since RO' clearly belongs to r,,, we can use P5 and have that there exists a unique w1 in Wh such 
that 

vw' = RH' (421 

(43) 

We are now able to prove (37). We set 

&@ = 8, - 0' E, = wh - w' 
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(44) 

and we note that, from (42) and (36), 

RE, = VE, 
We have 

ct / /  E, 11: < (use (39)) G a(&,, 64) = (use (43)) 

= a(B, - Q', E,) = (add and subtract 0) 

= u(Oh - t?, eB) + a(0 - t?', c , )  = (use (35), (36) with 4 = E,, j = 0)  

= - ( Y h ,   RE,)+(^, ~g)+a(t?-Q',  I:,) 

= (add and subtract (7,  RE,)) 

= ( y - y h ,  RE*)+(Y, E ~ - R E ~ ) + ~ ( ~ - ~ ' , E , )  =(use (44)) 

= ( ' J - j ' h l V E , ) + ( y , 6 g - R E ~ ) + a ( 0 - 6 , ' , E , )  

= (use (35) ,  (36) in the first term with q = 0, i = E,) 

We use now the obvious facts that 

which implies 

Then we obtain (37) from the definition of E, in (43), from (49) and from the triangle inequality 
1 1  6, -- 0,iI 8 1 1  H - 6,' 11 + 116,'- H h / I  1. Let us now prove (38). Since Vw,  = ~ 8 ,  (see (36)) we have 

/ /  V W  - VtV, / /  0 = 1 1  0 - RO,, I /  0 < ' 1  # -- R8 / I  t i/ Rd - R 0, 11 0 (50) 
From (50) and (2)  we have (38). 0 

Remark. Theorem 1 expresses the errors j J  0 - 0, I /  and 11 Vw - Vw, ) l o  in terms of the 'error in 
the solution of Stokes problem' (25) (for i /  H -- 8' / I  1 and of the approximation properties of the 
operator R. It is clear that this last component in thc error appears because we make an error when 
we introduce the shear interpolations using R instead of the identity (see the definition of Pth  from 
E,, in Section 2). On the other hand, in the theory of mixed methods for second-order elliptic 
problems, if the commuting diagram property P4 holds, the error bounds are basically obtained in 
terms of 11 R - I  i / .  In a sense we would then say that the error in our element constructions (using 
P1 to PS) is the sum of the 'error in the Stokes problem' plus the 'error for the mixed method in 
elliptic problems'. 



1796 F. BREZZI, K. J. BATHE AND M. FORTIN 

Let us see now what we obtain from (37) and (38) for our MITC7 and MITC9 elements. We have 
already seen in discussing P3 that in both cases wc have 11 0 - 0' I /  = Q(hZ) .  More precisely 

l i Q - O ' I l 1  <Ch2i/0113 (51) 

It is also clear that in both cases we also have for 1 < s < 3, 

/I 8 - KO / I  0 d chS II 0 I I s  (52)  

so that we have to deal only with the (more delicate) term containing the sup expression. Let 1; be 
the projection of y onto the space of piecewise constants. Then using (15) (respectively (21)) we have 

@>V-RVj = 0 'V'JYEO 
so that 

(7. tl - Rrlj = b - -79 rl - Rrlj 

< ~ ( ~ - ~ j I l ~ 1 l q - R q I l ~  <(using (52) with s = 1 )  

G I iY-7I loch II'lIIi 
Hence we have 

SUP It;, rl - RtlV /I rl I1 1) G ch I /  Y - 7 I10 
??GO 

From (55 )  and classical approximation theory we have finally (always for both cases) 

(53) 

(54) 

(55 )  

SUP {(Y? rl - RVj/ I/ tl II 1 1 G C h 2  I /  Y II 1 (56) 
T E O  

Inserting (511, (52) and (56) into (37) and (38) we have now the error bounds for the MITC7 and 
MTTG9 elements, 

/I " - O h  I/ 1 + \ I v w  - v w h  110 G C h 2 (  11' 113 + I / ?  /I 1 (57) 

6. HOW TO DESIGN A NEW ELEMENT 

We can sunrmarize the results of the previous sections by giving indications on how we can design 
new Reissner Mindlin plate bending elements. We shall split the procedure into three steps. 

Step 1. We start ftom a pair of spaces (Bh, Q h )  c (Hi)2 x L2(sZ) that satisfy the inf-sup 
condition (29). This, as we have szen, implies that P3 will be satisfied. Many of such pairs can be 
found in the literature for Stokes problems (see for instance the books 7 and 17). We consider here 
some examples. 

Example I. The Q3-PZ element for rectangics. This is, in some way, the extension of the MITC9 
element to a higher degree. We take 

Oh -= ~ ~ / ~ ~ ~ ~ ~ ~ ~ ~ ~ ) Z ,  "li,€Q3t7'K) ( 5 8 )  
where Q 3  is the set of polynomials of degree G 3 in each variable; we also take 

Qh = { ~ ~ ~ ~ E L ' I R ) , ~ ' ~ E P ,  V K ~  

It is easy to see that P3 is satisfied with r -=- 3. 
(59) 

E-xample 2. The P, 0 B,-P, element for triangles. This can be seen as an extcnsion of the 
MITC7 element. We set at first 

S, , (T)  = { ~ I V E P , ,  qIeeP3 on edge c of Tj (60) 
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and then 

It is also easy to see that P3 is satisfied with r = 3. 
Other examples can be infcrred from the existing literature. For instance, for triangular 

elements, we can consider P,--P, elements or Pk--Pk- for k > 4. The corresponding value of r in 
(25) will be 1 and k ,  respectively. 

Step 2. We consider now a pair (rh, Q h )  c H,(rot; Q) x L2(Q)  that satisfies the commuting 
diagram property. We recall that 

H,(rot; 0) = ( 6 1 6 ~ ( ~ ~ ( f l ) ) ~ ,  rot6EL2(Q), 6 . z  = 0 on aQ}  (63) 

By setting 
H = {S~SE(H'(Q))', 6 . z  = 0 on dR) 

the commuting diagram property (CDP) reads: 

There exists a unijormly bounded (see (2)) linear operator R:  .W; -+ rh such thut the following diagram 
commutes 

where Ph is the L2-projection on Q h  (30). 

Note that this will imply that P2 and P4 hold. 
We explicitly point out that the space Q h  in Step 2 must be the same as in Step 1. Pairs r,, Q h  

satisfying the CDP are also easily found in the literature. Typical families are presented in 
References 9, 10, 18 and 19. See also Reference 7 for a general presentation. For our two new 
examples that we are building in this section, we have that Qh consists of piecewise quadratics. 
Hence, we look for spaces r h  that work in conjunction with piecewise quadratics. For the 
triangular case, we have essentially three choices in the literaturc: We describe them on the current 
triangle T 

I (i) BDM, = { d l d ~ ( P , ) ~ }  
(ii) BDFN, = ( S ~ S E ( P , ) ~ ,  ~ . T I , E P ~  Ve} 

(iii) RT, = { d l d ~ ( P , ) ~  0 5' P 2 ) .  

where in (iii) (and in what follows) sL is the vector (y, - x ) .  
We delay the choice until the next step. 

For rectangular elements we have only two choices: 

(65b) 
(iv) BDM, = {Sl 6 E (P , ) ,  0 grad ( x y 4 ) 0  grad (x"y)} 

(v) BDFM, = ( S ) ~ , E P , \ X ~ ,  d 2 ~ P , \ y 3 }  

Again we delay the choice until the next step. Notice that if we use spaces Q h  made of 
discontinuous polynomials of degree k - 1, the menu of choices (i)<v), here given for k = 3 is fairly 
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general as far as the present literature is concerned. Analogous spaces for r,, can be constructed for 
other values of k. 

Step 3. We have now to build the space W, in order to satisfy P1 and P5. Summarizing we need 
that 

VW, = {SlSEr,,, rot6 = 0j  (46)  

Accordingly we have after some simple computations for our examplcs (see (65)): 

It is clear that we w?nt to discard (iv) which requires degrees of freedom that are too different 
from the ones of 0,. Hence (v) is the choice for the rectangular element. As far as the triangular 
element is concerned, (i) seems unnecessarily expensive, since we shall have O ( h 3 )  error bounds in 
any case. The choice between (ii) and (iii) is more delicate, since (iii) is a smaller space but on the 
other hand (ii) will use the same degrees of freedom that we use in Oh. 

The same observation actually holds for the M I X 7  element, where the choice 

wh = { ~ l ~ E H ~ ( S Z ) ,  i I T E S 7 ( T )  v T )  (68) 
was also allowed if we took BDFM, instead of RT, in (13). 

On the other hand, for k 3 3, on triangular elements with the choice of polynomials of order 
k + 1 for velocities and k for pressure as a Stokes element, the choice (iii) (i.e. use of RT,) for r,, is to 
be recommended, giving W,, a space of piecewise polynomials of degree k + 1. Finally, always on 
triangles, the use of the Pz-Po element for Stokes would suggest a choice of type (i) (i.e. use of 
BDM,) for rh  since it produces as W,, a space of piecewise polynomials of degree two. 

We end this section by describing the operators R which are associated with the choices (ij(v) 
for r,,. Since we believe it  might be useful for constructing other elements, we shall present the case 
of a general degree k (in (iHv) we had k = 3).  

BDM, = ( S l i j ~ ( P ~ ) ~ $  (49) 

For every 6 smooth in T, R6 E BDM, is characterized by 
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where h ,  is the cubic bubblc function equal to A l i 2 j v 3 .  

For a rectangular element K we have instead 

and R is defined by 

(K6 - 6) ' zpk(s)ds = 0 Ve, Vp, E P,(e) h 
L 

Finally we have 

with 

1799 

(71) 

(76) 

7. CONCLUSIONS 

Wc presented a general strategy for constructing new elements for Reissner Mindlin plate 
bending problems. The strategy consists essentially in finding the following items: 

I .  A velocity pressure pair of spaces (a,,, Qh) G (HA)2 x L2 that is good for Stokes problems. 
2. A pair ofspaces (rh, Q h )  c H,(rot) x L2 for mixed approximations of linear elliptic problems, 
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and an operator R such that the following diagram commutes: 

( ~ X  defined in (64) and Ph = L*-projection) 

3. A finite element space W, such that 

V w h  = (slsErh, ro ts  = 0) 

A simplified analysis (considering only the limit case t = 0) shows that, if we use @h for 
approximating rotations, W, for approximating the transverse displacement and the term 
R(Vw,  - d,) (instead of V w ,  - 0,) for the shear strains, we have an element that does not lock and 
that converges with optimal rate. However, we should note the following: 

(a) Our analysis does not imply that the elements presented will be uniformly good for every 
t > 0. We only analysed the limit case t = 0, but we believe that this is already a very 
meaningful test. 

(b) Our analysis also does not imply that the shear stresses will converge with optimal rate. Our 
analysis only covers the transverse displacement and rotations. Our guess is, however, that 
the shear ‘stresses should behave as the pressure in Stokes problems, and hence converge 
with optimal rate. 

(c) Other Reissner-Mindlin elements, based on a different conception and thus escaping our 
analysis, might also be good elements. However, if we use a reduction operator R as in Pfh 
(Section 2) with R(Vw,) = V w ,  for wh E W,, then we believe that our analysis becomes almost 
necessary. 

Finally, we note that we have not studied in this paper the actual numerical efficiency of the 
proposed elements, and thus their practical use. Such study and numerical investigations 
regarding the above observations will be the object of future communications.” 
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