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SUMMARY 

An updated Lagrangian and a total Lagrangian formulation of a three-dimensional beam element are 
presented for large displacement and large rotation analysis. It is shown that the two formulations yield 
identical element stiffness matrices and nodal point force vectors, and that the updated Lagrangian 
formulation is computationally more effective. This formulation has been implemented and the results of 
some sample analyses are given. 

INTRODUCTION 

The possibility of practical static and dynamic nonlinear analysis of structures has during recent 
years progressed substantially, due to the effective use of digital computers operating on finite 
element representations of the structures. To enable general nonlinear analysis the develop- 
ment of versatile geometric and material nonlinear finite elements is in much need, and among 
these elements the use of an effective three-dimensional beam element is very important. 

Since the first applications of computers to nonlinear analysis of structures, various nonlinear 
beam elements have been presented.*-" The large number of publications on nonlinear analysis 
of beam structures is, at least partially, due to the fact that various kinematic nonlinear 
formulations can be employed, and that at this time it is not clear which formulation is most 
effective. The difficulty of obtaining effective solutions is particularly pronounced in the analysis 
of three-dimensional beam structures. Namely, considering a beam element it is noted that a 
general three-dimensional nonlinear beam formulation is not a simple extension of a two- 
dimensional formulation, because in three-dimensional analysis large rotations have to be 
accounted for that are not vector quantities. 

In the development of a geometrically nonlinear beam element, basically an updated 
Lagrangian or a total Lagrangian formulation can be employed. 12,13 These formulations must be 
implemented using appropriate displacement interpolation functions. Considering the choice of 
these functions it is recognized that for a beam of constant cross-section in small displacement 
analysis the Hermitian functions should be employed to interpolate the transverse bending 
displacements, and linear interpolation must be used to interpolate the torsional and longi- 
tudinal displacements. Therefore, in the search for a beam element that can undergo large 
rotations (with small strains), it is natural to employ the same functions but referred to the beam 
convected co-ordinate axes. In this way the usual beam kinematic assumptions are used referred 
to the current beam geometry. 
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Considering the formulation of a large displacement beam element, once specific beam 
assumptions have been made and the interpolation functions have been selected, basically the 
same element stiffness matrices and nodal point force vectors should be calculated using any one 
formulation. Therefore, the response predicted using different formulations must be the same, if 
the same number of beam elements are employed to model a structure. Indeed, the choice for a 
total Lagrangian or an updated Lagrangian formulation should be decided only by the relative 
numerical effectiveness of the formulations. However, considering large displacement beam 
formulations using the Hermitian interpolations to describe bending deformations and linear 
interpolations to specify axial and torsional displacements, a moving co-ordinate formulation 
appears quite natural. Namely, in a total Lagrangian formulation for large rotation analysis, the 
fact that the different displacement components are interpolated using different order poly- 
nomials establishes an interpolation directionality that requires special attention. 

In another approach to formulate a beam element that includes large rotation effects, the 
transverse displacements, axial displacements and the rotations are interpolated independently. 
If the same interpolation functions are employed for all these kinematic variables, the problem 
of interpolation directionality under large rotations does not arise in the total Lagrangian 
form~la t ion . '~  However, to obtain the same accuracy as with the beam elements based on 
Hermitian functions, in this element formulation about twice as many degrees of freedom are 
needed. It can be concluded that, for straight beams, it is more efficient to employ the 
conventional beam interpolation functions, but to formulate more general and curved beam 
elements the independent interpolation of displacements and rotations is effective. 

The objective in this paper is to present two consistent large rotation nonlinear three- 
dimensional beam formulations: an updated Lagrangian (U.L.) and a total Lagrangian (T.L.) 
formulation. The formulations are derived from the continuum mechanics based Lagrangian 
incremental equilibrium equations." The beam elements are assumed to be straight, and the 
conventional beam displacement functions are employed to express the displacements of the 
elements in convected co-ordinates. In the paper the two formulations are evaluated, and it is 
shown that the governing incremental equilibrium equations of the beam elements are identical 
but that the updated Lagrangian-based element is computationally more effective. This element 
is a very efficient three-dimensional nonlinear beam element. The element has been implemen- 
ted for use in elastic, elastic-plastic, static and dynamic analysis and in the paper a few 
demonstrative sample solutions are presented. 

INCREMENTAL T.L. AND U.L. CONTINUUM MECHANICS FORMULATIONS 

The beam element formulations are based on the general incremental T.L. and U.L. continuum 
mechanics equations," which are briefly summarized below. 

Consider the motion of a body in a fixed Cartesian co-ordinate system, as shown in Figure 1. 
Assume that the solutions measured in the co-ordinate system corresponding to all time points 
0, At, 2At, . . . , t are known. It is required to solve for the unknown static and kinematic variables 
in the configuration at time t + At. In static analysis and implicit time integration the equilibrium 
of the body at time t + At is expressed and used to solve for the static and kinematic variables 
corresponding to time t + At. On the other hand, in explicit time integration, the equilibrium at 
time t is employed to solve for the displacements at time t + 

Total Lagrangian (T.L.) formulation 

In the total Lagrangian formulation all static and kinematic variables are referred to the initial 
configuration at time 0. Considering the equilibrium of the body at time t + At, the principle of 
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CONFIGURATION 
AT TIME t f A t  
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u I  = t + A t U . -  t U .  

Figure 1. Motion of body in Cartesian co-ordinate system 

virtual displacements gives 

where 
components 

is the total external virtual work expression due to the surface tractions with 
and body forces with components “A&fk, 

In equations (1) and (2), SUk is a (virtual) variation in the current displacement components 
uk, &r+Ai~i i  is a (virtual) variation in the Cartesian components of the Green-Lagrange strain 

tensor in the configuration at time t + At referred to the initial configuration, and are the 
Cartesian components of the 2nd Piola-Kirchhoff stress tensor in the configuration t + At and 

[+At  
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measured in the configuration at time 0: 

(3) 

(4) 

t + A r  1 r+At i C A f  
O&ij = 5( 0ui.j + Ouj,i + I f A ; u k , i  f + A b U k , j )  

0 
t+A& = - P 0 i + A f  0 

11 t + A t  r+ArXi,k T k f  f + A t X j , l  
P 

0 0 t t A t  where t+AtXi,j = d xi/d 
t + At. 

effects." 

tal decompositions are used: 

x j  and the t+ArTkl  are the components of the Cauchy stress tensor at time 

In dynamic analysis the body force components in equation (2) include the mass inertia 

Since the stresses f+A$ij and strains are unknown, for solution the following incremen- 

(5  1 
(6) 

t+At  &.. = 6s.. +,S..  
11 g 1  11 

t + A r  
OEij = 6Eij  + OEij 

where ASij and 
the configuration at time t. It follows from equation (6) that S t + A ; E i j  = 
components can be separated into linear and nonlinear parts 

are the known 2nd Piola-Kirchhoff stresses and Green-Lagrange strains in 
The strain increment 

OEij = O e i j  + 0Vij (7) 

where 

(8) 

(9) 

1 
oeij = d(0ui.j +OUj , i )  + ( 6 u k . i  0 u k , j  + 6 u k . j  0 U k , i ) l  

and 
1 

0 V i i  = d 0 u k . i  0 u k . i )  

Finally, the constitutive relations with tensor components ,,CijrS can be used to relate incremental 
2nd Piola-Kirchhoff stresses to incremental Green-Lagrange strains 

&.. 11 = &.. ilrs OErs (10) 

Using equations (5)-(lo), equation (1) can now be transformed to 

Equation (1 1) is nonlinear in the incremental displacements ui, and can be linearized by using 
the approximations OSij = OCijrs Oers and = SOeii. We thus obtain 

which is a linear equation in the incremental displacements. 

integration, equation (1) is used corresponding to time t. 
Equation (12) is employed in static analysis or implicit time integration. In explicit time 

Updated Lagrangian (U.L.) formulation 

In the U.L. formulation the same incremental stress and strain decompositions as in the T.L. 
formulation are employed, but all variables are referred to the configuration at time t, i.e. the last 
known configuration. Thus, corresponding to equation (12), the linearized equilibrium equation 
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is in the U.L. formulation 

fCl,rs ters &e,, ‘du + f ~ , ,  &q2, ‘dv = ‘+“B - 1, ‘T,, &err ‘du I,, I, (13) 

where the f ~ t l  are the Cartesian components of the Cauchy stress tensor at time t ;  tell and fqrf are 
the Cartesian components of the linear and nonlinear strain increments, respectively, and the 
tCLf,s are the components of the tangent constitutive tensor relating small strain increments to the 
corresponding stress increments. 

U.L. AND T.L. FORMULATIONS O F  BEAM ELEMENT 

The general three-dimensional straight beam element is formulated based on the continuum 
mechanics theory summarized above. The element has two nodes with 6 degrees-of-freedom 
per node, and can transmit an axial force, two shear forces, two bending moments and a torque. 
Figure 2 shows a typical beam element. 

o x p . +  x 2  I 4 0 I , 2 = B E A M  ELEMENT E N D  NODES 
3 = A U X I L I A R Y  NODE 

) O  t 
X I ’  X I  

Figure 2. Schematic view of the three-dimensional beam element local co-ordinate axes 

The element is assumed to be straight and of constant cross-section. It is assumed that plane 
sections of the beam element remain plane during deformation, but not necessarily perpendic- 
ular to the neutral axis, i.e. a constant shear is allowed. The element can undergo large 
deflections and rotations, but small strains are assumed. Thus, the cross-sectional area and the 
length of the beam element do not change during deformation. 

The principal moment of inertia axes of the beam element define the local co-ordinate system 
r, s, t, as shown in Figure 2. The two end nodes of the element, 1 and 2, plus a third auxiliary 
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node, 3, are used to define these axes, where it should be noted that in the computations the r-s 
plane is defined by nodes 1 , 2  and 3. 

Incremental equilibrium equations 

In equations (12) and (13) the incremental equilibrium equations of a body in motion are 
given corresponding to the global co-ordinate system ‘xi ,  7 = 0 or t. Considering a typical beam 
element it is more effective to first evaluate the finite element matrices corresponding to the local 
principal axes Ti?i of the element (see Figure 3), and then transform the resulting matrices to 
correspond to the global Cartesian co-ordinate axes prior to the element assemblage process.I6 

AREA 
A 

AREA / CONFIGURATION 
A T  TIME t A 

0- 
1, XI 

t +  
s, 

A t  L E N G T H  L 

ON FIGURATION 
T TIME t + A t  

. ,  

A 

CONFIGURATION 
_____) AT T I M E  0 

o x , ,  t x ,  !+A+ x ,  

0 t t t o i  X3’ X 3 ’  x 3  

Figure 3. Motion of the three-dimensional beam element and its local co-ordinate axes shown in global co-ordinate 
system. 
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The finite element matrices corresponding to the axes T2i are simply obtained by measuring all 
static and kinematic quantities in this co-ordinate system. These new quantities are denoted by a 
bar placed over them. Thus, using equations (12) and (13) we obtain for a single beam element, 
using the U.L. formulation and considering only static analysis 

( :KL + :KNL)u = i+AiR - :F (14) 

and using the T.L. formulationand considering only static analysis 

(bKL + ~KNL)u = ttAtR - bF (15) 

where AKL, :KL are linear strain incremental stiffness matrices; AKNL, :KNL are nonlinear strain 
(geometric or initial stress) incremental stiffness matrices; R is the vector of externally 
applied element nodal loads at time t + At;  AF, :F are vectors of nodal point forces equivalent to 
the element stresses at time t ;  and u is the vector of incremental nodal displacements. 

In dynamic analysis using implicit time integration the inertia forces corresponding to time 
t + At are added to the left-hand sides of equations (14) and (15), whereas in dynamic analysis 
using explicit time integration the stiffness effect is not included, the inertia forces corresponding 
to time t are added to the left-hand sides of equations (14) and (15), and the applied external 
loads correspond to time t. 

The element matrices in equations (14) and (15) are evaluated using the displacement 
interpolation functions of the beam element. Table I summarizes these calculations. The 
following notation is used in Table I with all quantities referred to the co-ordinate systems T%, 

T=Oor  t :  

ABL, :BL = linear strain-displacement transformation matrices 

:BNL, :BNL = nonlinear strain-displacement transformation matrices 

i + A i  

oC, ,C = incremental stress-strain material property matrices 
1- i r  r, r = matrix and vector of Cauchy stresses 

AS, = matrix and vector of 2nd Piola-Kirchhoff stresses. 

Table I. Finite element matrices 
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It should be noted that the elements of the stress matrices and vectors in the T.L. and the U.L. 
formulations are equal, because small strain conditions are assumed. 

Interpolation functions for incremental displacements 

To describe the motion of the beam elements the incremental displacement field within the 
elements as a function of the incremental nodal point displacement components is required, 

k = l  

where the ,hl are the interpolation functions corresponding to the local axes 'f,, and the rGk are 
the nodal point displacement increments measured in the local axes at time t (see Figure 3). 

The interpolation functions in equation (16) are constructed assuming cubic bending dis- 
placement variations and a linear variation in the axial and torsional displacements. In order to 
include shear effects, constant shear deformations can be included. Using the usual beam 
incremental nodal displacements (these are shown for time 0 in Figure 2) and leaving the shear 
deformations as independent variables, we obtain the incremental displacement interpolation 
functions given in Table 11. In this table the variable N in equation (16) is equal to 12 if no shear 
deformations are included; otherwise N is equal to 14. If shear deformations are included the 
element stiffness matrices and nodal point force vectors are of order 14, and are reduced to order 
12 by static condensation prior to the element assemblage process. 

Strain-displacement transformation matrices in the U.L. formulation 

The kinematic assumptions used in defining the interpolation functions of Table I1 hold for 
small strains, small rigid body incremental rotations in each solution step, but any size 
translational displacements. These assumptions are appropriate for the updated Lagrangian 
formulation of beams, because the kinematic variables are linearized about the last-known body 
position. 

Using the interpolation functions in Table 11, the strain-displacement matrices of the U.L. 
formulation can directly be evaluated. Table III(B) summarizes the calculation of the matrices 
(Br. and :BNL that are required to evaluate the tangent stiffness matrix and nodal point force 
vector of an element corresponding to co-ordinate axes 'f, ( i  = 1,2,3) .  The element matrices 
have to be transformed to the global co-ordinate system prior to their assemblage into a system 
of beam elements. 

t -  

Strain-displacement transformation matrices in the T.L. formulation 

In the discussion of the total Lagrangian formulation and the comparative study of the total 
and updated Lagrangian formulations we do not include, for clarity, the effect of shear 
deformations. Referring to the definitions in Figures 2 and 3, the displacement increments 
within the element at time t measured in the local axes at time 0 are related to the nodal point 
displacement increments of the element in its local axes using 

12 

k = l  
OJj = c "hl  " U k  

where the " U k  are the element nodal point displacement increments at time t, but measured in 
the "ii (i = 1 ,2 ,3 )  co-ordinate system. The functions oh: ( i  = 1,2 ,3)  are the interpolation 
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Table 11. Beam interpolation functions 

969 

We define: 

Incremental displacement interpolation matrix 

r 
L 0 * z t  -*zs - 

(1 - i ) s  -*5L 0 0 

, 
0 --t 

L 
r 

46 

0 $6 

where 

L = length of the beam element 

,hi = vector of interpolation functions in 'f, direction 

r, s, t = beam convected co-ordinate axes (see Figure 3) 

The incremental displacement vector is 

r i i T  =[,GI rU2 . . . r ~ 1 2  j ,1113 , ~ ' 4 1  

where rU l 3  = p 1  ,d l 4  = p2 (shear deformations) 

functions corresponding to the convected axes r, s, t and measured in the co-ordinate system O f i  

( j  = 1,2,3). 
The interpolation functions are obtained using 



970 K. J .  BATHE AND S. BOLOURCHI 

Table 111. Matrices used in beam analysis 

A.  TOTAL LAGRANGIAN FORMULATION 

1. Incremental strains - - -  

2.  Linear strain-displacement transformation matrix 
Using 

where 

oG = vector of incremental nodal displacements measured in O f i  ( i  = 1,2,3) co-ordinate system 

u = vector of incremental nodal displacements in global co-ordinate system 

O R  = transformation matrix 
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Table 111-continued 

where 

4. 2nd Piola-Kirchhoff stress matrix and vector 

symmetric] ; $= [:1] ASl2 

0 i s 1 3  

where 1 3  is a 3 x 3 identity matrix. 

2 .  Linear strain-dispfacement transformation matrix 

Using 

$5 = :BL 

where 

and 



972 K . J .  BATHE AND S. BOLOURCHI 

- - 
1 -  
71 1 

f -  0 71 I symmetric 
0 0 7 1  1 

g-= f -  7 1 2  0 
0 0 0 0 

0 7 1 3  0 0 0 0 0 

r -  

0 0 

0 0 0 0 

t -  

I -  
713 

f -  - 

Table III-continued 

where 

ru = vector of incremental nodal displacements measured in the !fi ( i  = 1 , 2 , 3 )  co-ordinate system 

u = vector of incremental nodal displacements in the global co-ordinate system 

'R = transformation matrix between the local co-ordinate system at time t and the global co-ordinate 
system 

rh;,1 h i . 1  . . .  
(rh;.2+th:,1) (thi.z+rh;,l) .. . 
(thl.3 +th:,r) (rhi.3 +hi, ,)  . . . 

a,h', 
a r f j  

N = 12 if shear effects are neglected 
N = 14 if shear effects are included fh ;.j = - 

where 

3. Nonlinear strain-displacement transformation matrix 

:BNL = 

where 'Rim is the element (i, rn) of the matrix 'R, which transforms displacements measured in 
the co-ordinate system '.ti (i = 1 , 2 , 3 )  to displacements measured in the system ().ti (i = 1,2,3) as 
defined in equation (22). 

A typical derivative required in the calculation of the strain-displacement transformation 
matrix is (a,ui/ao2j) = C k = ,  (dohL/aofj)oak. To evaluate these derivatives it should be noted that 
the axes 02j ( j  = 1,2,3) correspond to the convected co-ordinates axes r, s, t at time 0 (i.e. 
0 - n -  

12 

x l - r ;  x 2 = s ;  ' 2 3 E t ) .  Using Eq. (18) we have 

Therefore, double transformations are needed for the strain calculations in the T.L. formula- 
tion. In comparison, the U.L. formulation does not require the above transformation. 
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In order to evaluate the strain increments it is also necessary to calculate the derivatives of the 
total displacements. The kinematics of the rigid body rotations of the beam give 

i = 1 , 2 , 3  bUi,i = 'R.. - 6.. 
1 1 1  I J  ( j = 1,2,  3 ) 

where the 'Rij are the direction cosines of the ' X i  axes with respect to the "Xi axes, as defined in 
equation (23) ,  and Sii is the Kronecker delta. 

Transformation between current and original beam co-ordinate axes 

In the U.L. and T.L. formulations a transformation matrix 'R that relates displacements 
measured in the current configuration to displacements measured in the original configuration is 
needed. 

The 'R transformation matrix is evaluated using Euler angles which define the rotations 
of the beam. These angles are shown in Figures 4(a) and 4(b). To arrive at the information given 
in this illustration it is required first to evaluate the relative translational displacements of nodes 

'Q = ROTATION OF COORDINATE AXES ABOUT O x 2  AXIS 

' p  = ROTATION OF COORDINATE AXES ABOUT 7 AXIS 

- 
(OR, . O R 2  ,Ox,) TO ( I J 1 ,  '% , 7 )  

(GI  X p  , 7 )  TO (7, ? , T )  0- 

PLANE P I  IS PERPENDICULAR TO P L A N E  P 2  

Figure 4(a). Rotation of beam element co-ordinate axes in large displacement analysis (first stepj 
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0. 

\ 

' y  = ROTATION OF COORDINATE AXES ABOUT 7 A X I S  

(7, T, 7) TO ( ' 21 ,  ' 2 2 ,  'i?,) 

P L A N E  P 3  IS PERPENDICULAR TO 7 A X I S  

Figure 4(b). Rotation of beam element co-ordinate axes in large displacement analysis (final step) 

1 and 2 measured in the beam original co-ordinate system. Denoting for clarity nodes 1 and 2 as 
nodes I and J, these relative displacements are evaluated as 

where the 'u are the element nodal point displacements measured in the global co-ordinate 
system, and the ORij are components of the matrix OR that transforms the global nodal point 
displacements to the element local axes at time 0. 

The components of the matrix 'R are then constructed from the direction cosines of the axes 
',fi ( i  = 1 ,2 ,3 )  with respect to the axes O X j  ( j  = 1,2,3) .  We have 

1 -  R =  

where 'R is a matrix of order 3 X 3, 
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In equation (23) 'Rd is the transformation matrix due to the relative translational displacements 
of nodes J and I, and 'R" is the transformation matrix that takes into account the axial rotation 
of the beam, 

The components of the matrix 'Rd are the direction cosines of the axes ?', g, ;with respect to '4 
(i = 1,2,3) .  These $omponents are 

cos ('a) cos ('p) sin ( 'p) sin ('a) cos 

-sin ('a) 0 cos ('a) 
(24) ('a) sin ('p) cos ('p> -sin ('a) sin ('PI 

where the angle 'a represents the rotation about the (negative) O f 2  axis 

O L  +&;I 
cos('a)= - 

IJi 

51 = {(OL + O U J I )  + ( O U J I )  } 

and O L  is the original length of the beam, 
'-1 2 ' - 3  2 1f2 

The angle 'p represents the rotation about the positive t" direction; 

:us, sin ( 'p) = 7 
L 

where 

The components of the 'Ra matrix, which are the direction cosines between '.C (i = 1,2 ,3)  and 
the ?, g, t" axes are computed using 

(29) 
O I  

0 
@"= 0 cos ( ' y )  sin ( ' y )  
' - " o -sin ( ' y )  cos ('7) 

where ' y  is the rigid body rotation of the beam about the ?-axis in the configuration at time t. This 
angle is calculated using 

y =${'fi4+',1o} 

= (<)ii4 + o ~ ' o )  + '@?2 ( ( ) i i5  + o ~ l  ') + + oii'Z)) (30) 

and then 

(3 1) t y  = '--Aty + 

Substituting the relations in equations (23)-(31) into equation (22) we obtain the transformation 
matrix between the beam local axes at times t and 0. 

Calculation of beam element stresses 

In the development of the incremental U.L. and T.L. equilibrium equations corresponding to 
time t, we assumed that the stress components corresponding to the configuration at time t are 
known (see Table I). The solution of the incremental equations (14) and (15) will then yield 
nodal point displacement increments, from which the corresponding stress increments must be 
calculated. These stress increments are added to the stress components at time t to obtain the 
stress components corresponding to time t + At. 
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To evaluate the stress increments accurately it is realized that the tangent approximation in the 
strain-displacement relation for the normal strain, as employed in the :BL and bBL matrices, 
does not yield an increment in normal strain if the element deflects transversely without 
bending. However, for large displacement analysis, the corresponding extension of the element 
is taken into account in the incremental strains using in the U.L. formulation 

where the iBL,, are the components of the linear strain-displacement matrix given in Table III(B) 
and Sij  is the Kronecker delta; also 

2 1  1 = ('L -"L)/OL 

Using the T.L. formulation the corresponding calculations are 

where the constraints 

should be imposed to evaluate the appropriate normal strains. 
With the incremental strains known, the corresponding stress increments can be calculated as 

~isua1. l~ In general large displacement and elastic-plastic analysis, the stiffness matrices and 
nodal point force vectors must be evaluated using numerical integration. Also, to improve the 
solution accuracy it may be necessary to employ equilibrium iterations in the incremental 
solution. The iterative equations are directly obtained from equations (14) and (15) in the usual 
manner. 12 

COMPARISON OF T.L. AND U.L. FORMULATIONS 

In the 'T.L. formulation the reference co-ordinate system used is given by the element principal 
axes of inertia in the configuration at time 0, O X i  (i = 1,2 ,3) .  Therefore, the complete stiffness 
matrix (including the linear and nonlinear strain stiffness matrices), the nodal point force vector 
and the local displacement increments are referred to this co-ordinate system and must be 
transformed to the global co-ordinate system "xi (i = 1,2 ,3) :  

where OR is the transformation matrix that expresses the nodal point displacements measured in 
the beam local co-ordinate system O X i  (i = 1,2 ,3)  in terms of the global nodal point displace- 
ments. 

The reference co-ordinate system used in the U.L. formulation is defined by the principal 
axes of the beam element in the position at time t, i.e. Ifi (i = 1,2 ,3) .  Therefore, the local 
stiffness matrix and the nodal point force vector are referred to this co-ordinate system. These 
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matrices are transformed to the global co-ordinate system using 

where ‘R is the transformation matrix relating the co-ordinate systems ‘Xi and “Xi (i = 1,2,3),  as 
defined in equation (22). 

The principal difference between the U.L. and the T.L. formulations is that in the T.L. 
formulation the transformation on the interpolation functions in equation (18) is carried out to 
refer the displacement interpolations to the original configuration, and the ABLl matrix is 
included in the calculations. The transformations on the interpolation functions and the use of 
the A B L 1  matrix in the T.L. formulation together are equivalent to the additional transformation 
matrix ‘R that is employed in equation (36) in the U.L. formulation. Indeed, as shown in more 
detail in the Appendix, using these formulations the same element stiffness matrices and nodal 
point force vectors are obtained. 

Although the same final element stiffness matrices and nodal point force vectors are 
generated in the two formulations, it is noted that using numerical integration the trans- 
formation on the interpolation functions in equation (18) and the evaluation of the ABL1 matrix is 
carried out at each integration point. Therefore, the U.L. formulation is computationally more 
effective. 

SAMPLE SOLUTIONS 

The updated Lagrangian-based beam element was implemented in the computer program 
ADINA17 and a number of sample analyses were carried out. We report here the results of some 
of the analyses. In these analyses the beam linear strain stiffness matrices :KL were evaluated in 
closed form, and the nonlinear strain stiffness matrices :KNL and force vectors :F (see Table I) 
were evaluated using Newton-Cotes integrationI6. Also, in all analyses beam shear deformations 
were neglected. 

Large deflection analysis of a shallow arch 

The clamped circular arch with a single static load at the apex was analysed for buckling using 
the beam element, as shown in Figure 5. The material of the arch was assumed to be isotropic 
linear elastic. One half of the arch was idealized using 6 ,  12 and 18 equal beam elements. The 
same arch was also analysed using eight six-node isoparametric elements with 2 x 2 Gauss 
integration. 

This arch was also analysed by Mallet and Berke, who used four ‘equilibrium-based’ 
elements.” Dupuis et al.” analysed the same arch using curved beam elements, and used this 
example to demonstrate the convergence of their ‘Lagrangian’ and ‘updated’ formulations, 

Figure 5 shows the predicted load-deflection curve of the arch. It is observed that in this 
analysis the use of the beam elements is quite effective. 

Large deflection and rotation analyses of a cantilever beam 

The objective in this analysis was to investigate the performance of the beam element in large 
displacement and rotation problems. Two problems were analysed. First, a large deflection and 
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Figure 5 .  Large deflection analysis of shallow arch under concentrated load. 

moderate rotation analysis of a clamped cantilever with a concentrated end load was carried out 
as shown in Figure 6. The second problem was the large displacement and large rotation analysis 
of a cantilever beam subjected to a concentrated end moment (Figure 7). 

In the cantilever analysis subjected to the concentrated tip load, the objective was to 
demonstrate the effects of the aspect ratio of an element on its performance in the geometric 
nonlinear range. Figure 6 shows the response predicted by ADINA using four different models 
and an analytical solution.’ It is noted that the cantilever models using beam elements and 
two-dimensional isoparametric elements (2 X 2 Gauss integration), with an aspect ratio of 2, 
predict responses quite close to the analytical solution, and that the performance of the 
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Figure 6. Large deflection analysis of a cantilever subjected to a concentrated load. 

beam element does not change with its aspect ratio. However, as is well known, the predicted 
response using two-dimensional isoparametric elements deviates from the analytical solution 
with increasing element aspect ratios. 

Figure 7 shows the results obtained in the analysis of the cantilever subjected to an end 
moment. The cantiIever was modelled using 5 and 20 beam elements. The figure shows that 
the predicted response compares well with the analytical solution up to 90 degrees rotation.'* It 
is also seen that as the number of elements increases the numerically predicted response 
improves. This increase in accuracy is due to the fact that the geometry of the deformed 
cantilever is defined more accurately with a larger number of elements. 
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Figure 7.  Moment-deflection curve. 

Large displacement three-dimensional analysis of a 45 -degree bend 

The large displacement response of a cantilever 45-degree bend subjected to a concentrated 
end load, as shown in Figure 8, was calculated. The bend has an average radius of 100in, 
cross-sectional area 1 in2 and lies in the X-Y plane. The concentrated tip load is applied into the 
2-direction. 

The bend was idealized using 8 equal straight beam elements and 16 sixteen-node three- 
dimensional solid elements. For the beam elements the Newton-Cotes formula of order 
3 X 3 X 3 was used and, for the isoparametric elements, Gauss integration of order 2 x 2 x 2 was 
employed.16 The material was assumed to be linear elastic. 
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Figure 8. Finite element modelling of a 45-degree circular bend. 

Figure 9 shows the tip deflection predicted by ADINA using the two finite element models. To 
the accuracy that can be shown in the illustration, the same response is predicted using the beam 
element idealization and the isoparametric element discretization. The deflected shapes of the 
bend at various load levels are shown in Figure 10. 

CONCLUSIONS 

To develop capabilities for large displacement and large rotation analysis of beam structures, an 
updated Lagrangian and a total Lagrangian formulation of a geometric nonlinear beam element 
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Figure 9. Three-dimensional large deflection analysis of a 45-degree circular bend. 

have been presented. The incremental displacement fields within the straight two-noded beam 
element are defined using the usual beam displacement functions. It has been shown that the two 
formulations yield identical element stiffness matrices and nodal point force vectors, and that 
the updated Lagrangian formulation is computationally more effective. This formulation can be 
used efficiently for the general nonlinear analysis of beam structures. 
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X J  

Figure 10. Deformed configurations of a 45-degree circular bend. 

APPENDIX: DETAILED COMPARISON OF BEAM T.L. AND U.L. 
FORMULATIONS 

In the text we showed that the U.L. formulation is more effective than the T.L. formulation for 
beam analysis. The objective in this appendix is to compare the T.L. and U.L. formulations 
presented in detail. Assume that the beam is deformed to the configuration at time t, as shown in 
Figure 3. It is shown in this appendix that all element matrices are identical in both formulations. 

Linear strain stiffness matrices 

equation (20). Thus we have corresponding to Table III(A) 
Consider first the T.L. formulation. The initial displacement effect is taken into account using 

i = 1 , 2 , 3  
j = 1 , 2 , 3  0 - I.. = ‘R..  - 8.. 

11 I I1 11 (37) 

The ‘Pij are the direction cosines of the ‘& axes with respect to the “Xi axes defined in equation 
(23), and 8ij is the Kronecker delta. Using equation (37) the 6BL1 matrix defined in Table III(A) 
is 

1 (‘PI, - 1) ohfi + ‘g2i oh:i + ‘g31 oh!i 

~ B L I  = (‘811 - 1) oh,\ + ‘ 8 1 2  oh,*i + ‘ 8 2 1  ohfz + ( ‘g22  - 1) oh;i + ‘@310h:2 + ‘ 8 3 2  oh:1 i (‘g11 - 1) oh,; + ‘ 8 1 3  oh:i + ‘821 oh;3 + ‘ R 2 3  ohf1 + ‘ R g i  oh:3 + (‘g33 - 1) ohTi 
(38) 
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where (not considering shear deformations) 

oh:= [ohi,j oh;,+ . . oh;z.j] (39) 

Adding the JBLI matrix of equation (38) to the matrix JBLo defined in Table III(A) yields the 
linear strain-displacement matrix, IF::] (40) 

t -  
8 3 1  o o o o o 

1 -  8 3 2  1 -  ell 1 -  8 2 1  f -  8 3 1  0 0 
‘g33 0 0 0 feii ‘K21 ‘K31 o H . 3  

where we define 

Th,i TH,i=[;-] ( ‘ T = O , t )  

The derivatives of the interpolation functions defined in equation (18) are 

i = 1 , 2 , 3  
j = l , 2 , 3  0 3 12 

m 1 -  
0hi.j = 1 c ‘ R i m  1hn.j R n k  

m = l  n = l  

where the incremental interpolation functions &‘’ are defined in Table 111. Equations (42) may 
be rewritten in matrix form 

where ‘R and ‘R are defined in equations (22) and (23), respectively. Substituting equations (43) 
into equation (40) and simplifying gives, 

(44) 

In the U.L. formulation the geometric linear strain-displacement matrix is given in Table 
III(B) 

:BL = [ (:hi?h:2)] (45) 
(1h;i + 1h.i) 

Comparing equations (44) and (45) yields 

4BL = :BLfR (46) 

Substituting the above relation into Table I to evaluate the linear strain stiffness matrices in both 
formulations, and comparing, we obtain 

(47) 
f - T i -  t -  

; K L =  R tKL R 

Therefore the two formulations lead to identical linear-strain stiffness matrices corresponding 
to the global co-ordinate system. 
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Nodal point force vectors 

The components of the Cauchy stress tensor referred to the ‘Xi axes are numerically equal to 
the components of the 2nd Piola-Kirchhoff stress tensor referred to the O X i  axes, i.e. the stress 
vectors ‘4 and [as defined in Table 111) are equal. It follows from equation (46), Table I and the 
above fact that the nodal point force vectors corresponding to the global axes are equal in both 
formulations. 

Nonlinear strain stiffness matrices 

The nonlinear strain-displacement matrix in the T.L. formulation is defined in Table III(A): 

Substituting equation (43) into (48) gives 

The geometric nonlinear stiffness matrix is evaluated as defined in Table I, 

0 0  

where the 2nd Piola-Kirchhoff stress matrix is given in Table III(A). We also have 

0 0 ‘R 0 0  

and the rh:2 and ‘h:3 are null vectors. Thus equation (50) can be written as 

6KNL = ‘RT( lv;BcL $ :BNL du }‘a 
where the matrix :BNL is defined in Table III(B), and 

1 -  0s = 

(49) 
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The geometric nonlinear stiffness matrix based on the U.L. formulation is evaluated by using 
the matrices of Table 111, 

JV 

Since the stress vectors and 68 are numerically identical for the beam element we have 

b K N L  = ,RT : K N L z R  ( 5 5 )  

Therefore the two formulations lead to identical nonlinear strain stiffness matrices correspond- 
ing to the global co-ordinate system. 
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