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SUMMARY 

Two mixed-interpolated general shell finite elements for non-linear analysis-a 9-node element and a 16- 
node element- are presented. The elements are based on the Mixed Interpolation of Tensorial Components 
(MITC) approach in which the covariant strain component fields for the in-plane and shear actions are 
interpolated and tied to the also interpolated displacement field. Both the 9-node element, referred to as the 
MITC9 element, and the 16-node element, referred to as the MITC16 element, are tested numerically and 
found to have high predictive capabilities. 

1. INTRODUCTION 

For over two decades an extensive research effort has been directed to the development of shell 
finite elements. A review of the current state of the art can be found in Reference 1. 

Our approach towards the development of finite elements for the analysis of plate and shell 
structures has been guided by the following requirements: 

1. The elcmcnt should be reliable. 
2. The element should be computationally effective. 
3. The element formulation should be general, i.e. the element should be applicable to 

non-linear analysis (geometric and material non-linear solutions). 
- thick and thin plate/shell situations, 
- any shell geometry. 

render the element suitable for engineering analysis. 
4. The formulation of the element should be mechanistically clear and sufficiently simple to 

The continuum-based degenerated shell elements originally proposed by Ahmad et aL2 and 
extended for non-linear analysis by Ramm3 and Bathe and Bolourchi4 satisfy requirements 3 and 
4, but the lower-order elements do not satisfy requirements 1 and 2, and the higher-order 16-node 
element does not sufficiently satisfy requirement 2, due to the effects of membrane and shear 
locking. 

Ideally, considering requirements 1 and 2, the element formulation would lead to finite element 
discretizations that could be shown mathematically to be stable, convergent and to have optimal 
error bounds. In plate analysis much progress has been made in this regard. Especially, the MITC 
family of Reissner-Mindlin plate bending elements has been developed by Bathe et al., and has 
a strong mathematical foundation that assures the convergence of the discretizations 
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optimal error bounds for the displacement variables. The theoretical foundations of the elements 
can be found in References 5-8 and additional theoretical and numerical results are presented in 
References 9-12. 

In general shell analysis, as stated in requirement 3,  the situation is quite different. A mathemat- 
ical analysis of the type just mentioned is not available. However, a very valuable contribution in 
this direction, although restricted in its applicability, has been published by Pitkaranta.I3 We 
refer again to his work later in this Introduction. 

Since a complete mathematical theory is lacking, the following conditions should be strictly 
enforced to satisfy requirement 1: 

0 The element should not have any spurious zero energy mode. 
0 The element should not membrane or shear lock, when used in, of course, undistorted and 

0 The predictive capability of the element should be high and relatively insensitive to geometric 
reasonably distorted meshes of well-designed numerical test cases. 

distortions. 

Of course, insight into element behaviour and the use of numerical experiments will be 
important in the design of elements to satisfy the above conditions. It is our view that an element 
which fails any one of these conditions should not be used in engineering practice. 

The MITC approach has been used successfully to propose shell elements that satisfy the above 
conditions and requirement 2. Also, the formulation of the MITC elements preserves the essential 
and appealing characteristics of the continuum-based degenerated shell elements, therefore 
satisfying requirements 3 and 4. 

The approach of mixed interpolation of tensorial components for shell elements finds its roots 
in the work of Dvorkin and Bathe,’ where a 4-node general shell element, called MITC4 element, 
was developed. This element degenerates to the MITC4 plate bending element when the geometry 
is flat, the analysis is linear and the plate is subjected to transverse loading only, and then is 
closely related to the elements proposed by Hughes and T e ~ d u y a r ’ ~  and Ma~Nea1. I~  However, 
the MITC4 element was originally proposed for shell analysis and this is where assumed 
covariant strain component fields were first introduced. 

Subsequently, Bathe and DvorkinI6 developed an 8-node element in which not only the 
transverse shear strains were interpolated to avoid shear locking but also the in-layer strains, to 
avoid membrane locking. In this work, the strain tensor was decomposed into a transverse shear 
strain part and an in-layer strain part and the resulting quantities were interpolated in different 
ways. 

Nine-node shell elements were published by Huang and Hinton,I7 Park and Stanley,” and 
Jang and Pinsky.” Huang and Hinton used a local Cartesian system to separate bending and 
membrane strains and mixed-interpolated only the membrane part. The transverse shear strains 
were evaluated and mixed-interpolated in the natural co-ordinate system. Park and Stanley used 
assumed physical strain component fields that were derived from special assumptions on the 
strains along selected co-ordinate lines. A second version of their element was presented in 
Reference 20. Jang and Pinsky” assumed covariant strain components in natural co-ordinates 
for both the in-layer and transverse shear strains. These approaches of formulation are similar to 
the approach used in Reference 16 and also in this paper, but the actual detailed assumptions 
employed result, of course, in quite different elements. 

Recently, as mentioned above, Pitkaranta13 analysed mathematically the membrane locking 
problem in the analysis of a clamped hemicylindrical shell subjected to varying distributed 
pressure. He was able to conclude that the displacement-based elements would require an order 
greater than or equal to 4 in the local polynomial expansion for the displacement variables to be 
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free of locking for rectangular grids, whereas for quadrilateral grids, the elements would not be, in 
general, free of locking for any order of polynomial expansions. 

Pitkaranta, motivated by the high predictive capability of the MTTC8 element of Bathe and 
Dvorkin, analysed mathematically a family of mixed-interpolated schemes very close to the 
scheme of Bathe and Dvorkin. Although his analysis is valid only for rectangular grids and is 
based on additional restrictive assumptions, he was able to prove that these schemes avoid 
membrane and shear locking and converge with an optimal rate. 

It is interesting to note that the conclusions of PitkarantaI3 regarding displacement-based 
elements suggest that the 16-node isoparametric displacement-based shell element widely used in 
engineering practice is not entirely free of locking even for rectangular grids. Our numerical 
experiences show that, in some cases, this element exhibits a very low convergence rate and, when 
curved and geometrically distorted, can display a locking behaviour. 

The objective in this paper is to present a 16-node mixed-interpolated element which we call the 
MITC16 element. According to our numerical experiments this new element is free of locking and 
represents a significant improvement with respect to its displacement-based counterpart. 

Our motivations to develop the 16-node shell element were reinforced by our observations that 
the 16- and 25-node two-dimensional Lagrangian elements predict stresses accurately and 
efficiently. For two-dimensional analysis, Kato and Bathe' found that the 16-node isoparamet- 
ric element can be more efficient than the lower-order elements for problems with high stress 
gradients, and that the 16- and 25-node Lagrangian isoparametric elements were the most 
efficient in a study of these elements versus conventional p-type elements of up to order 10. 
Moreover, in shell analysis, the higher-order Lagrangian elements have the additional advantage 
of describing more accurately the geometry of the shell. 

Encouraged by the performance of the MITC16 element, we formulated with the same 
approach a new 9-node mixed-interpolated shell element, the MITC9 shell element that we also 
present in this paper. 

In the following sections, we first give the formulations of the MITC9 and MITC16 elements, 
and then we present numerical results. 

2. FORMULATION OF THE MIXED-INTERPOLATED SHELL ELEMENTS 

In this section we formulate mixed-interpolated shell elements. First, we introduce, in a general 
framework, how elements based on assumed covariant strain fields can be proposed, and 
subsequently we discuss, in particular, the elements that we have developed. 

2.1. Shell elements based on assumed covariant strain ,fields 

Let us use a total Lagrangian formulation to derive the governing equations of our finite 
element shell model. The starting point is the statement of the principle of virtual workZ2 written 
at  time t + At 

where the '+'bS"'j are the contravariant components of the second Piola-Kirchhoff stress tensor, 
the z+AbEij are the covariant components of the Green-Lagrange strain tensor and ""'a is the 
virtual work of the applied loads. All quantities are defined at time t + At. 

The governing equations of the isoparametric displacement-based elements are obtained from 
equation (1) by using the finite element interpolation assumptions both for the geometry and 
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Figure 1. Local co-ordinates for a shell element 

displacement variables to evaluate the strain * + * k E r j ,  more precisely denoted by t+A&Eg'. Here the 
superscript DI indicates that the strains are obtained by 'direct' interpolation using the finite 
element displacement assumptions. The mixed-interpolated elements are constructed using 

o c i j  in place of '+*hZ?, where the superscript AS indicates assumed strain fields. 
The next step is to show how the assumed strain fields, '+AhEy, are related to the directly 

interpolated strain fields, +*h E:'. We omit temporarily, merely for ease of notation, the subscripts 
and superscripts relating to times (0, t + A t )  in the strain expressions. 

In order to define the assumed covariant strain fields, equation (1) has to be written in 
a particular convected co-ordinate system. This co-ordinate system is defined element-wise by the 
element isoparametric co-ordinates r,  s and t as shown in Figure 1 with the following convention 
for indicia1 notation: r l  = I ,  r2  = s and r3 = t. 

Associated with each strain component Zi j  we define a set of points, k = 1, . . . , n i j ,  by 
specifying for each point k its natural co-ordinates r = r k ,  s = s,, and t .  These points are called 
tying points. 

[ + A t  - A S  

Now, the assumed covariant strain component Ey is defined as 

where the k z ( r ,  s) are interpolation functions (polynomials in r and sj associated with the strain 
component E j j  such that 

hLJI':= ky(rl ,  S') = & ,  1 = 1, . . . , nij 

Let 

EvIk:= Ep(rk, sk, t )  and ;?Ik := Zy(rk, sk, t )  

It follows that 
- A s k  -DI k 
~ j j  1 = ~ i j  I , k = 1 , .  . . , n i j  

Of course, this selection is the reason why the nij  points are called tying points. 

2.2. The proposed elements 

The formulation described in the previous section is quite general and, of course, allows us to 
propose a number of elements, However, an element is only useful if the conditions for reliability 
and effectiveness stated in the lntroduction are satisfied. 
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Figure 2. Tying schemes used for the strain components of the MITC9 shell element. Tying schemes for the components 
Ess and Est arc implied by symmetry. Co-ordinates of tying points always coincide with one-dimensional Gauss point 

co-ordinates, e.g., (1,'3)"2 = 0-577. . . 

The choice of tying points for the 9-node element is given in Figure 2 and the choice for the 
16-node element is presented in Figure 3. 

We remark that using the tying points of Figure 2 it is also possible to propose an 8-node 
element. We did implement and test such element, but the element was not sufficiently effective 
and reliable. Although it performed quite effectively in some cases, in a few analyses the element 
presented a very stiff behaviour rendering it not useful. 

We assumed for the transverse shear strain components that 

Ert(r, s, t )  = &(r, s, 0) 

&(r, s, t)  = &(r, s, 0) 

Both proposed elements do not have any spurious zero-energy mode and their stiffness 
matrices are evaluated with 'full' numerical integration, i.e. 3 x 3 Gauss integration, in the rs plane 
for the MITC9 element, and 4 x 4 for the MITC16 element. According to the numerical results, 
the proposed elements are free of locking and perform quite effectively. 

2.3. Construction of the element stifness masvices 

We present very briefly, in this section, how the stiffness matrices of these elements can be 
constructed. Although the stiffness matrix for linear analysis is obtained directly from the general 
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Figure 3. Tying schemes used for the strain components of the MITC16 shell element. Tying schemes for the components 
Ess and .Es, are implied by symmetry. Co-ordinates of tying points always coincide with one-dimensional Gauss point 

co-ordinates, e.g., (3/5)''' = 0.774. . . 

non-linear element formulation we present here, just for clarity of exposition, first the construc- 
tion of the stiffness matrix for linear analysis and then for non-linear analysis. We note that the 
kinematic assumptions are the same as for the isoparametric displacement-based elementsz2 and 
will not be repeated here. 

The covariant component iij of the Green-Lagrange strain tensor can be written as 

where Ogi and *gi are the covariant base vectors associated with co-ordinate ri  at times 0 and t, 
respectively. If 'x and 'u are the position and displacement vectors at time t of any particle in our 
shell model then, 
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2.3.1. Linear analysis. Substituting equation (10) into equation (8) we obtain 

at 

The quadratic term d'u/dri * atu/arj is neglected in linear analysis, yielding 
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(1 1) 

where in this case the superscript t just indicates the deformed configuration. From equation (12) 
we obtain 

O ~ i j  BYQ 

where BY is the strain-displacement matrix corresponding to the covariant strain component 
LEV and G is the nodal point displacement vector. Using equation (2) we obtain the assumed 
strain components as 

(13) t -DI = 

where 
DI k .  - BDI 

Bij I . - i j  (rk, sk, t )  

We can also define BY, the strain-displacement matrix for the assumed strain, as 

Using equation (14) it is now straightforward to obtain the stiffness matrix of the element, 
either by using the constitutive law written in the convected co-ordinate system or by transform- 
ing the strains and the constitutive law to the global system. 

2.3.2. Non-linear analysis. Equation (1) can be rewritten in the following form: 

where 
(1 8) 

(19) 

(20) 

r+A;$j = ;$j + o$j 

f + A f  g.. = t b ,  o r j  o ' i j  + ogij 

O E i j  = 0z;j + oqij 

Here, oi?ij and of i i j  are the linear and non-linear parts of the incremental strain oEij .  Note that 
equation (17) will yield a complete linearization of the governing continuum mechanics equations 
with respect to the nodal point variables, provided the incremental displacements are expressed in 
terms of the nodal point incremental displacements, rotations and rotations-squared.22 

Using equations (11) and (19) and defining u =  at^ - 'u we obtain 
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The above equation can be rewritten as 

where 
quadratic terms including those arising from the rotations at the nodal points. 

involves only terms that are linear in the nodal variables and ofiy contains all the 

We can write 

0 e"PI 13 =z LP'Q I J  (23)  

where L y ,  implicitly defined in the above equation, is the strain~displacement matrix associated 
with the incremental strain component oZij. The above equation leads to 

d 0 F y  = G f T ( L y ) T  (24) 

We can also write 
dof i t '  = 6QTNYQ 

which defines the square matrix NY. 
The assumed incremental strains can now be defined as 

k =  1 

and 

k =  1 

Therefore, 

and 

The stiffness matrices K, and KNL can be derived as for the standard isoparametric elements by 
replacing the directly interpolated incremental strains by the assumed incremental strains defined 
in the above equations. 

3. NUMERICAL RESULTS 

In this section we present some numerical results obtained with the proposed shell elements. The 
analysis problems studied have been selected to assess the predictive capabilities of the elements. 

3.1. The patch test 

The patch test has been widely used as a test for element convergence, despite its limitations for 
mixed formulations. We use the test here in numerical form to merely assess the sensitivity of our 
elements to geometric distortions. 
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In Figure 4 we show the mesh used for the patch test. The minimum number of degrees of 
freedom are constrained to prevent rigid body motion, and we study the stresses along arbitrarily 
selected lines passing through Gauss integration points as shown schematically in Figure 5. In 
Figures 6 and 7 we show the stresses along lines L1 and L2 obtained with the MITC16 element 

Figure 4. Mesh used for the patch tests Figure 5. Lines through element Gauss 
points for stress evaluation 

+ StreSS-XX 
X stress-yy 
4 stress-xy 
X stress-xz 
Y stress-yr 
- analytical values 

+ stress-xx 
X stress-yy 
4 stress-xy 
X stress-xz 
Y stress-yz 
- analytical values 

I - - - -  m... - “. 
2. 4 6 .  8 .  10. 1.2. 

I 
0 .  

distance along lme hZ 

Figure 6. Stresses along lines L1 and L2 for membrane patch test 
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for the membrane and bending tests, respectively. Although there are slight deviations from the 
analytical values, the constant stress state is closely represented indicating a low sensitivity to 
element geometric distortions. For the MITC9 element, very similar results are obtained. 

3.2. Analysis of a curved cantilever 

We consider the curved cantilever problem described in Figure 8. In Table I we show the results 
obtained for various meshes using the 16-node displacement-based element and the MITC16 
element. The ratio between the finite element and the analytical predictions for the tip rotation, 
at point A, are shown for several values of the thickness. We notice that the predictions are 
excellent for most discretizations, even for extremely thin situations (h /R  = 1/105), and also for 
the two-element case with the side common to the two elements parallel to the axis of the 
cylindrical surface. However, when this side is skewed, the results significantly deteriorate for the 
16-node displacement based element displaying a locking behaviour. 

In Table I1 we show analogous results for the MITC816 and the MITC9 elements. Using the 
MITC8 element, which is a good element in general, the same type of result deterioration that 
appeared for the 16-node displacement-based element is observed. We notice that the MITC9 
element docs not display such a behaviour, and indeed performs better than the MITC16 element. 

+ stress-xx 
X stress-yy 
4 stress-xy 
X streas-xz 
Y stress-yr 
- analytical values 

0.  2 .  4 .  6. 8 .  10 .  12 .  

distance along l i n e  L1 

+ stress-xx 
X stress-yy 

X stress-xz 
Y stress-yz 
- analytical values 

4 stress-xy 

"1 
0. 2. 1. 6.  a .  10 .  1 2 .  

distance along l ine  L2 

Figure 7. Stresses along lines L1 and L2 for bending patch test 
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R = 20 

m I 240 

h = varlable 
L I l O  

Es2.1 X 10 

a I 30 degrees 

Figure 8. Physical model used for curved cantilever 

In the results presented we used v = 0.0 but when using v # 00  the same kind of solution 
accuracy is observed. 

3.3. Analysis of a pinched cylinder 

The pinched-cylinder problem has been widely used to test shell elements. The physical 
problem is presented in Figure 9. Due to symmetry conditions only one octant of the cylinder 
needs to be considered. In Figure 10 we compare the convergence of the vertical displacement 
under the load for the 16-node displacement-based element and the MITC16 element. Uniform 
meshes have been used and the results are normalized with respect to the analytical solution for 
this problem reported by Lindberg et ~ 1 . ~ ~  We note the poor performance of the 16-node 
displacement-based element with coarse meshes. In Figure 11 we show the performance of the 
MITC elements of various orders, and also the performance of elements that have been proposed 
by other authors. In order to make the comparison more meaningful, we used as the index of 
mesh refinement the number of nodes per side of the region discretized. We notice the excellent 
performance of the higher-order MITC elements. 

were used to compare stress predictions for the 
16-node elements. In Figures 12-15 we show pressure band plots on the top surface of the 
cylinder for 4 x 4 and 8 x 8 meshes. We can see that using the MITC16 element, the 4 x 4 mesh 

The Sussman-Bathe pressure band 
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Table I. Summary of results for the curved cantilever problem using 16-node elements. 
Point A always coincides with an element node 

OF, 1 *AN 

MESH h/R 
MITC16 16 node 

disp. based 

1 I1 00 
1 11 000 
111 00000 

1 I1 00 
111 000 
1/100000 

1 11 00 
1 I1 000 
1 /100000 

1 /I 00 
1 I1 000 
111 00000 

1 11 00 
111 000 
111 00000 

0.9995 
0.9995 
0.9995 

0.9996 
0.9996 
0.9994 

0.9868 
0.9277 
0.0029 

0.9995 
0.9995 
0.9994 

0.9993 
0.9995 
0.9994 

1.0001 
1.0001 
1.0001 

1 .oooo 
1 .oooo 
0.9999 

0.9975 
0.9796 
0.9318 

1.0001 
1.0001 
1.0001 

1 .oooo 
1.0001 
1.0001 

already gives relatively smooth stress predictions, whereas for the 16-node displacement-based 
element, the 4 x 4 mesh is unable to show a distinguishable band pattern displaying large regions 
of discontinuity. Using this element, the 8 x 8 mesh is required to obtain a reasonably accurate 
prediction of stresses. 

3.4. Analysis of a hemispherical shell 

The hemispherical shell subjected to self-equilibrating concentrated loads was used as a bench- 
mark problem for the analysis of doubly curved shells. The hemispherical shell that we analysed 
has an 18-degree cut-out at its top and is free on its bottom and top edges. Only one quarter of the 
shell needs to be considered and a particular discretization is shown in Figure 16. 
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Table TI. Summary of results for the curved cantilever problem using 8- and 9-node 
mixed-interpolated elements. Point A always coincides with an element node 

e,, 1 e*r4 
MESH h/R 

MITC8 MITC9 

1IlOO 
1 I1 000 0 111 00000 
1 I1 00 
111 000 

&A 1 /I 00000 

1 I1 00 
111 000 @ 111 00000 

0.9998 
0.9995 
0.9995 

1.0001 
1 .oooo 
1 .oooo 

0.8958 
0.7230 
0.0626 

0.9995 
0.9995 
0.9995 

1 .oooo 
1 .oooo 
1 .oooo 

0.9956 
0.9913 
0.9883 

1 I1 00 0.9996 0.9995 
1 I1  000 0.9995 0.9995 
1 I1 00000 0.9995 0.9995 

1 I100 0.9999 0.9995 
1 A000 0.9997 0.9995 
1 I1 00000 0.9997 0.9995 

The convergence for the displacement under the load is shown in Figure 17 for the cubic 
elements. Again the superior performance of the MITC16 element over its displacement-based 
counterpart is noted. In Figure 18 we show the performance of the MITC9 element compared 
with the 9-node element proposed by Huang and H i n t ~ n . ' ~  We notice the excellent performance 
of the MTTC9 element. 

A theoretical lower bound for the displaeement under the load was derived by Morley and 
Morris25 for the hemispherical shell without the cut-out and it is equal to 0.0924. We used for the 
normalization of our results the value 0.09355 which corresponds to the converged solution when 
using the MITC16 element. 
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6 
UR.2  E=30.0x10 
h=l.O v=0.3 

R/h = 100 

Rigid diaphragm 
support (both ends) 

Figure 9. Pinched-cylinder problem 

A 16-node displacement 
based shell element 

+ MITC16 shell element 

I I I I I I 2 .  4 .  6. 8. 10. 12. 1 4 .  I 16. I 

number of elements per side 

Figure 10. Convergence of 16-node shell elements in pinched-cylinder problem 
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mitc8 shell element 

X mitcl6 shell element 

+ 16-node displacement 

X Huang and Hinton 
QUAD9** ref [ I71  

+ Jang and Pinsky 

based shell element 

9-node elem. ref [ 1 9 1  

4 .  8. 12. 16. 
number of nodes per side 

Figure 11. Convergence of various shell elements in pinched-cylinder problem using uniform meshes 

3.5. Plate bending analysis with the MITC shell elements 

The above MITCB and MITC16 shell elements, which we have formulated for general shell 
analysis, do not degenerate to the corresponding MITC plate bending elements,” when the shell 
is flat, the analysis is linear and the plate is subjected to transverse loading only. 

The first reason is the fact that for the plate bending elements the in-layer strains (in this case 
just the bending strains) are not mixed-interpolated. 

The other two reasons are: 

1. For the plate bending elements different interpolation fields are used for the section 
rotations and the section transverse displacement. This requires different sets of nodal 
degrees of freedom for the rotations and the transverse displacement. 

2. The assumed transverse shear strain fields for the plate bending elements involved not only 
point-tying conditions but also integral-tying conditions. 

The construction of shell elements that degenerate to the plate bending elements of Reference 
12 would, therefore, involve different sets of nodal degrees of freedom for rotations and displace- 
ments. However, such elements are not as easy to use in engineering practice. Another require- 
ment would be the enforcement of integral-tying conditions for the assumed transverse shear 
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Figure 12. Pressure band plot in analysis of pinched cylinder problem. Uniform 4 x 4 mesh of 16-node displacement- 
based elements 

strain fields. Integral-tying conditions are expensive, in terms of computational effort, and tend to 
make an element inefficient. 

Our choice, in formulating shell elements, was to use the.same set of nodal degrees of freedom 
for both rotations and displacements. Also, integral-tying conditions were not used for the 
transverse shear strain fields. 

One additional consideration that supports our choice is that the MITC plate bending 
elements are designed to take into account the known nature of the Reissner-Mindlin plate 
bending mathematical model. When considering general curved shells the mathematical mod61 is 
quite different, and it is not clear that the optimal choice of assumed transverse shear strain fields 
would be the same as for the plate model. 

The idea of replacing the integral-tying conditions by additional point-tying conditions such 
that the integral-tying requirements are approximately satisfied was first explored in the context 
of plate analysis for the MITC9 plate element by Bathe et a/.'' This approach, of course, reduces 
the cost and complexity of the element at the expense of losing some accuracy.' ' 

In the following we present the solutions of sample problems in which the MITC9 and the 
MITC16 shell elements are used to model plate bending situations. Of course, we do not expect 
that the mixed interpolated shell elements would behave as well as the MTTC plate bending 
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PRES 
TIME 1.000 

8 

L 
E - b o  

- - 7 5 0 0 .  

Figure 13. Pressure band plot in analysis of pinched-cylinder problem. Uniform 4 x 4 mesh of MITC16 elements 

elements in these particular analyses, but we do expect and require that shear locking is not seen 
and that the elements display a good predictive capability. 

In the numerical solutions of the circular plate and the skew plate we distinguish between two 
‘types’ of MITC9/MITC16 elements. We refer to the ‘MITC9/MITC16 plate’ elements as the ones 
that have been formulated for plate analyses and fully comply with the mathematical theory of 
the MITC plate bending elements (see Reference 12) and we refer to the elements presented in 
Section 2.2 as the ‘MITC9/MITC 16 shell‘ elements. 

3.5.1. Analysis of u circulur plute. We consider the transverse shear stress predictions for 
simply supported and clamped circular plates subjected to uniform pressure. The transverse shear 
stresses are often the most difficult stress components to predict with Reissner-Mindlin plate 
elements. The circular plate problems that we consider are very suitable to assess an element 
performance regarding transverse shear stresses because the analytical solution is known, there is 
no boundary layer and the elements are naturally distorted to model the problem geometry (see 
Figure 19). 

Figure 20 shows the calculated stresses as obtained with Mesh A of Figure 19 using the MITC16 
plate and shell elements and the usual displacement-based element. We show the stresses 
calculated at those nodal points along line PO where two elements meet. The stresses for an 
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Figure 14 Pressure band plot in analysis of pinched-cylinder problem. Uniform 8 x 8 mesh of 16-node displacement- 
based elements 

element at a nodal point were calculated using for an element 

z = CBG (30) 
where t is the stress, C is the stress-strain matrix, B is the strain-displacement matrix of the 
element at the nodal point considered and Q is the nodal point displacement vector. 

Hence, there is no stress smoothing and at nodal points where two elements meet, in Figure 19, 
two values for the shear stress components are obtained. We note that the solution is very 
accurate using the MITC16 plate element with only three elements. On the other hand, the 
displacement-based element does not give an accurate transverse shear stress prediction unless 
a very fine mesh is employed.” The MITCl6 shell element does not display the solution accuracy 
of the MITC16 plate element, as expected, but it provides good stress predictions considering that 
the mesh used is quite coarse. 

Figure 21 presents the same type of shear stress results using mesh B of Figure 19 and the 
MITC9 plate and shell elements. A similar behaviour as noted for the 16-node elements is 
encountered. 

3.5.2. Analysis of a skew plate. The Morley skew plate problem has also been used as a test 
problem for plate/shell elements. The problem is described in Figure 22. The simply supported 
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Figure 15. Pressure band plot in analysis of pinched-cylinder problem. Uniform 8 x 8 mesh of MITC16 elements 

edges are modelled using the appropriate soft boundary conditions, i.e. just the vertical displace- 
ment is constrained.26 The convergence of the vertical displacement at point E is shown in Figure 
23 for the cubic elements and in Figure 24 for the quadratic elements. A uniform skew-mesh 
topology was used (the 2 x 2 mesh is shown in Figure 22). The results are normalized with respect 
to the analytical solution derived by M ~ r l e y . ’ ~  It is noted that a rather large number of elements 
must be used to obtain an accurate solution. However, in the analysis uniform meshes were 
employed; much less elements could be used with graded meshes. 

The same trend as observed in the analysis of the circular plate is displayed for the skew plate. 
The MITC plate elements perform best but the shell elements also behave well. The MITC16 shell 
element shows a considerable improvement in response prediction when compared with the 
displacement-based element and the MITC9 shell element shows better results than the MITC8 
element which is a reasonable performer for this case. 

3.6. Snap-through of a shallow spherical cap 

We analysed a shallow spherical cap subjected to a concentrated loading. The physical model 
considered is shown in Figure 25. Using a load displacement control method2* we obtained the 
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Figure 16. Typical finite element discretization for analysis of hemispherical shell (8 x 8 mesh). Radius = 10.0, thick- 
ness = 0.04, E = 6.825 x lo', v = 0.3 and P = 1.0 

i A 16-node displacement 
based shell element 

+ M I T C 1 6  shell element 

I I 1 I I I I 1 
2. 4 .  6 .  8 .  10. 12. 1 4 .  16. 

number of elements per side 

Figure 17. Convergence in analysis of hemispherical shell, cubic elements 
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Figure 18. Convergence in analysis of hemispherical shell, 9-node elements 

Y 

L x  

Y 

L x  
P P 

MESH B 0 MESH A 0 

Figure 19. Meshes used in analysis of circular plate, Young’s modulus E = 2.1 x lo6, Poisson’s ratio v = 0.3, pressure 
p = 003072, diameter D = 20.0 
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Figure 20. Mesh A shear stress predictions in analysis of simply supported circular plate, diameter/thickness = 100. The 
results not shown for the 16-node displacement-based shell element are actually outside the figure 
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Figure 21. Mesh B shear stress predictions in analysis of clamped circular plate, diameterlthickness = 100 
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Figure 22. Morley skew plate problem and typical finite element mesh used 
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complete non-linear response of the shell including the snap-through response. Due to symmetry 
conditions only one quarter of the shell needs to be discretized and we used meshes of one and 
four 16-node elements. 

Figures 26 and 27 show the central deflection plotted against the load for the results obtained 
with the 16-node displacement-based element and the MITC16 element. The solution reported by 

A 16-node displacement 
based shell element 

+ mitcl6 plate element 
0 mitcl6 shell element 

8";. 1'. 2'. 3'. 4'. i. 8. 7'. a .  
number of elements per side 

Figure 23. Convergence of centre displacement for cubic elements in analysis of the Morley skew plate 
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Z W !  I I I ,  I I I 
U &  2 0. 2 .  4 .  6. 8. 10. 12. 14. 16. 

number of elements per side 

Figure 24. Convergence of centre displacement for quadratic elements in analysis of the Morley skew plate 
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Figure 25. Physical model used for analysis of spherical cap. One quarter of the shell is discretized 
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Figure 26. Non-linear response of a shallow spherical cap subjected to concentrated load using the 16-node displacement- 
based element 
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Figure 27. Non-linear response of a shallow spherical cap subjected to concentrated load using the MITC16 element 

LeicesterZ9 using a semi-analytical approach is also shown. This solution is based on additional 
approximations to those of the mathematical model used in the finite element discretizations. 

We note that the solutions obtained with the MITC16 element using the one and four element 
meshes are quite close to each other in contrast to the solutions obtained with the 16-node 
displacement based element (Figure 26). We also note that the 16-node displacement-based 
solution with four elements is close to the solutions obtained with the MITC16 element. Hence, 
we can conclude that for the 16-node displacement-based element at least a four-element mesh is 
required whereas with the MITC16 element a good response prediction is already obtained with 
only one element for a quarter of the structure. 

4. CONCLUDING REMARKS 

Two new higher-order mixed-interpolated general shell elements for non-linear analysis were 
proposed. An interpolation scheme for the covariant strain components both for shear and 
membrane actions was developed and used to formulate the elements. The newly developed 
elements did not exhibit shear or membrane locking in a number of well-chosen test problems, 
and displayed a very good performance. Our objective of developing a 16-node mixed element 
that would replace the usual displacement-based element was accomplished. The MlTCl6 
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element represents a substantial improvement in performance when compared with the 16-node 
displacement-based element. 

Both, the MITC9 and MITC16 elements satisfy our criteria for reliability and together with the 
MITC4 and MITCS elements that have been previously published form a family of general 
non-linear shell elements. However, most valuable would be detailed mathematical analyses, or 
even partial analyses, of the shell elements in the form as such analyses have been provided for the 
MITC plate bending 
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