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INTRODUCTION

Problem Definition.—The equations of motion for a system of structural
elements can be written as

Ml + Cl + KU = P oottt ittt it tetnaessttnnesannens (1)

in whichM = the mass, C = the damping, and K = the stiffness matrix of the
system; vectors u, u, 4, and P are thedisplacements, velocities, accelerations
and loads, respectively (4). The matrices M, C, and K are obtained in the
analysis of building structures idealized as an assemblage of beam elements
and in the analysis of continuums using a discretization technique such as the
finite element method (13).

Assume that the elements in the stiffness, mass, and damping matrix are
constant and that a mode superposition analysis is considered to be most eco-
nomical. The first step in this analysis is to consider freevibration conditions

MU + KU = 0 .ttt et ittt it e s e tenss e eanenas (2)
Substituting u = ¢ sin W - %,) ... ... e (3)
the generalized eigenvalue problem

KO = WEMG o v v vt ettt ee it e naan o as e oo (4)

is obtained. Then eigenvalues give the natural frequencies of the system and
the eigenvectors are the corresponding vibration modes. The complete solu-
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tion to Eq. 4 can be written as
Kd = MO 2 | .. ... ittt ittinnreeeeannanennnnan (5)

in which the columns in & are the eigenvectors ¢; and Q2 = diag (w3).

The basis is now changed from the physical coordinate basis which was
used to establish Eq. 1 to the M-orthonormal basis of eigenvectors. Using u =
X with the vector, X, listing the coordinates in the new basis, the equilibrium
Egs., Eq. 1, become

X+aX+02x=8TP ,............... e e (6)

in which A = ®7C® and is assumed to be diagonal. This requires that the
damping matrix is of a restricted form as described in Ref. 12; Eq. 6 then
consists of » uncoupled equations, which can readily be solved (4).

The most time consuming step in the analysis can be the solution of the
eigenvalue problem. If the order of the matrices is large, the computer time
required to solve for all eigenvalues and vectors can be enormous. However,
the structure may respond primarily in a few modes and the contribution of the
other modes may be negligible. In particular, in earthquake response analysis
it is often sufficiently accurate to consider only the lowest frequencies and
corresponding vibration modes. Inthis case a solution routine is needed which
calculates only the required frequencies and vectors with optimum efficiency.

For the eigenvalue solution it is of particular importance that for most
structural systems both matrices K and M are banded, i.e., k,-]- =0 forj> i
+mg andmy = 0 for j > i + my inwhich(2mg + 1) and(2my + 1) are the
bandwidths of the matrices. If all rigid body modes have been removed from
the system, K is positive definite. If a consistent mass formulation is used, M
is alsopositive definiteand my = mk. But experience has shown that accurate
results may often be obtained using a lumped mass formulation in which M is
diagonal with m;; positive or zero.

Rayleigh-Ritz Method.—For large structural systems the order of the
matrices can be several thousand; therefore, approximate techniques have
been developed to calculate the lowest eigenvalues and vectors. A very general
technique is the Rayleigh-Ritz analysis (5). Let V, denote the n-dimensional
space in which the operators K and M are defined. The Rayleigh minimum
principle states that

wi=minplv) ............. e h e e e e e 7

in which the minimum is taken over all vectors v in V,, and p(v) is the Rayleigh

quotient defined as
T
v K
PW) = Ty > 0 e (8)

In the Ritz analysis all vectors v in a g-dimensional subspace of V, are
considered. A typical element in the subspace is given by

_ q
¥ E Y K et e e e (9)

in which the x; = the Ritz basis vectors and the a; = the Ritz coordinates.
Substituting Eq. 9 into Eq. 8,
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7 4q -
L L a5 ai ki
pv) = PR (10)
Z aj a; m,-j
j=1 i=
is obtained with k5 = XF K Xj ....ovunvennennnnnon... e (1)
;‘n‘j = Xg‘ M D¢ T (12)
The necessary condition for a minimum of p(v) is 8p(;)/8a,- =0,i=1,...q.
This gives
Ka = pﬂ[a .................................... (13)

in which a = a vector listing the Ritz coordinates; K and M = the generalized
stiffness and the generalized mass matrix withtypical elements given in Eqgs.
11 and 12.

The solution of Eq. 13 yields g values p;, ..., p; and corresponding
vectors vy, . . ., V4, which are obtained using Eq. 9. The values p;, ¢ = 1,
.. . s q are upper bound approximations to the exact eigenvalues of Eq. 4, (5),
ie.

W =Py W = Py W =P e (14)
The actual error in the solution is, in general, not estimated. It depends on
the Ritz basis vectors chosen because the approximate eigenvectors v,, . . .,

V4 are elements of the subspace.

The Ritz analysis has been implemented in various ways (9). Ritz basis
vectors can be obtained from a static analysis in which g load patterns are
specified in Pp(4); then

KXp =Pp ... e e e et e e (15)

and K = XZPp; M= XEMXD ©.vvoneen oo (16)

The obvious difficulty is in selecting good load patterns.

Static Condensation Method.—In another scheme which is known as static
condensation of the massless degrees-of-freedom, itis assumed that all mass
can be lumped at ¢q degrees-of-freedom. Therefore, as an approximation to
Eq. 4

Kaa Kac|(¥a| _ y2(Ma Off¥ay an
Kea Kooll® o ofls

is obtained with ¢ finite and (r - ¢) infinite eigenvalues. A reduced eigenvalue
problem for the finite eigenvalues is obtained by using static condensation on
the ¥, degrees-of-freedom, then

Kot = W MaBg v ovveeeeeetee e et ee e e (18)

in which K = Kgg - 27 2; Kee = LLT; LZ = Kpg + o vveevnnnn.. (19)

This solution is actually a Ritz analysis of the lumped mass model considered




1474 December, 1972 EM 6

in Eq. 17. The Ritz basis vectors are the displacement patterns associated
with the $, degrees-of-freedom when the ¢, degrees-of-freedom are released,
Solving

[Kaa K“C}[ “] - [’:I ............................. (20)
Kca KCC fc 0

in which f,; = K !,

and in Eq. 16 K = K; and M = M,. In this analysis the lowest ¢ eigenvalues
of the lumped mass model in Eq. 17 are calculated exactly, because the Ritz
basis vectors span the g-dimensional subspace corresponding to the finite
eigenvalues. The accuracy with which the eigenvalues of the lumped mass
model approximate the g lowest eigenvalues of the original model in Eq. 4
depends on how well mass was lumped.

In both analyses, the Rayleigh-Ritz and the static condensation method, the
smallest eigenvalues are usually approximated best; however, nothing can be
said about the accuracy of the eigenvalue approximations obtained. In fact, an
approximation to an important eigenvalue may be missed completely.

Accurate Calculation of Requived Eigensystem.—Various solution routines
have been established to calculate the lowest eigenvalues and corresponding
vectors in the generalized eigenvalue problem, Eq. 4, exactly (10). The prob-
lem may be transformed into a standard eigenvalue problem and then a Ray-
leigh quotient iteration with matrix deflation can be used (6). This has the
disadvantage that M must be diagonal and positive definite. It is more efficient
to solve Eq. 4 directly without a transformation. This is done in Ref. 7. How-
ever, the algorithm uses only the Sturm sequence property and is therefore
costly unless the bandwidth of the system is very small. A very efficient so-
lution routine has been developed for systems with small to medium bandwidth
by combining a determinant search technique with the information obtained
from the Sturm sequence property and vector inverse iteration (1). But for
systems with large bandwidth and which cannot be taken into high speed stor-
age of the computer, this solution becomes also expensive, mainly because
many triangular factorizations are required. The most promising approach
for the solution of systems of large order and large bandwidth is the simul-
taneous iteration with a number of vectors (2,3,8).

The aim of this paper is to present the simultaneous iteration with p vec-
tors in Eq. 4 as a subspace iteration which then leads to a very effective im-
plementation. The algorithm was developed as part of an automatic package
for the calculation of eigenvalues and eigenvectors in a general structural
analysis program (1,11), The mass matrix can be diagonal with zero elements
or may be banded as in a consistent mass formulation. Operation counts are
given for both cases inorder to enable solution cost estimates. The algorithm
is particularly suited for the solution of systems which are too large for the
high speed storage of the computer. Aprogram which was written for systems
of practically any order and bandwidth is described herein. Two example so-
lutions, namely, the eigensolution of a plane frame and of a complex three-
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dimensional building frame, are given in order to show typical convergence
characteristics and iteration times needed.

SUBSPACE ITERATION ALGORITHM

Basic Theory.—The objective is to solve for the p lowest eigenvalues and
associated eigenvectors satisfying

K& = MO Q2 | . ittt i (22)

in which & stores the p eigenvectors and Q7 the corresponding eigenvalues,
The eigenvectors are an M-orthonormal basis of the p-dimensional, least
dominant subspace of the operators, which will now be called E .

Before developing the algorithm, it may be pointed out that the essential
idea is to iterate simultaneously with p linearly independent vectors which
initially span the starting subspace E,, until E_ is spanned. The required ei-
genvectors are then computed without further iteration. The total number of
required iterations depends, of course, on how close E, is to E_. But the ef-
fectiveness of the algorithm lies in that it is much easier to establish a p-
dimensional starting subspace which is close to E_ than to find p vectors
which each are close to a required eigenvector. Also, convergence of the sub-
space is all that is required and not of individual iteration vectors to
eigenvectors.

To present the algorithm let X, store the p starting vectors which span E,,.
Consider simultaneous inverse iteration with the vectors, expressed as

KXp = MXp—;, B=1,2,... ..., (23)

The iteration vectors in X, spana p-dimensional subspace Ej, and the sequence
of subspaces generated converges to E_. This seems to contradict the fact
that in this iteration each column in Xj; is known to converge to the least
dominant eigenvector unless the column is deficient in ¢,. Actually, there is
no contradiction, Althoughin exact arithmetic the vectors in X span Ej, they
do become more and more parallel and therefore a poorer and poorer basis.
One way topreserve numerical stability isto generate orthogonal bases in the
subspaces Ej using the Gram-Schmidt process. In this case the iteration is

KX = MXp_, R B =1,2,... ... .. 0iiieiiiinn. (24)
in which R = an upper triangular matrix; provided the starting vectors in X,
are not deficient in the eigenvectors corresponding to w2, w3, . . ., wf, in which

W= wiswd... = wh< wh it holds X, ~ &; Ry' — Q*as & — =.
Apart from round-off, this iteration generates the same sequence of subspaces
as Eq. 23, but in this case the 7'th column in X, converges to ¢; with a rate of
max {wi_,/w}, wi/wi,,}. Essentially, this poor convergence rate results from
the orthogonalization of the iteration vectors from the left to the right. For
example, no advantage is taken if the third column in X; is much closer to ¢,
than the first column. In particular, assume that the vectors in X span E
but are not eigenvectors; then, although the subspace already converged, many
more iterations may be needed in order to turn the orthogonal basis of itera-
tion vectors into the basis of eigenvectors.

The following algorithm finds an orthogonal basis of vectors in Ep, thus
preserving numerical stability in the iteration of Eq. 23, and also calculates
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in one step the required eigenvectors when Ep converged to E_.
Fork = 1,2, ... iterate from Ep_, to Ep,

KXy = M poy vt in ittt ettt e et it et i (25)
Find the projections of the operators K and M onto Ep

Kp = XL KXy oottt (26)

Mp = XF MXp oottt e i (27)
Solve for the eigensystem of the projected operators

Kp Qo = Mp Q0% ...... e e e e e (28)
Find an improved approximation to the eigenvectors

X = Ko Qb cvv e te i e e (29)

Then provided E, is not orthogonal to one of the required eigenvectors,
Q —- Q% Xp - ® as kB~ o

is obtained.

Assuming that Ep, is close to E  the convergence rate of the ¢'th column in
X, to ¢; is wg/wzﬂ. Although this is an asymptotic convergence rate, it indi-
cates that the lowest eigenvalues converge fastest. Also, faster convergence
can be obtained by using q iteration vectors, with ¢ > p. Inthe implementation
g = min {2p, p + 8} has been used. Note that then multiple eigenvalues do not
decrease the convergence rate provided wzﬂ > wf,.

Inpractice, it is of interest to know what happens inthe first few iterations
when Ep, is not yet close to E_ . Egs. 26 to 29 are identified as a Ritz analy-
sis withthevectorsin X, as theRitz basis vectors. Therefore, the eigenvalues
in 0;2, are stationary points in conformity with the Rayleigh minimum princi-
ple, Eq. 7, and they are upper bound approximations onthe eigenvalues sought,
Eq. 14.

Starting Subspace.—The number of subspace iterations required for con-
vergence depends on how close the starting subspace is to E_. Whenever
starting vectors approximate quite well the eigenvectors sought, these vectors
should be used in X,. In this case, the algorithm is ideally suited for solution.
For instance, in dynamic optimization, as the structure is modified in small
steps, the eigensystem of the previous structure would be a good approxima-
tion to the eigensystem of the new structure. Sometimes it may be difficult to
judge if the transformation vectors at hand can be considered to be good. In
particular, it is important to note that in exact arithmetic, convergence to an
eigenvector is not possible, if the starting vectors in X, are all orthogonal to
the eigenvector. But the conventional Ritz analysis, if excellent load patterns
are known, the component mode synthesis and related methods summarized
by Uhrig can all be good first subspace iterations (9).

Assume that good transformation vectors are not present and that it is de-
sirable to establish X, from the elements in K and M only. It is not necessary
to use vectors in X, which are close to the required eigenvectors, but only
vectors which span a subspace cloge to E .

The following scheme has been found very effective. The first column in
MX, is simply the diagonal of M. This assures that all mass degrees-of-
freedom are excited in order not to miss a mode. The other columns in MX,
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are unit vectors with + 1 at the coordinates with largest ratios m;;/k;;. This
scheme is used because for the special case when K and M are diagonal, these
vectors span E_. Inactual analysis,the same or nearly the same ratio myi/ki;
may occur at many coordinates and it is equally important that the unit entries
in the vectors are well spaced for better convergence.

Convergence.—It is apparent that the closeness of Ej to E, and thus con-
vergence, can be measured by the eigenvalue (or eigenvector) approximations
calculated using Eqgs. 26 to 29.(kAs)suming tl}aat in the iterations (¢ - 1) and %

-1

eigenvalue approximations wﬁ d wi are calculated, then the ratio

(k) (k1) (k)
wi - wl w?  may be used as a measure of convergence. For ex-

ample, for the eigenvalues to be accurate to about 5 digits, it is necessary to
iterate until this tolerance is less than 1078,

Verification of Results.—The starting subspace previously described has
proven to be very satisfactory. However, the resulting eigenvalues and eigen-
vectors may be checked by using the Sturm sequence property (10). This
states that in Gauss elimination to evaluate LDLT =K - uM, in which s
= the shift, the number of negative elements in D = the number of eigenvalues
smaller than ¢. Inorder to use a meaningful 4, it is necesskz;ry to find bounds

for the exact eigenvalues wﬁ using the calculated values w"z? . A conservative
estimate for a region in which the exact eigenvalues lie is given by
(k) (k)

2
0.99 w? < w? < 1.01 wj

........................

TABLE 1.—OPERATION COUNT FOR SUBSPACE ITERATIONS

Number of Operations
Method Calculation
m = mg = My m=mg; my =0
(1) (2) (3 (4)
Simple KX, = Yp—y ng(2m + 1) ng(2m + 1)
inverse %
iteration Y = MX; ng@m + 1) nq
Total 2ng(2m + 1) 2ng(m + 1)
Inverse KX; = Yo ng(2m + 1) ng(@m + 1)
iteration with = =
Gram-Schmidt Y = MX ng(2m + 1) nq
orthogonalization | Y = Yy R, ng/2(3q + 3) nq/2(3q + 3)
Total ong(2m + 3/4q + 1/4) | 2ngim + 3/4q + 1/4)
Inverse KXp = Yo ng(2m + 1) ng{2m + 1)
iteration with _ 3T
calculation of E” - xk_Y"“ nq/2(q + 1) ng/2(q + 1)
operator Y, = MXp ng(2m + 1) ng
projections My, =XI ¥y |na/2@ + D na/2(@ + 1)
K Qe = MpQufl} 0(g®) neglected . . .
Yr = Qe ng* ng?
Total 2ng(2m + q + 3/2) 2ngim + q + 3/2)
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in which only the lowest eigenvalues, which all converged to a tolerance of
107¢, should be included. Eq. 30 can be used to establish bounds on eigenvalue
clusters, at which a meaningful Sturm sequence check can be applied.

Operation Count and Summary of Algorithm.—In order to obtain an esti-
mate of the cost to solve an eigenvalue problem consider the number of Central
Processor (high speed storage) operations required for solution. The actual
cost includes, of course, the cost of the Peripheral Processor (tape and disc
reading) time. However, this time is very system and programming dependent
and is therefore not considered in this investigation.

Let one operation equal one multiplication which nearly always is followed
by an addition. Assume that the half bandwidths of K and M, i.e., mg and myy,
are full, and neglect terms which involve the bandwidths and number of itera-
tion vectors only.

Before the subspace iteration is started K is factored into LpLT using
Gauss elimination without interchanges. In particular

—11...L2_1L1—1K=U ......................... (31a)
M -
1
- li+1 i
in which Li—l = - lisai H
- li+mK,i
L 1
k('i) (2)
lt+].t = _ld(:,:;i; Uz = ku ........................ (3156)

and k(’) denotes the (I, m) element after the fu'st i - 1 row reductions have
been carrled out, Writing L = L, e Ly, U = DLT and it is only necessary to
store the upper band of K. This factorlzatxon requires (1/2) n mk + (3/2) nmg
operations.

A summary of the steps in a subspace iteration together with the corre-
sponding number of operations is given in Table 1. Referring to the table, fk
is calculated using

LDLT Xy = Yhoy oei e e e (32)
The reduction gives
LT X, = DTl LT Yh oy oot e it e e e (33)

and then X; is obtained by a back-substitution,

A
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Table 1 shows that for m >> ¢ about the same number of operations are
needed in all three iteration schemes. Note that about twice as many operations
are needed when M is banded.

70
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FIG. 1.—NUMBER OF TRIANGULAR FACTORIZATIONS EQUIVALENT TO SUBSPACE

ITERATIONS
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FIG. 2.—BLOCK STORAGE OF STIFFNESS MATRIX, MASS MATRIX, AND ITERA-
TION VECTORS

Let the eigenvalues berequired to about five digit precisionand let ¢ = min
\ {2p, p + 8}, then, with the starting subspace described, by experience about
eight subspace iterations are needed. Assume that the projections of K and M
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are calculated in each iteration, then the number of triangular factorizations
equivalent in operations to the subspace iterations are

32gm + 32q% + 48¢

27 1 3 formm =0 .. ... ... .. e (39)
64gm + 32q* + 48¢q _
and 7 s 3 for my =mg ...... N (35)

Fig. 1 shows these relations for various values of p. It is seen that with m
large the operations required in the subspace iterations are of the order of a
triangular factorization. But when m is small, the iterations are equivalent
to many factorizations. In this case a determinant search solution algorithm
is more efficient (1). Note that at convergence in the iteration a Sturm se-
quence check is carried out whichrequires one more triangular factorization.

LARGE CAPACITY SOLVER

A large capacity solver was written for the solution of systems which have
practically any order and bandwidth (1). The program stores the stiffness

3— 10 AT
)

10

100
LEVEL | — I
rrrrr7rzy

77777777777 177777777 777777777
10 AT 20"

! 200'
(a) ELEVATION OF FRAME

DATA: YOUNG'S MODULUS = 432000, MASS DENSITY = 1.0
FOR ALL BEAMS AND COLUMNS A;=3.0,1 = [,=1,=10
UNITS : FT,KIPS

—-

(b) BEAM ELEMENT DEFINITION
$,5; AND S5 = BEAM LOCAL AXES
I;,1, AND I, =FLEXURAL INERTIA ABOUT S ,S,,AND S,
A, = AREA ASSOCIATED WITH S,

FIG. 3.—PLANE FRAME OF EXAMPLE 1
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matrix, the mass matrix, and the iteration vectors in blocks on tape (Fig. 2).
In the solution, the same number of Central Processor operations as in an
-core solution are performed. But in all operations it is now necessary to
pave at any one time the required matrix elements in high speed storage. In
the stiffness factorization, Eq. 31, always only two blocks of K are in high
speed core. To perform the reduction and back-substitution of the iteration
vectors in Eq. 33, sequentially one block of the factored stiffness matrix and
as many vector blocks as are necessary to reduce one block of vectors—or,

TABLE 2.—CALCULATED EIGENVALUES AND SOLUTION TIMES TAKEN IN EXAM-
PLE ANALYSES

i 2
Example Calculated Eigenvalues w3 Solution time, central
i=1 i=2 i=3 i = 4 | Processor secon CDC 6400
(03] (2) (3) @) ®) (6)

Plane

frame | 0.589541.. [ 5,52695.. | 16.5878.. 24.48
Building

frame | 0.41537.. | 0.54930..| 0.78606.. 1,0325.. 159.59

TABLE 3.—CONVERGENCE CHARACTE

RISTICS OF SUBSPACE ITERATIONS

.| Number of .
Analysis iteration Eigenvalue approximations
1) (2) 3)
Plane 1 0.5971|6.937 |{27.30 (80,59 101.1 | 1423
frame 2 0.5895(5.530 [16.73 |38.44 46,91 | 75.81
3 0.5895|5.527 [16.59 35,75 | 42.85 67.93
4 0.5895|5.527 |16.59 |35.48 | 41.74 65.41
5 0.5895 | 5.527 |16.59 35.43 41.38 64.44
6 0.5895 | 5.527 |16.59 |35.42 | 41.26 64.02
Building 1 0.5206] 0.9007| 1.329 | 1.869 4.320] 7.550(23.67 |296.7
frame 2 0.4177! 0.5529| 0.7992| 1.075| 1.676 3.002| 4.666|194.9
3 0.4154 | 0.5493| 0.7864 1.035 1.498 2,210 2.395 3.656
4 0.4154 | 0.5493| 0.7861 1,033 1.488 2.008 | 2.293 3.463
5 0.4154 | 0.5493| 0.7861| 1.033| 1.487 1.971| 2.272| 3.432
6 0.4154 | 0.5493] 0.7861 1.033] 1.487 1,962 2.268 3.415
7 0.4154 | 0.5493| 0.7861| 1.033| 1.487 1,959 | 2.266 3.403
8 0.4154] 0,5493| 0.7861| 1.033| 1.487 1.958| 2.266| 3.391

in the back-substitution,
taken into high speed storage.
reductions and back-substitutions,
width of the system and of zero elemen

The starting subspace is establishe
f K an

space iteration the projections O
are required for the vector orthogonalization,

relatively little more operations

and the advantage is that eigenva
Also, in some eigenvalue solutions,

d as previou

to obtain the new iteration vectors in one block—are
In the stiffness factorization and in the vector
due account is taken of the varying band-
ts within the band.
sly described. In each sub-
d M are calcutated. When m is large,

lue estimates are obtained in each iteration.
as in the analysis of frames, even good
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starting vectors may be nearly parallel and should be orthogonalized in the
first subspace iteration. With the storage scheme adopted, a Gram-Schmidt
orthogonalization would require much tape handling and is not preferable.

For the solution of the eigenvalue problem in Eq. 28, a generalized Jacobi
iteration is used. In this iteration K; and M, are reduced simultaneously to
diagonal form, without a transformation to the standard eigenvalue problem.
This avoids numerical difficulties when My is ill-conditioned and takes ad-
vantage of the fact that K; and M, tend towards diagonal form as the number
of subspace iterations increases.

EXAMPLE SOLUTIONS

The program described in the previous section was used for the example
analyses. The solution times always include the initial factorization of the
stiffness matrix, the subspace iterations and the Sturm sequence check.

Eigensolution of Plane Frame.—The three lowest eigenvalues and corre-
sponding eigenvectors of the 9-story highand 10-bay long frame shown in Fig.
3 were calculated. The stiffness matrix was of order 297, the maximum half

2 AT I5'

3AT)5'

7777777 777777777777 77777777777777
I 5 AT 30' _l
— 150" -

{a) ELEVATION OF BUILDING

X
1 REAR 2 AT 20
80" -\ —
)
FRONT]|
2 AT 20'

(b) PLAN OF BUILDING

DATA:
YOUNG'S MODULUS = 432000 , MASS DENSITY = 1.0
COLUMNS IN FRONT BUILDING | A,= 3.0, 1)=1,=15=10
COLUMNS IN REAR BUILDING : Az 4.0, I,21,=13=1.25
ALL BEAMS INTO X-DIRECTION : Az2.0,1,=1,=1,=0.75
ALL BEAMS INTO Y -DIRECTION: 4,3.0, 1 z13=13= L.O
UNITS : FT,KIP

FIG, 4.—THREE-DIMENSIONAL BUILDING FRAME OF EXAMPLE 2

e
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bandwidth was 29, and three blocks were used. A lumped mass formulation
was employed with zero masses at all rotational degrees-of-freedom. Table 2
gives the final eigenvalues calculated at convergence to a tolerance of 107°
together with the solution time taken. The convergence characteristics of the
subspace iteration can be observed in Table 3. Note that the calculated eigen-
values are already accurate to four digits after only three iterations. It ig of
interest that a Ritz analysis with five transformation vectors obtained by ap-
plying unit loads into the y-direction at levels 1, 2, 3, 4, and 5 in Fig. 3 gave
as eigenvalue approximations w? = 0.6113, w2 = 7.320 and w? = 30.08.

Eigensolution of Thvee-Dimensional Building Frame.—Fig. 4 shows the
building which was analyzed for the four lowest eigenvalues and corresponding
vectors. The building was idealized as an assemblage of beam elements only
with six degrees-of-freedom at each joint. A lumped mass matrix was used
with no mass at all rotational degrees-of-freedom. The order of the system
was 468, the maximum half bandwidth was 155, and 13 blocks were used in the
solution, Tables 2 and 3 give the eigenvalue approximations calculated in each
iteration, the final eigenvalues at convergence to a tolerance of 107 % and the
solution time taken. The good convergence of the starting subspace can again
be observed.

Note that in both solutions the lowest eigenvalues converge fastest and, that,
in each iteration there are upper bounds to the eigenvalues of the discrete
element assemblage.

CONCLUSIONS

Avery efficient solution technique for large eigenvalue problems in dynamic
analysis has been presented. The subspace iteration algorithm solves the ei-
genvalue problem directly without a transformation to the standard form. The
mass matrix may be diagonal with zero elements or banded. The operation
counts and the example analyses show the cost effectiveness of the solution
technique. Aprogram has been described which solves the eigenvalue problem
for any system size and bandwidth, Very large systems, which generally have
been analyzed using approximate techniques such as the Rayleigh-Ritz and
static condensation method, can economically be solved with this solution
routine,
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APPENDIX II.~NOTATION

The following symbols are used in this paper:

a = vector of Ritz coordinates;

a; = Ritz coordinates;

C = damping matrix;

D = diagonal matrix;
Ep = subspace spanned by vectors in X ;

f,, fo = flexibility matrices defined in Eq. 20;

i, j = indices of matrix elements;

K = stiffness matrix;

I~{ = generalized stiffness matrix;
Kp = projection of stiffness matrix, see Eq. 26;
Kzas Keer Kooy Koq = submatrices of K, see Eq. 17;

K, = stiffness matrix obtained from K by static condensa-
tion of massless degrees-of-freedom, see Eq. 19;
k = subscript indicating number of iteration;
k;j = element of K;
’};,-j = element of ﬁ, see Eq. 11;
L = lower unit triangular matrix;
L = Cholesky factor of K., see Eq. 19;
I;; = element of L;
M = mass matrix;
M = generalized mass matrix;

2
&
0

submatrix of M, see Eq. 17;
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maximum of mx and my;
element of M;

element of M, see Eq. 12;

half bandwidth of X;

half bandwidth of M;

order of stiffness and mass matrix;

load vector;

load matrix used in Ritz analysis, see Eq. 15;

number of required eigenvalues and eigenvectors;
eigenvectors of stiffness and mass matrix projections,
see Eq. 28;

number of iteration vectors used;

upper triangular matrix, see Eq. 24;

upper triangular matrix;

displacement, velocity, and acceleration vectors;
element of U;

n-dimensional space in whichK and M are defined;
element of Vy,;

element of g-dimensional subspace of V,, see Eq. 9;
eigenvector approximations calculated in Ritz analysis;

modal displacement, velocity, and acceleration vectors;
displacement matrix calculated in Ritz analysis, see
Eq. 15;

iteration vectors;

Ritz basis vector;

iteration vectors weighted with M;

matrix used in the static condensation, see Eq. 19;
damping matrix;

Rayleigh quotient, see Eq. 8;

eigenvalue approximations calculated in Ritz analysis;
matrix of M-orthonormal eigenvectors;
M-orthonormal eigenvector;

displacements associated with mass and massless
degrees-of-freedom, see Eq. 17;

diagonal matrix storing the eigenvalues;

diagonal matrix storing eigenvalue approximations;

eigenvalue and circular frequency squared; and

approximation to w? calculated in iteration k.






