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Summary

A survey of effective finite element formulations for the analysis of shell structures is presented. First, the
basic requirements for shell elements are discussed, in which it is emphasized that generality and reliability are
most important items. A general displacement-based formulation is then briefly reviewed. This formulation is
not effective, but it is used as a starting point for developing a general and effective approach using the mixed
interpolation of the tensorial components. The formulation of various MITC elements (that is, elements based
on Mixed Interpolation of Tensorial Components) are presented. Theoretical results (applicable to plate
analysis) and various numerical results of analyses of plates and shells are summarized. These illustrate some
current capabilities and the potential for further finite element developients.

1. INTRODUCTION

There is no need to discuss the importance of shell structures. Their efficient load—carrying
capabilities have rendered their use widespread in a variety of engineering applications [1].
The continuous development of new structural materials leads to ever increasingly complex
structural designs that require careful analysis.

Although analytical techniques are very important, the use of numerical methods to solve
shell mathematical models of complex structures has become an essential ingredient in the
design process. The finite element method has been the fundamental numerical procedure
for the analysis of shells.

Ideally, the structural designer or analyst should be able to concentrate on the mechanical
behavior of the structure and pay close attention to the underlying design issues. The finite
element procedure should be used merely as a tool to obtain the solution of the mathematical
model chosen to describe the structure. Unfortunately, this is not what usually happens
in shell finite element analysis. Frequently, the analyst is required to be an expert in shell
element technology to use confidently his/her finite element results. This is mainly due to
the proliferation of elements that do not always work i.e., are not reliable. It is our view
that the use of reliable finite elements should always be a requirement. Although this may
seem a very basic condition, the literature gives many elements that perform effectively in
some cases but fail severely in others. Nevertheless, their use with “care” is recommended.

An important consideration discussed in [2] is that shell finite elements are nowadays
being integrated in CAD (Computer Aided Design) systems, exposing design engineers that
are relatively inexperienced with the details of shell element technology to the use of such
elements. In this setting, the recommendation that a particular element should be used with
care is meaningless, and the reliability of the elements is a strict requirement. Also, in such
an environment, shell elements that are only adequate for a certain class of problems i.e.,
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for thin shell situations or for specific shell geometries and/or loading conditions are not as
suitable as general shell elements.

In order to exemplify the kind of engineering problems that we want to be able to
solve confidently with shell finite element formulations, we selected the problems shown
in Figures 1 and 2. These problems indicate the complexity of shell modeling that we
are aiming for and point out that the final objective of our formulations is to be able to
address practical and challenging engineering problems. In the later part of this work we
present some sample solutions that are relatively simple problems when compared with the
ones above mentioned. Nevertheless, those problems are carefully selected to display the
elements’ predictive capabilities and to assure reliability. Therefore, it is important to bear
in mind that the sole purpose of solving the sample problems is to guarantee that we can
actually solve confidently engineering problems.

Figure 1. Model of a submarine hull on dock

The research activity in the area of finite elements for plate and shell structures spans
a period of over three decades and continues to be very intense. Although we do not
intent to present here a comprehensive review of what has been accomplished in shell
element technology, we plan to briefly mention some key aspects of this research area before
concentrating on the approach that we believe has produced so far the most efficient and
reliable plate and shell elements.

The first step is to select an appropriate mathematical model. The thin shell theories
that developed from the fundamental work of Love [3] and lead to the Koiter-Sanders theory
[4, 5] have been used as mathematical models to propose shell elements. Also, a number
of simplified thin shell theories that are derived by imposing restrictions either on the shell
geometry or the loading conditions, or both, have been used to formulate shell elements.
Many of such shell elements are discussed in [6] where a catalogue of elements is presented.
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Model of a pressure vessel with piping

Figure 2.
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The approach of degenerating the shell from a solid is a very attractive alternative to the
use of a thin shell theory. In this approach the shell behavior is described by imposing judi-
ciously chosen kinematic and mechanical assumptions on the three—dimensional continuum
mechanics conditions. The resulting theory corresponds for plate bending situations to the
Reissner—Mindlin plate theory. This approach has been first presented, in the context of a
shell element formulation by Ahmad et. al. [7] and has some key features that make it very
suitable for shell finite element constructions, namely:

The formulation is applicable to any shell geometry.

The formulation is adequate for thin and thick situations.

The formulation leads to C* conforming displacement-based elements.

The formulation uses only engineering nodal point degrees of freedom such as displace-
ments and rotations.

Shell elements based on this approach have been formulated for general nonlinear analysis
(material and geometric nonlinear) by Ramm [8] and Bathe and Bolourchi [9].

Although the pure displacement-based formulation of these elements has all the above
mentioned appealing features, which are very desirable if the elements are to be used in
engineering practice, they do suffer from the serious deficiency of membrane and shear
locking. The locking effects are devastating for lower—order elements, and even for higher—
order elements they severely reduce the potential predictive capability of the elements.

A number of approaches and techniques have been proposed to overcome these difficul-
ties. The simplest one, however unsuccessful, is the use of uniform and selective reduced
integration. In general the URI (uniform reduced integrated) elements possess spurious zero
energy modes, and although in some cases they may provide accurate solutions, in other
cases a global mechanism may form due to the collective action of the spurious zero energy
modes causing rank deficiency (or almost rank deficiency) of the global stiffness matrix.
Even if a global mechanism does not arise, a near-mechanism might be activated which
leads to unacceptable answers. The recommendation of disregarding solutions that have
been affected by spurious energy modes is almost impossible to observe since, when the
solution of the problem is not known, the judgment of whether a solution is “good” or not
is very difficult to make. The SRI (selective reduced integrated) elements, although to a
smaller degree, suffer from the same deficiencies as the URI elements and in some cases
show very low convergence rates. Both types of elements are quite sensitive to geometric
distortions. The above considerations make clear that the use of reduced integration is an
unreliable technique to deal with locking effects. Nevertheless, the literature is rich in uni-
form and selective reduced integrated elements for plates and shells. We refer here just to
the early works on reduced integration [10, 11, 12]. We note that in some cases it is possible
to show a total equivalence between the use of reduced integration and a mixed formulation
[13, 14]. In such an event reduced integration may be an efficient way of implementing a
mixed method but the analysis of whether the formulation is a good formulation or not has
to be made in the context of mixed methods.

Belytschko and co-workers developed the concept of spurious mode control [15, 16] in an
attempt to use reduced integration and avoid the possibility of having spurious zero energy
modes. Although successful in suppressing the spurious modes, their formulation is not
transparent, requiring the use of some numerically adjusted factors.

It is our view that the development of shell finite elements should be guided by the
following requirements:

1. The elements should be reliable
2. The elements should be computationally effective
3. The element formulation should be general i.e., the elements should be applicable to:
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— nonlinear analysis (geometric and material non-linear solutions),
— thick and thin plate/shell situations,
— any shell geometry

4. The formulation of the elements should be mechanistically clear and sufficiently simple
to render the elements suitable for engineering analysis.

The continuum-based degenerated shell elements satisfy requirements 3 and 4, but the
lower-order elements do not satisfy requirements 1 and 2, and the higher—order 16-node
element does not sufficiently satisfy requirement 2, due to the effects of membrane and
shear locking.

Ideally, considering requirements 1 and 2, the element formulation would lead to finite
element discretizations that could be shown mathematically to be stable, convergent and to
have optimal error bounds. In plate analysis much progress has been made in this regard.
Especially, the MITC family of Reissner-Mindlin plate bending elements has been developed
by Bathe et.al. and has a strong mathematical foundation that assures the convergence of
the discretizations with optimal error bounds for the displacement variables. The theoretical
foundations of the elements can be found in [17, 18, 19, 20] and additional theoretical and
numerical results are presented in [21, 22, 23, 24, 25].

In general shell analysis, as stated in requirement 3, the situation is quite different. A
mathematical analysis of the type just mentioned is not available. However, a very valuable
contribution in this direction, although restricted in its applicability, has been published by
Pitkaranta [26].

Since a complete mathematical theory is lacking, the following conditions should be
strictly enforced to satisfy requirement 1:

a) The elements should not have any spurious zero energy mode.

b) The elements should not membrane or shear lock, when used in reasonably distorted
meshes?.

c) The predictive capability of the elements should be high and relatively insensitive to
geometric distortions.

The conditions a) to ¢) represent a major difficulty in arriving at reliable shell elements.
The conditions regarding locking and spurious energy modes are further discussed in Section
3.3. It is also well known that many shell elements perform well when of regular (say
rectangular) shape but their predictive capabilities deteriorate rapidly as the elements are
geometrically distorted. Since (in order to model a complex shell geometry) distorted
elements are invariably employed in engineering practice, it is important to assure that
element distortions do not lead to a significative loss in solution accuracy.

Of course, insight into element behavior and the use of numerical experiments are
important in the design of elements that satisfy the above conditions. It is our view that an
element which fails any one of these conditions should not be used in engineering practice.

The Mixed Interpolation of the Tensorial Components (MITC) approach has been used
successfully to propose shell elements that satisfy the above conditions and requirement 2.
Also, the formulation of the MITC elements preserves the essential and appealing character-
istics of the continuum-based degenerated shell elements, therefore satisfying requirements
3 and 4.

The approach of mixed interpolation of tensorial components for shell elements finds its
roots in the work of Dvorkin and Bathe [21], who developed a 4-node general shell element,
called the MITC4 element. This element degenerates to the MITC4 plate bending element

! We shall in the following say that an element does not membrane or shear lock if such phenomena are
not observed as long as the element is not severely distorted.
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when the geometry is flat, the analysis is linear and the plate is subjected to transverse
loading only, and then is closely related to the elements proposed by Hughes and Tezduyar
[27] and MacNeal [28]. However, the MITC4 element was originally proposed for shell
analysis and this is where assumed covariant strain component fields were first introduced.
The subsequent developments undertaken with the MITC approach for general shell analysis
are discussed in sections 3.3 and 4.

In the following sections we first discuss the continuum mechanics formulation of the
displacement-based shell elements for general nonlinear analysis. This formulation is ob-
tained in Section 2 by a consistent linearization of the principle of virtual work which
contains the kinematic and stress assumptions of the three-dimensional large deformation
behavior of a general shell. The resulting element formulation presented on Section 3 con-
siders large displacements and rotations.

Since the pure displacement formulation even for higher-order elements do not fully
satisfies the requirements that were outlined earlier, the formulation is extended in Section
4 to a mixed interpolation of strains and displacements to arrive at effective elements. In
section 4.2 we summarize the mathematical theory of the MITC plate bending elements.
This mathematical analysis besides providing a framework to construct optimally convergent
plate bending elements, gives much insight into the shear locking phenomenon aiding, of
course, the construction of new shear locking free shell elements. In any case, the linear
plate bending problem is per se an important mathematical model for practical applications
and deserves a special treatment. In Section 5, we discuss the specification of the boundary
conditions, where we give specific attention to the differences that arise due to boundary
layer effects when imposing different constraints for simply supported or clamped conditions.
However, to investigate the behavior of the elements in the analysis of general shells and
when used in geometrically distorted forms, recourse is necessary to numerical studies.
Therefore, we present in Section 6 a selection of numerical results that give insight into the
predictive capabilities of the elements discussed in this work.

2. CONTINUUM MECHANICS FORMULATION OF DISPLACEMENT-
BASED ELEMENTS

The formulation of the shell elements is based on the use of the general principle of virtual
work for 3-D continua modified for the stress-strain and kinematic assumptions of shell
behavior. In the following discussion we therefore present first the use of the general principle
of virtual work in 3-D large deformation analysis and then discuss the specific modifications
used for shell analysis.

2.1 Principle of Virtual Work

The large deformation analysis requires in general a step-by-step incremental solution. The
basic continuum mechanics equation used in this solution is the linearized incremental form
of the principle of virtual work [29].

To establish the governing equations, we make the fundamental assumption that the
response of the continuum can be described by the incremental potential,

where the 35’“ are the contravariant components of the 2nd Piola-Kirchhoff stress tensor
and the {€;; are the covariant components of the Green-Lagrange strain tensor, both at time
t and referred to the original configuration (that corresponds to time 0). The variable [
represents the energy per unit of original volume.
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The description postulated in (1) holds, of course, for elastic materials and also for in-
elastic materials widely considered in engineering practice (for example, von Mises plasticity

and creep).
A consequence of the assumption in (1) is that
~..  OW
tS‘I,_] — 0 9
" Oyéij @
The principle of virtual work is given as [29]
/ 09 6iE; d°V = 'R (3)
oV

where 'R is the total external virtual work due to surface and body forces.
Using (2) we can write (3) as

5/ "W d'V="R (4)
oV

and it follows that the linearization of the principle of virtual work expression (for the
incremental solution) will for deformation-independent loading lead to symmetric tangent
stiffness matrices.

If the loading is deformation-dependent (i.e., ‘R depends on the deformations from time
0 to time t) a non-symmetric contribution to the stiffness matrix may be obtained when
linearizing (4).

In fact, Schweizerhof and Ramm [30] have studied the case of pressure loading, that
usually leads to a displacement dependent loading. In such cases the pressure is modeled
as a follower loading i.e., the direction of the pressure loading is considered to be always
normal to the deformed surface on which the pressure is acting. In order to briefly outline
how a follower pressure loading is introduced in the formulation, consider that part of the
total external virtual work 'R is due to the displacement dependent pressure loading, and
denote it by *R,,. Then we can write

tRp = / tpi 5uZ d tSp (5)
ts

p

where 'S, is the surface area at time “4” on which the pressure is acting and ’p; is the i*"
component of the pressure which can be defined as

fp7 :t>\ lf tni (6)

Here “\ is the load multiplier for proportional loading, 'f = 'f (‘z;,'z,,' @3) represents
the spatial loading distribution and ®n; is the ¢** component of the unit normal vector to
the surface at time ¢t. Regarding 'f two cases can be identified. For [ = t i.e,'f =
tf (*zy,!xy," x3), the pressure loading at time “¢” at a particular point depends on the
spatial position occupied by the point at time “t”. This case is referred to as space attached
load. For l =0 ie, °f = °f (x;, 22, x3), the pressure loading at a particular point
depends on the position occupied by the point in the initial configuration. This case is
referred to as body attached loading.

Due to the displacement dependency of *R, as given in Egs. (5) and (6) its incremental
loading term will have the usual type of load vector plus a contribution to the tangent
stiffness as detailed in [30]. This contribution is in general non-symmetric characterizing
a non-conservative type of loading (in some cases, e.g., for particular boundary conditions,
this matrix contribution may be symmetric). The purpose of these remarks regarding
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displacement dependent pressure loading was merely to hint how deformation-dependent
loading may lead to non-symmetric contributions to the tangent stiffness matrix.

In practice, it may, however, be more efficient to neglect the non-symmetric stiffness
matrix contribution and simply include the deformation dependency of the loading in the
iteration vectors.

The incremental form of the principle of virtual work for the stress solution at time t+ At
is obtained by performing a Taylor series expansion in terms of the displacements about the
state at time t. Then substituting the interpolations for the displacement components as
summarized in Section 2.2 yields the equations of motion of a finite element

tKﬁ/_: t+AtE _ tE (7)

where @ stores the incremental nodal point displacements ( and nodal point rotations in the
case of a shell element) and 'K is the tangent stiffness matrix; the vector **2'R is the load
vector corresponding to time t+ At , and *F is the vector of nodal point forces corresponding
to the element stresses at time t. Here

‘7 :ai- (/V ‘W d0v) (8)

O'F;
J
and using chain differentiation
~ Ot¢
'R = / (GMEH oy (10)
oy Gui

t > t~ 2 tx
aofkl 806,,,,, 3 o€kl

'K = Ay ——— 02 q 0 P L 11
1) /OV OCkl'ls 8’&@ 811] V+/0V OS 8’&2 aﬁj V ( )

In the analysis of continua using isoparametric finite elements the displacements are inter-
polated in a fixed Cartesian coordinate system as

tui = hL tuf (12)
where ‘u’ is the nodal point displacement in the coordinate direction i at node L and time

t. Also
1

Sgkz = 5 (Ewb,k Eﬂﬁb,z - 5k1) (13)
where fx,, = 66)‘:_?; and dy; is the Kronecker delta . Hence
Olém 1
a(;;l =3 (El’zk ohry + (Tiy OhL,k) (14)
and 921z )
" 0€kl
W =3 (ohrk ohary + ohri ohmn) 8 (15)

where the uf,uM are the incremental nodal point displacements identified earlier as ;.

In the analysis of shells we use

t _
0€kl =

(tgk ) tgz - ng ’ 021) (16)

DO | =
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where
. or 0z

gi - 67’7;, 22 - 87“2'

and r; = r,ry, = s and r3 = t where (r,s,t) are the usual isoparametric coordinates . In
this case the u; correspond to translational and rotational degrees of freedom; hence the
differentiations required in (10) and (11) are more difficult to evaluate and depend on the
specific rotational degrees of freedom used.

(17)

2.2 Shell Assumptions

The assumptions used for the shell kinematic and stress conditions are a generalization of
the Reissner-Mindlin plate theory [29].

Figure 3 shows a typical shell to be analyzed. The kinematics of the shell are described
by the motion of the shell mid-surface and the motion of the director vector 'V which is
defined for each material point of the mid-surface: the origin of the vector is at the mid-
surface of the shell and usually the vector is initially normal to this mid-surface. During
the shell deformations the vector translates and rotates, and if initially normal to the shell
mid-surface it may not remain so.

/)
/\
/X
C N

T3 \ mid—surface
of shell
T2
I

Figure 3. A piece of a typical shell

N
shell ___\
thickness ~_

To describe the motion of the director vector we use the three Cartesian displacements
of the vector origin — which are also used to describe the motion of the shell mid-surface —
and the direction cosines of the vector. The displacements and rotations of the shell can be
small or large, but the fundamental assumption is that the particles lying originally on the
director vector will continue to lie on that vector throughout the motion.

Regarding the stress conditions we assume that the Cauchy stresses in the direction of the
director vector are initially zero and remain zero throughout the motion of the shell. Hence,
plane stress conditions with the direction “normal to the plane” defined by the director
vector are assumed.
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3. DISPLACEMENT-BASED SHELL ELEMENTS

The formulation of the displacement-based shell elements is based on the principle of virtual
work with the kinematic and stress assumptions summarized above, and on the interpolation
of the coordinates of the material particles of the shell.

3.1 Interpolation of Coordinates and Displacements

Figure 4 shows a typical shell element. The coordinates of any material particle at time ¢
are [29]

(18)

by = hy Tzl % ay hy 'VE
where the h; are the usual 2-D isoparametric interpolation functions in (r,s), aj is the
thickness of the element at node k£ measured along the direction of the director vector, the
tz¥ are the coordinates of the nodal point £ and the *V* are the direction cosines of the
director vector tzﬁ at the nodal point k. We note that the material particle coordinates,
the nodal point coordinates and the directions of the director vectors are all measured in
the stationary coordinate system, x; ¢ = 1,2,3. For the element in Figure 4 the number of
nodes is sixteen and hence in Eq. (18) £k =1,...,16.

mid—surface of
shell element

Figure 4. Typical shell element. The direction of the isoparametric coordinate t is given by
the director vector tzn(r, s)

Equation (18) and Figure 4 show that the shell element geometry is interpolated using the
intrinsic coordinate variables r, s and t. We note that the variable t,—1 <t < 1, is measured
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in the direction of the director vector *V, and the variables » and s,—1 < r;s < +1, are
measured in the mid-surface of the shell element.

For the definition of the stress-strain law, the direction of “zero normal stress” is taken
to be the t-direction and the stress-strain law at any material particle is established in the
(7,5,t) system, where unit vectors in these directions are

er=(e,xe)/ llesxel, (19)

€x =& X &x (20)

and e,, e, e, are the unit vectors in the r, s and ¢ directions.
It is clear that with the coordinate interpolation for any time ¢ given by Eq. (18), the
displacements at any time can directly be evaluated; for example,

f’ui = t&i‘i — 033.,; (21)

= b "+ Sauh (V= V) (22)
In the finite element formulation we linearize the response about the configuration at
time t (see Egs. (10) and (11) ) and want to use nodal point displacements and rotations.
Hence, we need to relate the change in tK,’Z to rotations at the nodal point k. This is
achieved by introducing two auxiliary axes V¥ and 'V} which together with *V* form an
orthonormal basis at the nodal point k, see Figure 5, and by measuring the rotations oy, and
B about these axes [29, 9]. The kinematics of large rotations then give that the director
vector at time ¢ + At can be written as [29, 31].

t+AtKﬁ — ItE+AtEk tKiﬂ; (23)
where {"4'R, is a rotation matrix,
in 0y, 1sin (&)
g, oy g LIE) g (24)
0, 2 (%)
2
with
O = [of + B]" (25)
0 0 B
9,=10 0 —oy (26)
—Br 0

In practice, the vectors 'V, *V¥ and *V* are established in the initial configuration (i.e.
for time ¢ = 0) and then the vectors are updated in the incremental solution assuring that
they remain an orthonormal basis throughout the deformations of the element [32].

With the kinematic and stress behavior defined as above, the expressions (10) and (11)
can directly be evaluated to obtain the tangent incremental equilibrium equations of the
shell element.

We should note that the solution of the Eq. (7) yields incremental nodal point variables
that — because of the linearization about the configuration at time t — are an approximation
to the exact solution for the incremental displacements and rotations from time ¢ to time
t + At. Hence, in general, this solution is used to enter into an equilibrium iteration [29].
In the full Newton-Raphson method the stiffness matrix would be updated in each iteration
providing quadratic convergence because a consistent linearization of the governing Eq. (3)
is used.
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Figure 5. Definition of rotational degrees of freedom «y and Sy

3.2 Nodal Point Variables

The nodal point variables in the solution are the incremental displacements into the Carte-
sian coordinate directions and the rotations a; and 3, about the current *V* and ‘V} axes.
We note that these axes change direction during the large displacement motion.

There are hence five natural nodal point variables at each shell node. However, some
special considerations are necessary at shell nodes,

(i)  that are shared by two or more shell elements,
(ii)  that connect also to other kinds of finite elements, or
(iii) at which rotational boundary conditions (rotations or moments ) are prescribed.

Namely, at these nodes it may be more convenient to use six degrees of freedom.

Consider case (i). If a single director vector is used at the shell node shared by two
or more shell elements, only five degrees of freedom describe the kinematic behavior (since
no stiffness is calculated for the rotation about the director vector *V*). In practice, the
user would prescribe that only five degrees of freedom shall be used at such a node and
the program would automatically assign only a single director vector (as the average of
the vectors normal to the mid-surfaces of the shell elements at that node). If a smooth
shell surface is modeled, the assumption of a single director vector at the node is quite
appropriate (see Figure 6a). However, at a node of a corner or edge of shell surfaces, a
single director vector may not represent the desired model (see Figure 6b) and here the
analysis could employ different director vectors for each element. This requires the use of
six degrees of freedom at the node (see Figure 6¢). In practice, the user would assign six
degrees of freedom at a corner or edge node if the model of Figure 6.c is to be used, and
the program would then establish automatically different director vectors for each element
at that node.
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5 dof at node &

-

(a) Single director vector at a node shared by two elements modeling a smooth shell surface

5 dof at node &

(b) Single director vector at a node shared by two elements modeling a shell intersection

6 dof at node k&

(¢) Element individual director vectors at a node shared by two shell elements modeling a
shell intersection

Figure 6. Director vector at nodes shared by elements

Considering cases (ii) and (iii) the use of six degrees of freedom at the shell node may
be necessary because in (i) the other finite elements (e.g., beam elements) may carry
rotational degrees of freedom in three global (or skew) coordinate directions and in (iii)
specific rotational boundary conditions in global (or skew) coordinate directions may need
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to be imposed (for example, to enforce symmetry conditions). In each of these cases it is
however important when building the model to keep in mind that the shell element has only
rotational stiffness about its *V} and 'V} axes.

Another convenient way to model shell intersections, such as the intersection schemat-
ically displayed in Figure 6b, is to use transition elements. These elements [29, 33] are
formulated with shell mid-surface nodes and top and bottom surface nodes. The shell mid-
surface nodes carry the usual shell degrees of freedom whereas the top and bottom surface
nodes carry only translational degrees of freedom. Solutions with these transition elements
can also yield more accurate results [33].

3.3 Element Performance

The above displacement formulation is applicable to elements with a varying number of
nodes. However, in practice, only the cubic 16-node quadrilateral element, referred to as
the 16-node displacement-based element, or higher order elements, can be used for general
shell analysis, because the lower-order elements “lock” due to spurious shear and membrane
strains. Even the 16-node displacement-based element can show a locking behavior. The 16-
node displacement-based element when distorted and /or curved can display a poor predictive
capability for coarse meshes. This is due largely to the effects of membrane and shear locking
that are increasingly important as the element is curved and distorted.

Shear locking is due to the inability of the elements (with the finite element interpolation
used) to represent the condition of zero transverse shear strains and still preserve enough
element degrees of freedom to permit a good approximation.This condition of zero transverse
shear strains is progressively enforced in the finite element solutions as the thickness of the
plate/shell becomes smaller, being totally enforced in the limit. When the only finite element
solution that satisfies the zero shear strain condition corresponds to zero nodal displacements
everywhere the overstiffening of the solutions can be very large even for finite thicknesses.
A classical example of this situation is the case when lower-order elements are subjected to
a bending moment only.

Even in the cases where zero shear strains can be represented with non-zero nodal
displacement, convergence may become very slow since the restricted finite element space
that leads to zero shear stresses may be much smaller than the original finite element space.

Membrane locking appears in curved structures due to the inability of the elements to
represent zero membrane states. Membrane locking will be an issue in cases when the limit
solution(thickness tending to zero) corresponds to zero membrane strains.

As already mentioned, membrane locking occurs, of course, only in curved elements.
However, in geometrically nonlinear analysis, elements which are initially flat may become
significantly curved during the incremental solution and may therefore only membrane lock
as the deformations increase.

In the above discussion we assumed that the element stiffness matrices are evaluated with
“full” numerical integration: this order of numerical integration is such that for geometrically
undistorted elements the exact stiffness matrices are calculated. If this same integration
order is used to evaluate the stiffness matrices of geometrically distorted elements, the
error in the numerical evaluation is not very significant as long as the element distortions
are reasonable. To relieve the “locking” behavior of the low-order displacement-based shell
elements, relatively simple schemes of reduced and selective numerical integration have been
proposed [10, 12]. Such approaches lead to computational efficiency in the evaluation of the
element stiffness matrix and also to overall solution effectiveness in the analysis of certain
problems. However, if, as already mentioned in the Introduction, an element stiffness matrix
contains a spurious zero energy mode (such as reported in [34]) the element is interesting
for research purposes but unacceptable for practical analysis because it is not reliable.

To suppress the spurious zero energy modes, Belytschko and co-workers proposed a
numerical control that can lead to efficient solutions and that has also been related to
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a variational basis [15, 16]. A shortcoming of these elements is that numerical control
parameters have to be selected and that their performance is quite sensitive to element
geometric distortions.

An effective approach to formulate reliable and quite efficient lower-order shell elements
is to use a mixed interpolation on strains and displacements. This approach is closely
related to mixed and hybrid formulations but it is computationally much more effective.
To construct general elements, Bathe and Dvorkin introduced a mixed interpolation on the
tensorial components of displacements and strains [21, 2] and arrived at a 4-node and a
8-node element that do not shear or membrane lock, that do not contain spurious zero
energy modes and that display good accuracy characteristics in general analysis. Similar
formulative approaches were then also used for example by Huang and Hinton [35], Park
and Stanley [36] and Jang and Pinsky [37] to propose nine node shell elements. Huang
and Hinton used a local Cartesian system to separate bending and membrane strains and
mixed-interpolated only the membrane part. The transverse shear strains were evaluated
and mixed-interpolated in the natural co-ordinate system. Park and Stanley used assumed
physical strain component fields that were derived from special assumptions on the strains
along selected coordinate lines. Jang and Pinsky assumed covariant strain components in
natural coordinates for both the in-layer and transverse shear strains. These approaches of
formulation are similar to the approach used in [16] and also in this work, but the actual
detailed assumptions employed results, of course, in quite different elements.

Recently, Bucalem and Bathe [38] proposed two additional elements based on the mixed
interpolation of the tensorial components, a 9-node element and a 16-node element, that
display the numerical efficiency and reliability of the 4-node and 8-node elements mentioned
above.

4. MIXTED INTERPOLATION

4.1 Mixed Interpolated General Shell Elements

We stated in Section 3 that the governing equations of the displacement-based shell ele-
ments are obtained by introducing the kinematic shell behavior through the finite element
interpolations assumptions, both for the geometry and for the displacement variables in the
evaluation of the covariant strain components ;€;;. The tangent stiffness matrix *K;; may
then be readily obtained using Eq. (11). However, as has already been pointed out, the
resulting element formulations display membrane and shear locking behavior.

The key step of the mixed interpolation of the tensorial components approach is to define
assumed strain component fields that are linked with the displacement variables and that
lead to element formulations that are free from membrane and shear locking difficulties.

In order to make precise the mixed formulation let us denote by 5651 the strain compo-
nents obtained from the finite element interpolation assumptions both for the geometry and
displacement variables. The superscript DI stand for “direct” interpolation using the ge-
ometry and displacement finite element interpolation assumptions. The mixed interpolated
elements are constructed using géésin place of f]gfj’-l, where the superscript AYS indicates that
assumed strain fields are used.

The definition of how the assumed strain fields relate to the directly interpolated strain
fields actually characterizes a particular element formulation. The success or failure of
an element formulation in avoiding membrane and shear locking is entirely related to the
definition of the assumed strain fields and how they relate to the usual strain fields.

For the plate bending problem a mathematical theory guides the selection of appropriate
assumed strain fields. The discussion of these mathematical ideas will be developed to
some extent in Section 4.2. Besides guiding the construction of optimally convergent plate
bending elements this mathematical theory provides much understanding and insight into
the shear locking phenomenon.
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The mixed interpolated shell finite elements that will be presented here have been
developed based on insight into element behavior and the use of numerical experimentation.

Let us consider the construction of the assumed strain fields for specific elements. We
omit temporarily, merely for ease of notation, the subscripts and superscripts relating to
times (0,?) in the strain expressions.

We use the convected coordinate system that is defined element-wise by the element
isoparametric coordinates r,s and t as shown in Figure 3 with the following convention for
indicial notation: ry = r,r, = s and r; = t.

Considering the kinematical shell assumptions implicitly defined in Eq. (18), the strain
tensor can be written as

=gy ey e (979 + ') + (27)
+ & (g +g'g) +e (g'g +d'e)
or
P = B + Bl + € 28

where ¢P! is the in-layer part of the strain tensor and eb% and ef? the transverse shear

strain parts, with the following definitions:

gIDLI — gTDTIgrgr + gilgsgs + gTDSI (grgs + gsgr) (29)
epr =&n (99" +9'd") (30)
esr=¢& (979" +9'0") (31)

One way of defining a mixed interpolation of the strains is to use the previous decompo-
sition and write ¢4, the assumed strain tensor as,

e =€f +eqr + bt (32)
where €27 is the assumed in-layer strain part and €47 and €47 are the assumed transverse
shear strain parts.

Each assumed strain part is obtained by evaluating the corresponding directly interpo-
lated strain part at some selected points, called tying points, and interpolating from these
values to define the assumed strain tensor part for any point in the element domain.

The MITCS8 element is formulated with this approach and the details of this formulation
will shortly become apparent when we present the element.

Of course, to arrive at the stiffness matrix using Eq. (11) each particular assumed
covariant strain component can be evaluated using

=g, g, (33

Another approach that has been used to formulate mixed interpolated shell elements is
to define assumed strain fields for each covariant strain component. In fact, for each strain
component £;; we define a set of points, & = 1,...,n;;, by specifying for each point k its
natural coordinates r = ry, s = s, and t. These points are also called tying points.

Now the assumed covariant strain component 52‘;5 is defined as

Nij

EAS(rys,t) = B (1, 8)ER! (riy 51, 1) (34)

k=1
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where h (r, s) are interpolation functions (polynomials in 7 and s) associated with the strain
component £;; such that

RO = B (ryy ) = 61y L=1,...,04 (35)
and denoting
55] k= 5D1(rk,sk,t) and 5;4]-5 k= 5A5(rk,sk,t) (36)
it follows
EASI = gDI f= 1, ny; (37)

Of course, this selection is the reason why the n;; points are called tying points.

4.1.1 The MITC8 element

The MITCS element construction follows the first approach, outlined in the previous section,
t.e., assumed strain fields are defined considering the interpolation of the in-layer and
transverse shear strain parts.

The assumed in-layer strain fields are defined by

8
s =D hireh! | (39)

k=1

where the hllare the usual 8-node element interpolation functions corresponding to the
points k£ = 1,...,8 identified in Figure 7a and for £k =1,...,4

6[[, |k_ 6319791 |7¢ _,’_efslgsgs |k +€g[ (27*gs _,’_gegr) |k

For k=5 and 7

1 e
€1L |5 _Eilgbga |5 _i_{gr R |:§ (EDI |1 +§DI |2):| ,gr}grgr |5

1 (39)
+ {gr . |:§ (EDI |1 +§D1 |2>:| gs} (grgs _’_gsgr) 5
~DI—s—s — 1 — —r—=1r
e "=g°g" I" +{g,¢ [5 ("7 PP +€"" I“)] -gr}g g I
1 (40)
o e ) @)
where
9.5959,=49, (41)
g =g, —og;a=" (42)
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and for 7 =6 and 8

~. —_r—=r — 1
il =¢e7g"g |6+{gs- [—

5 (§D1|2 +£D1|3>:| 'gs}gsgsl(i—'_

. (43)
+ {g1 . |:§ (§D1|2 +§D1|3):| _gs} (g7g< _i_g.sgr) |ﬁ
~ =1 — 1 — —8—=s
ﬁ?LI 8 _ Zlg g | _i_{gg . |:§ (EDI |1 +§DI |4):| gg}gg |8 +
1 (14)
+ {g, . |:§ (EDI |1 +£D1 |4):| gé} (g?"gs +gsgr) |8
where
9,=9,:9,=9, (45)
— g’f"S
g.=9, —ﬁg,ﬁ—g (46)

This interpolation avoids membrane locking and does not introduce spurious zero energy
modes.
The assumed shear strains are defined by

4
DI _r tlk 1 . .
ﬂSgrgz‘ _ ZhﬁT &b! g gtlk + RET [5 <€£1|RA +€£I|RB):| g gt|5 (47)

and
4
~ s 1 ~ ~ ] 5
bAthsgt — ZhiT Ggl g gf|k +h§T |:§ (€£I|SA +€SDtI|SB):| gkgt
k=1

(48)

with the interpolation functions hfTand A7 corresponding to the points in Figure 7.
Note that in (47) and (48) the mean values of the covariant strain components sampled
at points RA and RB , and SA and SB , are used for the fifth interpolation functions.
This corresponds to some degree to the theoretical prediction that for high-order elements
weighted integrals of the transverse shear strain components should be effective in tying the
strain interpolations to the nodal point variables (see Section 4.2).

The above shear strain interpolation prevents shear locking and also does not result into
spurious zero energy modes. The element stiffness matrix is evaluated using 3 x 3 Gauss
integration corresponding to the r- and s- directions.

4.1.2 The MITCY, MITC9 and MITC16 elements

In the formulation of the MITC4, MITC9 and MITC16 elements the assumed strain fields are
defined as in Eq. (34). Therefore, each covariant strain component has its own interpolation
and tying scheme.

For the MITC4 element, only the transverse shear strains are mixed interpolated and the
tying points are shown in Figure 8. We note that the selection of the tying points completely
defines the assumed interpolation scheme, since the A}’ (r,s) functions are products of
Lagrange polynomials with the property given in (35). The MITC4 element formulation
fully fits the framework of element construction described in this section in which each
individual covariant strain component is interpolated because, regarding the interpolation
of the in-layer strains, we could formally say that the assumed strain fields for the in-layer
strains are identical to the directly interpolated strain fields.

The choice of tying points for the 9-node element is given in Figure 9 and the choice for
the 16-node element is presented in Figure 10.
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Figure 7. Interpolation points for MITCS8 element
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MITC4 TYING SCHEME
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Figure 8. Tying scheme used for the transverse shear strain component €. of the MITC4
shell element. Tying scheme for the component € is implied by symmetry
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Tying scheme used for the strain components of the MITC9 shell element. Tying
scheme for the components €;s and €;; are implied by symmetry. Coordinates of
tying points always coincide with one-dimensional Gauss point coordinates, e.g.,

1 _
3_0.577...

Figure 9.
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MITC16 TYING SCHEMES
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Figure 10. Tying scheme used for the strain components of the MITC16 shell element. Tying scheme
for the components €;5 and €, are implied by symmetry. Coordinates of tying points
always coincide with one-dimensional Gauss point coordinates, e.g., \/3/5 = 0.774...

We remark that using the tying points of Figure 9 it is also possible to propose an 8-
node element. This element was implement and tested, but it was not sufficiently effective
and reliable. Although it performed quite well in some cases, in a few analyses the element
presented a very stiff behavior rendering it not useful. This result underlines the importance
of the MITCS8 element.

It was also assumed for the transverse shear strain components that

€t (ry8,t) = &4 (r,s,0)
€t (7, 8,1) = €4 (r,5,0)

These elements do not have any spurious zero-energy mode and their stiffness matrices
are evaluated with “full” numerical integration, i.e., in the rs plane, 2 x 2 Gauss integration,
for the MITC4 element, 3 x 3 for the MITC9 element, and 4 x 4 for the MITC16 element.
According to the numerical results, these elements are free of locking and perform quite
effectively.
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4.2 Additional MITC Elements. The Mixed Interpolated Plate Bending Ele-
ments

The MITC4 and MITCS8 elements have been constructed by insight into the predictive
behaviors to reach 4- and 8-node shell elements that are reliable and have good predictive
capabilities. The convergence behavior of the elements was originally tested by considering
patch tests and selected plate and shell analyses.

The development of the MITC9 and MITC16 shell elements, that followed, was guided
to some extent by the previous developments of the MITC9 and MITC16 plate bending
elements. The construction of the MITC plate bending elements involves the definition of
assumed transverse shear strain fields and also of tying schemes that relate the assumed and
directly interpolated shear strains.

When developing general mixed interpolated shell elements it is also necessary to define
assumed transverse shear strain fields and tying conditions. These constructions can be
guided by the analogous constructions for the plate bending elements. However, two
comments are in order

(i) The plate bending elements were designed to take into account the known nature of the
Reissner-Mindlin plate bending mathematical model. When considering general curved
shells the mathematical model is quite different and it is not clear whether the optimal
choice of assumed transverse shear strain fields is the same as for the plate model.

(ii) As will be reviewed shortly the MITC plate bending element constructions for the higher-
order elements require the use of different sets of degrees of freedom for the nodal point
displacements and the nodal point section rotations. These constructions, if followed
strictly when formulating shell elements, would lead to shell elements that are difficult
to use in practical engineering applications. Also, for the MITC plate bending elements
not only point-tying conditions are used but also integral-tying conditions. Integral-
tying conditions are expensive, in terms of the computational effort, in particular if
implemented for shell analysis.

Therefore it is justified that the assumed shear strain fields for the MITC plate and
shell elements are not exactly the same. However, it is apparent that the study of the
transverse shear strain fields for the plate elements provides valuable insight for developing
the corresponding strain fields for shell elements.

Of course, the construction of assumed in-layer strain interpolations can not be aided by
the consideration of plate bending analysis. In order to arrive at the assumed in-layer strain
interpolations for the MITC9 and MITC16 shell elements insight into element behavior and
numerical experimentation were used.

In the remaining part of this section we summarize the fundamental ideas of the math-
ematical analysis of the Reissner-Mindlin linear elastic plate bending problem. We also
present, briefly, the MITC plate elements that have been developed. Some numerical re-
sults obtained with these elements are shown as well to indicate the predictive capabilities
of these elements.

The mathematical analysis proceeds by considering the minimization of the total poten-
tial corresponding to bending of a Reissner- Mindlin plate

3 A 2
inf{%a (ﬁ,ﬁ)—i—;“é—ZwHu—f‘ (f,w)} (49)

BeEB;, weW

where B is the space of plate section rotations and W is the space of the plate transverse
displacement, ¢ is the thickness of the plate and t*f is the transverse applied loading.
The first term in (49) is the bending strain energy and the second term corresponds to
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the transverse shear strain energy. If we look for a solution in the finite element subspaces
B, C B and W, C W, we know that in general shear locking occurs.

To avoid shear locking we need to reduce the influence of the shear strain energy, and this
is achieved by using a space of assumed transverse shear strains '), and a projection operator
R that relates the shear strains given by ﬁh — Ywy, to the assumed strains R(8, — Vwy,) in

En
I',. We assume further that this operator R satisfies
R Vuw,;, = Vw, for all w, € W, (50)

and then solve instead of the discrete version of (49) the following minimization problem

inf {%a (8,.8,) + % |R8, - z—tz (/) wh)} (51)

Let us consider the sequence of problems P, each associated with a particular thickness
t, given by

A2

Pt {Ga(8.8)+ 25 o - Sul - (fu)] (52

™

EB;, weWwW

and analogously the sequence corresponding to (51)

—9 9

(] (5%

R, — Yw,

. 1 At
Py, 1 inf {Ea (éhjéh) + 9

éh € Eh; Wp € Wh

Of course, we now have to select B,, W}, ', and the operator R such that (53) yields finite
element solutions that are convergent to the solution of the continuous problem governed
by (52).

Although we would like to consider the convergence of the solution of (53) to (52) for a
range of values t physically possible, in order to choose the variables B,,W,,I', and R it
is expedient to consider the limit case of t = 0. The convergence analysis is then, of course,
not complete but it does yield important information on what finite element spaces and
operators R will be effective.

Therefore, for the limit problem, (52) becomes

it {306.8) - (o)} 54
and (53) becomes

inf {% (8,.8,) - wh)} (55)

Rg, =Y

Considering the construction of the discrete spaces B,,, W},,L';, we recognize that given a
pair 8,w of smooth fuctions such that

B=Yu (56)
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we want to find a corresponding pair ﬁh € B, ,w, € W), such that

R(B, —Vw,)=R S, —Vuw, =0 (57)
or

R, =Yu, (58)

with ﬁh,wh “close” to B,w (i.e., éh,wh approximate 8,w with optimal error bounds). If this

holds true and if R is “close” to the identity operator, then the solution of (55) will be a
good approximation of the solution of (54).
We note that (56) implies

rot (ﬁ) =0 (59)
and analogously (58) implies

rot (Rgh) =0 (60)

The condition (59) is much like the condition div u = 0 to be satisfied in the analysis
of incompressible media(where u is the displacement vector), except that in (59) the rot
operator is used [39].

Taking advantage of the incompressible analysis problem it can be established that
given a continuous field S such that rot § = 0 we can find 8, € B, which is a “good”

approximation for 3 and that

/ rot(B,) q.d9 = 0 Yg, € Q) (61)
Q

where B, ,Q) are a “good” pair of displacement-pressure spaces for the approximation of
the incompressible medium problem.
If R and I, are chosen such that

/rot(ﬁ) qndQ) = / rot(Rn) q,dQ (62)
Q Q

vﬂ S Eh; vqh € Qh
and if
rOtEh g Qh (63)

then Eq. (61) implies the desired (60).
Considering Eqgs.(50) and (58) we realize that there is not much choice left to define W,,.
In fact it is necessary that

VW, = {£ € L', such that roty = O} (64)

This condition together with (50) characterizes W,.
We note that (64) together with (60) implies the existence of w;, € W), such that (58)
holds and since R is to be chosen as a good approximation of the identity operator

th:Réh: ﬁh: [_3:2111
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meaning that w; will be a good approximation of w.
Therefore the choice of the finite element spaces is guided by the following steps:

Step 1: choose B, , Q) such that it corresponds to a “good”displacement-pressure pair for
the analysis of incompressible media. These pairs can be easily found in the literature (see
for example [49]).

Step 2: choose [, and R such that Egs. (62) and (63) are satisfied.
Step 3: choose W), according to Eq. (64).

It has been established [19] that the above element construction leads to mixed inter-
polated plate bending elements that have optimal convergence characteristics and therefore
do not lock.

We note that the tying, i.e., the link between the assumed strain fields given by ', and
the directly interpolated strain fields is given by Eq. (62).

The mathematical analysis summarized above has evolved from the analysis of the
MITC4 element, that has originally been proposed for shell analysis, when used in plate
bending conditions. The elements that have been developed according to the mathematical
framework outlined above and that have also been numerically tested are: the MITC9 and
the MITC16 elements (quadrilateral 9- and 16-node elements); the MITC7 and MITC12
elements (triangular 7- and 12-node elements). These elements are described in Figures 11,
12, 13, 14 and 15. As we may observe, for the higher-order, MITC7, MITC9, MITC12
and MITC16 elements, different sets of degrees of freedom for transverse displacements and
section rotations are used and also integral tying conditions are present. We have already
pointed out this fact when discussing the possible differences between MITC plate bending
and shell elements and the reasons why they were actually constructed in this way. When
the MITC9 and MITC16 shell elements are used under plate bending conditions they do not
degenerate to the MITC9 and MITC16 plate bending elements. Of course, we do not expect
that the MITC9 and MITC16 shell elements perform as well as the MITC9 and MITC16
plate elements when used for plate bending problems. However, the shell elements should
still behave quite effectively in plate bending situations and, of course, not shear lock.

We present below two plate bending problems that have been modeled with the MITC
plate elements. A third problem is studied where we compare the behavior of the MITC
plate and shell elements in the analysis of a plate bending problem.

4.2.1 Analysis of a simply-supported square plate

We consider the transverse shear stress predictions in the analysis of a square plate subjected
to uniform pressure. In this problem the transverse shear stresses display a strong boundary
layer [40]. Therefore this is an adequate test problem to assess the predictive capability of
the elements regarding transverse shear stresses for engineering problems in which these
stresses vary rapidly.

Only a quarter of the plate needs to be discretized and we obtained a reference solution
using graded meshes of 16-node displacement based elements (in undistorted form). The
10 x 10 graded mesh is shown in Figure 16 and the 20 x 20 mesh was obtained by subdividing
each element of the 10 x 10 mesh into four new elements. The solutions obtained with these
meshes showed negligible differences.

In Figures 17 and 18 we show the predictions, along the edge of the plate from the corner,
obtained with the MITC4 and MITC9 elements and the reference solution. The stresses are
evaluated at the corner of the elements using the I', spaces. The MITC element predictions
show a good convergence to the reference solution. We note that at a sufficient distance
from the corner the solution corresponds to the Kirchhoff solution. We also remark that for
an accurate solution grading in the meshes should be used for this type of analysis [29].
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Figure 11. MITCA4 plate element

4.2.2 Convergence in the analysis of an “Ad-hoc problem”

We consider the problem of a square Reissner-Mindlin plate of side lengths two units, see
Figure 19. The interior loading is p=0 and the imposed boundary displacement and section
rotations correspond to:

w = sin kze™ + sin ke " (65)
By = k cos kxe"? (66)
B, = ksin kxe"? (67)

with & = 5. We note that the above equations satisfy the Reissner-Mindlin plate equations
for any value of the thickness t, and hence represent the complete (boundary and interior)
solution. There is no boundary layer [40,41], and indeed the transverse shear strains are
Zero.

Hence this problem is a valuable test problem in that the numerically calculated conver-
gence rates should be close to the theoretically predicted rates.
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Figure 16. 10 x 10 graded mesh used in the analysis of simply-supported plate
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Figure 17. Shear stress predictions near corner of simply-supported plate subjected to
pressure loading using MITC4 elements

The plate problem was solved with uniform meshes, where h denotes the side length of

each element.

Figures 20, 21 and 22 show the error in the finite element solutions in the Sobolev
norms, and the convergence of the transverse shear strains, and Table I gives the average

convergence rates.

We note that the slopes of the curves in Figures 20, 21 and 22 are

in essence constant, and hence the convergence for each element is measured to be quite

uniform for each A used.
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Figure 18. Shear stress predictions near corner of simply-supported plate subjected to
pressure loading using MITC9 elements

y
(-1.1) ! . (L1)

(-1,-1) (1,-1)

Figure 19. Square plate used in the analysis of ad-hoc problem. The dashed line indicate
the subdivision used for triangular elements

Table 1 shows that the numerically obtained convergence rates are quite close to the
theoretical rates, and that the convergence of the transverse shear strain components is
surprisingly good. The same study was performed with meshes that have been deliberated
distorted [25].

The distorted meshes resulted generally into a decrease of the convergence rates, but this
decrease was not drastic when considering that rather highly distorted meshes were used,
and when taking into account that each mesh contained rather large and small elements.
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Figure 20. Convergence of section rotations in analysis of ad-hoc problem using uniform
meshes. The error measure is £ = || — 8, |l1
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Figure 21. Convergence of gradient of vertical displacement in analysis of ad-hoc problem
using uniform meshes. The error measure is E = ||Vw — Vws||o
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Figure 22. Convergence of transverse shear strains in analysis of ad-hoc problem using
uniform meshes. The error measure is £ = [[y — 7, ||o
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ELEMENT 18 = 8,llx 18 =8ullo | [INw—=Nwallo | [lw—=wnllo|lly=7,llo
Theory | Numerical Theory | Numerical
MITC4 1.0 1.0 2.0 1.0 1.0 2.1 2.4
MITC9 2.0 1.8 2.7 2.0 2.0 3.0 3.2
MITC7 2.0 1.7 2.7 2.0 1.7 2.9 2.8
MITC12 3.0 2.7 3.7 3.0 2.7 3.8 3.9
MITC16 3.0 2.8 3.7 3.0 3.2 4.2 4.1

Table 1. Couvergence rates obtained in analysis of ad-hoc problem using uniform meshes

Y Y
L X L X
P P
° MESH A ° MESH B
Figure 23. Meshes used in analysis of circular plate, Young’s modulus E = 2.1 x 10°,

Poisson’s ratio v = 0.3, pressure p = 0.03072, diameter D = 20.0

4.2.3 Convergence in the analysis of a circular plate

In this solution we consider a circular plate of thickness ¢t and diameter D. The plate is
loaded by a uniform pressure and is simply-supported or clamped along its edge.

Figure 23 gives the data of the problem considered and shows the finite element meshes
used. Note that the elements are geometrically distorted in a natural way in order to model
the plate.
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Of particular interest in this analysis is the prediction of the transverse shear stresses.
The analytical solution is rather simple (Figure 24) and there is no boundary layer. Figure 24
shows the calculated stresses as obtained for the simply-supported plate using mesh A for
the MITC16 plate and shell elements and the usual 16-node displacement-based element.
In this figure we show the stresses calculated at those nodal points along line PO where two
elements meet. The stresses for an element at a nodal point have been calculated using for
that element

r=CBu (68)

where 7 is the vector of the stresses, C is the stress-strain matrix, B is the strain-
displacement matrix of the element at the nodal point considered and u is the nodal point
displacement vector.

K A l6-node displacement
& based shell element

+ mitcl6 plate element

A O mitcl6é shell element

— analytical value

stress-yz
1

i T T T T 1
0. 2. 4. 6. 8. 10.

distance along radial line po

Figure 24. Mesh A shear stress predictions for analysis of simply supported circular plate,
diameter/thickness = 100. The results not shown for the 16-node displacement
based shell element are actually outside the figure

Hence there is no stress smoothing and at each nodal point where elements meet two
values for each shear stress component are obtained.We note that the solution is very
accurate using the MITC16 plate element with only three elements. On the other hand,
the displacement-based element does not give an accurate transverse shear stress prediction
unless a very fine mesh is employed [25]. The MITC16 shell element is not as accurate as
the MITC16 plate element, as expected, but it provides good stress predictions considering
that the mesh used is quite coarse.

Figure 25 presents the same type of shear stress results using the mesh B shown in Figure
23 and the MITC9 plate and shell elements. A similar behavior as noted for the 16-node
elements is encountered.

5. THE SPECIFICATION OF BOUNDARY CONDITIONS

The analysis of a structure requires the imposition of displacement/section rotation bound-
ary conditions and force/moment boundary conditions (also referred to as essential and
natural boundary conditions, respectively [29]).



40 M.L. Bucalem and K.J. Bathe

} A mitc9 shell element
-
- + mitc9 plate element
E — analytical value
<
N
>
! -
w
%]
o w©
5o
12
o~
I
~
c|> T T T T 1
0. 2. 4. 6 8 10.

distance along radial line po

Figure 25. Mesh B shear stress predictions for analysis of clamped circular plate, diame-
ter/thickness = 100

As discussed in Section 3.2, the shell elements presented in this work have five natu-
ral stiffness degrees of freedom at a shell node, although when element assemblages are
considered the use of six degrees of freedom at a shell node may be appropriate.

The objective in this section is to briefly discuss the imposition of plate and shell
geometric boundary conditions. Namely, there are some special considerations that need
to be kept in mind when imposing the boundary conditions on the displacement-based
or mixed-interpolated elements, and we discuss these in the following by considering the
analysis of plates [29, 40, 41].

Consider the skew plate of side lengths L shown in Figure 26. The angle « is a variable
so that with o = 7 we have a square plate. The thickness of the plate is h. The sides of
the plate can be fixed, simply-supported or free of support and the question we ask is how
to impose these geometric boundary conditions.

The free support condition means, of course, that the displacement w and the rotations
8, and 6, are free along the edge.

The conditions of fixed and simply-supported edges, however, need special considerations.

In Kirchhoff plate theory, a simply-supported edge is modeled by the condition w = 0
and this means implicitly that also 8, = 0. Namely, since ?9—‘: = 6,, we have that if w =0
along the edge, 8, must be zero also. However, in the Reissner-Mindlin plate theory w and
8, are independent variables and the usual “simple” support is appropriately modeled using
only the condition w = 0. With this geometric condition, the transverse displacement is
zero along the edge, but the section rotations corresponding to 8, are not necessarily zero.

Therefore, in the finite element solutions of plates using Reissner-Mindlin theory based
elements, the nodal transverse displacements should be set equal to zero at simply-supported
edges, but the section rotations should usually be left free. These boundary conditions are
referred to as “soft-support” boundary conditions. Of course, it would be appropriate to also
set the nodal rotations corresponding to 6, equal to zero if the specific physical situation of
the simple support is in this way more adequately modeled. This corresponds to the “hard-
support” condition, and then restraining moments M,,, are generated and the boundary
shear stresses are quite different from those calculated when the soft-support condition is
assumed.
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) Elastic Plate
) ’ Thickness h

Figure 26. Plane view of plate; T, is the shearing force

A most interesting phenomenon is that with the soft-support condition the boundary
shear stresses approach the Kirchhoff solution through the development of a boundary layer
as the thickness of the plate decreases.

Similar observations hold when a fixed edge is considered. Again, the choice of whether
to restrain the nodal rotations corresponding to 8, must be decided depending on the actual
physical support to be modeled.

Figure 27 shows the analysis results reported in [40] for the solution of a simply-supported
square plate subjected to a uniform pressure, p. The plate was modeled using the 16-node
displacement-based element with the mesh given in Figure 27a. Figures 27b and 27c show
results obtained when the normal rotation 8, is set to zero. We observe that the predicted
shearing force is equal to the shearing force calculated by the Kirchhoff plate theory when
the twisting moment contribution is neglected. This twisting moment is resisted by the
moment reaction M,,,, for which the calculated values are close to the Kirchhoff solution.
We note that there is no boundary layer in the solution. Also, the corner reaction forces are
zero and hence in this physical situation the plate does not have the tendency to rise at the
corner.

6. SAMPLE SOLUTIONS AND EVALUATION OF ELEMENTS

The analyses presented in this section have been chosen to illustrate the predictive capabili-
ties of the MITC4, MITCS8, MITC9 and MITC16 elements. As previously mentioned, these
elements are believed to be very effective general purpose shell elements.

Of course, these elements do not contain any spurious zero energy modes. The analyses
were conducted using the ADINA program, version 6.0 [42], modified by the implementation
of the MITC9 and MITC16 elements.
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(a) Finite element idealizations using 16-node displacement-based elements
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(¢) Twisting moment distribution along AB assuming 6, = 0

Figure 27. Analysis of simply-supported plate. “Hard” boundary conditions
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6.1 Patch Test

The patch test has been widely used as a test for element convergence, despite its limitations
for mixed formulations. We use the test here to assess the sensitivity of our elements to
geometric distortions.

The test we use has been reported earlier (e.g., [21]); namely a patch of elements (with not
all of the elements of rectangular shape) is subjected to the minimum displacement /rotation
boundary conditions to restrain the structure from rigid body motion. The boundary of the
patch is subjected to the tractions that correspond to the constant stress states.

The behavior of the elements is considered satisfactory if the constant stress state is
represented by the finite element model.

The above patch test is a standard procedure to test for constant stress states. Of
course, we may also test whether higher-order stress variations can be properly represented
by the patch. This is achieved by subjecting the patch of elements to the body forces and
boundary tractions that correspond (in the plate theory solution) to the stress variations to
be predicted by the patch. Then the finite element stress predictions can be compared with
the desired higher-order stress variations.

The MITC4, MITC8, MITC9 and MITC16 elements can represent the constant stress
states as long as the element sides are straight.

6.2 Analysis of a Clamped Square Plate

Figure 28 shows the square plate considered in this analysis. Note that the thickness to
length ratio is 1000. Hence, we consider a thin plate and models with elements that shear
lock would give highly inaccurate results.

Figure 28 also shows a typical 2 x 2 mesh used and in Figure 29 two distorted element
mesh layouts are shown. The meshes distort-1 and distort-2 would of course hardly be used
in practice, but have merely been selected here to test the predictive capabilities of the
elements.

Tables 2 and 3 list the results obtained in the plate analyses using the different elements.
The results in particular indicate the high predictive capability of the MITCS8 element.

6.3 Analysis of a Skew Plate

The Morley skew plate problem has also been used as a test problem for plate/shell elements.
The data of the problem is presented in Figure 30. Generally, the results reported refer to
the vertical displacement at the center of the plate i.e., at point E, and these are presented
for the MITC plate and shell elements in [38]. Here we show selected results of a modal
analysis. In Figures 31 and 32 we show the “Sussman-Bathe” band plots [44] for the vertical
displacement component of the eigenvector and for the average in-plane modal stresses at the
top surface of the plate. The results are shown for mode 2 and for the MITC4 and MITCS8
elements. A uniform mesh of (16 x 16) MITC4 elements and a uniform mesh of (8 x 8)
MITCS8 elements are used. We observe that the displacement results obtained are quite
similar for both types of elements. However, the accuracy of the modal stress predictions
are quite different for the elements used. Considering the MITCS8 element results we can
identify clearly continuous stress bands across element boundaries indicating the adequacy
of this mesh for these modal stress predictions whereas in the MITC4 element results we
cannot identify a distinguishable stress band pattern. These sample results show once more
the importance of using higher-order elements when a stress response is sought.
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Figure 28. Analysis of a clamped thin square plate. A 2 x 2 mesh model
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Figure 29. Artificially distorted meshes in the analysis of a clamped plate. One quarter of
the mesh shown
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Element Mesh wbE Ay whE fpAN
simply-supported clamped
1x1 - -
MITC4 2x2 0.9810 0.9631
3x3 0.9919 0.9852
distort-1 0.9672 0.8791
distort-2 0.9807 0.9661
Ix1 0.9895 1.2401
MITCS 2x2 1.0001 1.0060
3x3 1.0004 1.0050
distort-1 0.9942 09615
distort-2 1.0006 1.0024
1x1 1.0155 1.0516
16-node 2x2 1.0013 1.0035
disp.-based 3x3 1.0009 1.0043
element distort-1 0.9992 0.9600
distort-2 1.0006 1.0035
Table 2. Performance of the elements in analvsis of plate. Uniform pressure loading
Element Mesh whEjuwd® whE fug®
simply-supported clamped
Ix1 - -
MITC4 2x2 0.9948 0.8666
3x3 0.9929 0.9390
distort-1 0.9855 0.8072
distort-2 0.9843 0.9222
Ix1 1.0044 1.1161
MITCS8 2x2 0.9984 1.0005
3x3 0.9992 1.0007
distort-1 1.0024 0.9754
distort-2 0.9986 0.9940
Ix1 0.9550 0.9463
16-node 2x2 0.9890 0.9794
disp. -based 3x3 0.9952 0.9919
element distort-1 0.9749 09176
distort-2 0.9945 0.9904

Table 3. Performance of the elements in analysis of plate. Concentrated load

6.4 Analysis of a Curve Cantilever

We consider the curved cantilever problem described in Figure 33. In Table 4 we show
the results obtained for various meshes using the 16-node displacement-based element and
the MITC16 element. The ratio between the finite element and the analytical predictions
for the tip rotation, at point A, are shown for several values of thickness. We notice that
the predictions are excellent for most discretizations even for extremely thin situations
(h/R = 1/10°). However, for the two element model when the side that is common to the
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all edges simply-supported
a = 30°
thickness = 0.01

A B

Figure 30. Morley skew plate problem
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Figure 31. Modal results for the Morley skew plate using a (16 x 16) uniform mesh of
MITC4 elements. The symbol AVG stands for the average in plane stress given
by (0zx + O'yy)/2 and ZEIGEN for the Z component of the mode eigenvector
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Figure 32. Modal results for the Morley skew plate using a (8 x 8) uniform mesh of MITCS8
elements. The symbol AVG stands for the average in plane stress given by
(022 + 0yy)/2 and ZEIGEN for the Z component of the mode eigenvector

two elements, and is parallel to the axis of the cylindrical surface that describes the curved
cantilever, is skewed the results significantly deteriorate for the 16-node displacement-based
element displaying a locking behavior. This type of behavior was theoretically predicted by
Pitkdranta [26].

In Table 5 we show analogous results for the MITCS8 and the MITC9 elements. Using the
MITCS8 element, which is a good element in general, the results also deteriore significantly
for the above case. We notice that the MITC9 element does not display such a behavior.

In the results presented we used v = 0.0 but the the same kind of solution accuracy is
displayed when v = 0.3.
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Figure 33. Analysis of a curved cantilever

O/ By
MESH hR
16 node MITC16
disp. based

1/100 0.9995 1.0001

1/1000 0.9995 1.0001

A 1100000 0.9995 1.0001

1/100 0.9996 1.0000

11000 0.9996 1.0000

A 1/100000 0.9994 0.9999

/100 0.9868 0.9975

‘ 1/1000 0.9277 0.9796

h A 1/100000 0.0029 0.9318

1/100 0.9995 1.0001

11000 0.9995 1.0001

N 1/100000 0.9994 1.0001

) 1/100 0.9993 1.0000

s 1/1000 0.9995 1.0001

A 1100000 0.9994 1.0001

Table 4. Summary of results for the curved cantilever problem using 16-node elements. Point
A always coincides with an element node
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8 FE / eAN
MESH h/R

MITCS MITCS
1/100 0.9998 0.9995
1/1000 0.9995 0.9995
a 1/100000 0.9995 0.9995
1/100 1.0001 1.0000
1/1000 1.0000 1.0000
A 1/100000 1.0000 1.0000
1/100 0.8958 0.9956
1/1000 0.7230 0.9913
A 1/100000 0.0626 0.9883
1/100 09996 0.9995
1/1000 0.9995 0.9995
A 1/100000 0.9995 0.9995
. 17100 0.9999 0.9995
5 1/1000 0.9997 0.9995
A 1/100000 0.9997 0.9995

Table 5. Summary of results for the curved cantilever problem using 8- and 9-node mixed-
interpolated elements. Point A always coincides with an element node

6.5 Analysis of a Pinched Cylinder

The pinched-cylinder problem has been widely used to test shell elements. The physical
problem is presented in Figure 34. Due to symmetry conditions only one octant of the
cylinder needs to be considered.

Figure 35 shows a typical mesh used in this solution (for 1/8th of the cylinder). This
figure also shows that 6 nodal degrees of freedom have been specified at the symmetry lines
and otherwise 5 nodal degrees of freedom have been employed. This allocation of nodal point
degrees of freedom is efficient because then symmetry conditions can be easily imposed (A
similar nodal degree of freedom allocation was used for the analyses discussed below). No
attempt was made to identify for the analysis an optimal mesh, but a graded mesh is used
because the stresses vary rapidly as the concentrated load is approached.

Table 6 gives the solution results. Note that because of the stress singularity under the
concentrated load, this load should be thought of as being distributed over a “small” area
if a very fine mesh were to be used [29].

We also performed a study using uniform meshes and the results are shown in Figure 36.
The performance of the MITC elements of various orders and also the performance of
elements that have been proposed by other authors are shown. In the comparison we
used as the index of mesh refinement the number of nodes per side of the region discretized.
We notice the excellent performance of the higher—order MITC elements. The results are
normalized with respect to the analytical solution for this problem reported by Lindberg et.

al. [43].
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Figure 34. Pinched cylinder problem
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Figure 35. A typical graded mesh used in the analysis of pinched cylinder. One octant of
cylinder discretized
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Figure 36. Convergence of various shell elements in pinched cylinder problem using uniform
meshes

6.6 Analysis of Scordelis-Lo Shell

This shell problem is also a problem generally considered in the evaluation of shell elements.
Figure 37 shows the shell considered and Table 7 lists the solution results obtained.
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Element Mesh wFE [wAN uEE [ufiN
5x5 0.4975 0.8725
MITC4 8x8 0.7628 0.9609
10x10 0.8442 0.9733
15x15 0.9309 0.9883
20x20 0.9651 0.9937
30x30 0.9910 0.9979
3x3 0.7410 0.8410
MITC8 5x$ 09314 0.9936
8x8 0.9841 0.9981
10x10 0.9960 0.9994
15x15 1.0074 1.0009
3x3 0.6103 0.8040
16-node 5x5 0.9405 0.9722
disp.-based 8x8 0.9943 0.9972
element 10x10 1.0030 0.9996

Table 6. Performance of elements in

RIGID . R J
DIAPHRAGM o K

analysis of pinched cylinder

Figure 37. Scordelis-Lo problem

R=300

L=600

Thickness=3.0

E=3.108

v=20.3

Specific weight = 0.20833
¢ = 40°
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Element Mesh wkf/ wiN
2x2 1.1004
MITC4 4x4 0.9424
6x6 0.9733
10x10 1.0004
2x2 0.9347
MITCS8 4x4 1.0160
6x6 1.0187

_——— ———

16-node Ix1 0.9987
disp.-based 4x4 1.0170
element 6x6 1.0191

Table 7. Performance of elements in analysis of Scordelis-Lo shell

X

S N

Figure 38. Typical finite element discretization for analysis of hemispherical shell
(8 x 8 mesh). Radius = 10.0, thickness = 0.04, E = 6.825 x 107, Poisson’s
ratio v = (.3 and pressure p = 1.0

6.7 Analysis of a Hemispherical Shell

The hemispherical shell subjected to self-equilibrating concentrated loads has been used as
a benchmark problem for the analysis of doubly curved shells. The hemispherical shell that
we analyzed has an 18-degree cut—out on its top and it is free on both bottom and top
edges. Only one quarter of the shell needs to be considered and a particular discretization
is shown in Figure 38.

The convergence for the displacement under the load is shown in Figure 39 for the
cubic elements. The superior performance of the MITC16 element over its displacement-
based counterpart is noted. In Figure 40 we show the performance of the MITC9 element
compared with the 9-node element proposed by Huang and Hinton [35].
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Figure 39. Convergence in analysis of hemispherical shell, cubic elements
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Figure 40. Convergence in analysis of hemispherical shell, 9-node elements
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A theoretical lower bound for the displacements under the load was derived by Morley
and Morris [45] for the hemispherical shell without the cut-out and it is equal to 0.0924.
We used for the normalization of our results the value 0.09355 which corresponds to the
converged solution when using the MITC16 element.

6.8 Snap-through of a Shallow Spherical Cap

We analyzed a shallow spherical cap subjected to a concentrated load. The physical model
considered is shown in Figure 41. Using a load displacement control method [46] we obtained
the complete nonlinear response of the shell including the snap-through response. Due to
symmetry conditions only one quarter of the shell needs to be discretized and we used
meshes of one and four 16-node elements.

All edges
of shell P
are hinged

Radius = 2540.0
Thickness = 99.45

a = 784.90
E = 68.95
v = 0.30

Figure 41. Spherical cap problem

Figures 42 and 43 show the central deflection plotted against the load for the results
obtained with the 16-node displacement-based element and the MITC16 element. The
solution reported by Leicester [47] using a semi-analytical approach is also shown, just as
an additional solution, since it has approximations of its own and should not be regarded
as the solution of the mathematical model of the problem in consideration.

We note that the solutions obtained with the MITC16 element using the one and
four element meshes are quite close to each other in contrast to the solutions obtained
with the 16-node displacement-based element (Figure 42). We also note that the 16-node
displacement-based solution with four elements is close to the solutions obtained with the
MITC16 element. Hence, we can conclude that for the 16-node displacement-based element
at least a four element mesh is required whereas with the MITC16 element a good response
prediction is already obtained with only one element for a quarter of the structure.
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Figure 42. Noulinear response of a shallow spherical cap subjected to concentrated load
using the 16-node displacement based element

(P/1000)

X one element mesh

O four element mesh

CENTRAL LOAD,-
29

+ solution by Leicester

. T T T T
0. 50. 100. 150. 200. 250. 300.

CENTRAL DEFLECTION, WC

Figure 43. Nonlinear response of a shallow spherical cap subjected to concentrated load
using the MITC16 element

6.9 Large Displacement Solution of a Cylindrical Shell

The cylindrical shell shown in Figure 44 was analyzed using three meshes for one quarter
of the shell: a 6 x 6 mesh of MITC4 elements, a 3 x 3 mesh of MITCS8 elements and a 2 x 2
mesh of 16-node displacement-based elements. In essence identical response solutions were
obtained. Figure 45 shows the finite element response of the shell which is very close to the
solution reported by Sabir and Lock [48]. In the ADINA solution the load displacement
control method was used [29].
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R = 2540 mm
LA h = 6.35 mm
| E = 3.103 KN/mm’®
\ | / v = 0.3
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Figure 44. Large displacement analysis of shallow cylindrical shell
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Figure 45. Finite element displacement solutions in analysis of cylindrical shell

7. CONCLUDING REMARKS

The objective in this paper was to summarize some state-of-the-art capabilities for shell
structural analysis. The formulation of recommended shell elements and numerical experi-
ences were presented.

The shell analysis capabilities currently available are general and effective and general
problems can be solved with confidence. As for future developments, the use of the mixed
interpolation for element formulations has significant further potential and is expected to

yield additional valuable elements.
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