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Chapter 19

CONVERGENCE OF SUBSPACE ITERATION

Klaus-Jiirgen Bathe

Abstract

The convergence of subspace iteration for the solution of eigenpairs

is studied. The theoretical convergence rate is derived and is pre-

sented with emphasis on the theory in the light of practlcal implica-

tions. Various techniques to accelerate the convergence of the sub-

space iterations are proposed and are tested in a preliminary

manner on some demonstrative sample problems.

1. Introduction

During recent years the development of solution techniques for cal-
culating the eigensystem of large eigenproblems has attracted an

increasing amount of attention [1 - 3]. A particularly important

eigenproblem encountered in computational mechanics is the calcu-

lation of some eigenpairs of the generalized eigenproblem

Kg= rug ,

where 5 *d U are the stiffness and mass matrices of the discrete

degree of freedom system, and (trirPi) is the irth eigenpair. If the

order of 5 and S is n, we have n eigenpairs which we order as

follows,

\sh<\<"'<\
(2t

9ti9z;9e;"';9o.

Thus, the solution for p eigenvalues and corresponding eigenvectors

can be written as

(1)
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5q = MqA

where the columns of 6 store the eigenvectors and 4 is a diagonal

matrix with the eigenvalues on the diagonal.

Among the techniques for calculating the lowest eigenvalues and

corresponding eigenvectors of Eq. (1), the subspace iteration method

has found increasing use [1r4-6]. The subspace iteration method

has been applied successfully to the solution of a large number of

problems and Table 1 summarizes some typical solution times. hc

previous publications, the basic equations of the method have been

presented, and the practical implementation was discussedl4r7f ,
but no detailed discussion of the convergence of the subspace itera-

tion method was given. However, for the practlcal use of the tech-

nique and in the search for methods to increase the effectiveness of

the basic algorithm, it is important to have sufficient insight into the

convergenc e characteristlc s.

Table 1 Solution Times Using Subspace Iteration Method

K. J. Bathe ,nll
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(3)
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The objective of this paper is to discuss in detail the conver-

gence properties of the subspace iteration method with specific em-

phasis on presenting the theory in the light of practical implications.

First, in the paper, the basic equations that are solved in sub-

space iteration are briefly summarized, and the importance of each

equation solved is explained. Emphasis is placed to show in detail

how the minimization of the Rayleigh quotient is used to extract the

best eigenvalue and eigenvector approximations from the current

subspace. I:r the next part of the paper the proof for the ultimate

convergence rate is given, and relevant practical consequences are

discussed. A particularly important phase of the subspace iteration

method is the selection of an effective starting subspace. In the pa-

per, the starting subspace that has been found effective is described

in detail together with various recent experienees gathered. Also,

a number of techniques to accelerate the convergence of the subspace

iterations are proposed.

2. The Subspace Iteration Method

Assume in the following that the order of the matrices 5 and M in
Eq. (1) is n and that we require the lowest p eigenvalues and corre-
sponding eigenvectors. The subspace iteration solution consists of

the following three steps:

(1) Establish q starting iteration vectors, q > p, which span

the starting subspace Er.
Perform subspace iterations, in which simultaneous in-
verse iteration is used on the q vectors, and Ritz analysis

is employed to extract optimum eigenvalue and eigenvector

approximations at the end of each inverse iteration.
After iteration convergence, use the Sturm sequence check

to verify that the required eigenvalues and corresponding

eigenvectors have been calculated.

System
System order

Maximum
half
band- Mass
width matrix

Number
of Com-
eigen- puter
pairs used

Central
proees-
sor sec.

Wind-
tunnel

5952 215 Diagonal 10 cDc 7600 1_000

Dam 29L6 497 Diagonal 4 cDC 7600 495 (2)

Instru- 10456
ment
cabinet

548 Diagonal 20
(e)

cDc 7600 3921
(1036)

Insula- 1965
tion
frame-
work

221 Diagonal 25 cDC 7600 192 (3)
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The verification of the solution results in step (3) is straight-

forward and is discussed in detail in [7]. The effectiveness of the

algorithm lies in the procedures used in steps (1) and (2).

Assume that we have established the q starting iteration vectors,

io It, then the subspace iteration in (2) is as follows:

For k = LrL, . .. , iterate from subspace EO to subsPace EOnr:

rX. - = wIx,
--K+r --K

Calculate the projections of the matrices 5 and M onto EO*t:

_.r
5t*r = {i*r$t*r

_1.
Ut*r = Ir.*rU5.*r

Solve for the eigensystem of the projected matrices:

5.nrQt*r = Yk*rQt*rA.*t

Calculate an improved approximation to the eigenvectors:

{t*r = 8t*rQt*r

Then, provided that the iteration vectors in I, are not orthogonal to

one of the required eigenvectors (and assuming an appropriate order-

ing of the vectors), we have

&*r-4; 5tr*r-9 as k-e.

The essential ingredients of the subspace iteration above are

the simultaneous vector inverse iteration in Eq. (4) and the use of

the Rayleigh minimum principle in Eqs. (5) to (8). Since inverse

Convergence of Subspace Iteration 579

Iteration is used, subspace iteration is closely related to the QR

method [?, p. 470], but subspace iteration displays much better
convergence eharacteristics because the Rayleigh minimum princi*
ple is employed to extract in each iteration the nbestn eigenvalue

and vector approximations. The use of the principle of minimizing
the Rayleigh quotient of an iteration vector has also been explored
by Fried[8], Falk[9], and Schwarz[3]. However, the effective-
ness of subspace iteration derives from the fact that the iteration is
performed with q vectors, where q > p, which are used simultane-
ously in the minimization of the Rayleigh quotient.

Considering the convergence of subspace iteration, two distinct
features are observed, which are both important in practical analy-
sis; namely, the minimization of the Rayleigh quotient that yields

best approximations to the required eigenpairs in the current sub-
space and the ultimate convergence rate of the iterates. We discuss
both aspects in the following sections.

3. Minimization of Rayleigh Quotient in S\rbspace Iteration
The Rayleigh minimum principle states that

\ = *itt p(9, , (e)

where the minimum is taken over all possible vectors g, and

f *'P
p(g =

grug'
(10)

Assuming that 5 and M are positive definite matrices, or that M is
positive semi-definite in case M is a diagonal matrix, we have

(4)

(5)

(6)

(7)

(8)
,l
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In the krth subspace iteration we solve for the vectors \1r\2, .. .,
whlch are stored it Ep*1, and use the Rayleigh minimum principle

tta a mechnnism to generate nbestn eigenvalue and vector approxima-

tlons. The fact that indeed the Rayleigh minimum principle is used

onn be demonstrated by defining a typical vector @ in the subspace

llk*1 "

(12)

1l'hen substituting @ into Eq. (10) and using the conditions dp@/dy, = 0,

I .=1r... rq, which must be satisfied at the minimum of p(9, we

obtain the eigenproblem

where the elements (i,i) of E and M are llgL ana !lru!r, respec-

ttvely. The solution to Eq.lttl ""r n. *"itr"lt 
-r --r'

Gx=Mxp, (14)

where the matrix Y stores the eigenvectors of Eq. (13) and p is a

dlagonal matrix storing the corresponding eigenvalues, p = diag (p.).

I'he elements pi are the approximations to the required eigenvalues

of Eq. (1) calculated using the Rayleigh minimum principle and the

corresponding eigenvector approximations are

Convergence of Subspace Iteration

where v,, is element (i, j) of Y. On comparingnow Eqs. (13) to (15)"rl
with Eqs. (5) to (8), it is realized that in the krth subspace iteration

the same eigenproblem as in the minimization of the Rayleigh quo-

tient is solved; i. e. , Eq. (?) and Eq. (14) are the same equations,

and that also the same eigenvector approximations are calculated.

Using the fact that the Rayleigh minimum principle is employed

to evaluate in each subspace iteration the new eigenvalue and vector

approximations, it follows that in the krth subspace iteration,

\=f.t' ; \=f,") ; "' ;

and, in particular, it is possible to show the actual mechanism used

to calculate the values f*t,. The condition that \ a f*t) follows

from Eq. (9), because the subspac. %*f is contained in the n-di-
mensional space in which 5 and U are defined.

The inherent procedure employed to evaluate f,*t' demon-

strates the mechanism used to evaluate the approximations to the

higher eigenvalues. First we observe that as an extension of the

Rayleigh minimum principle, the minimax characterization of

eigenvalues gives [7],

\ : min p(Q) , (17)

where the minimum is taken over all I subject to the restriction

gtugr - o . (18)

However, in the subspace iteration we have using the notation of Eq.

(L2),

q
- t'-ao= ) v.x.L LJ- r-r

i=1 r^<rs*1) <L (16)qqn

q
_ s-t
9i= LYi;ri ;

i=1
elue, = 0,, ,

j =lr2r...rQ r (15)

(1e)
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where 6,, is the Kronecker delta. Hence,
rJ

f,*t' = min p(<p1 , (20)

where the minimum is taken over all possible vectors <p defined in

Eq. (12) that satisfy the orthogonality condition

-.n
9^ IVITP, = 0 (21)

(22\

(231

To prove tlrat \ = f*t) 
we consider the auxiliary problem of

evaruatrng if;*t', *i"."

f,*t' = min pgpl

subject to the condition

f,lrer=0.

Convergence of Subspace Iteratlon 583

lndicates that in the subspace iteration the higher eigenvalues and

corresponding eigenvectors are, in general, calculated with less

accuracy than the lower eigenpairs, for which less constraints are

imposed. This fact is also observed in practical eigensolutions.

Another important deduction can also be made from the above

results, namely that the required eigenvalues and eigenvectors are

calculated immediately if Ek*l contains the subspace corresponding

io pLr... rgp. In other words, if linear combinations of the vectors

io !t*f can yield the required eigenvectors, then these eigenvectors

are calculated using Eqs. (5) to (8).

4. ConvergenceAnalysis

In the previous section we discussed the mechanism that is used to

establish optimum approximations to the required eigenvalues and

eigenvectors in a specific subspace, and we also deduced that if the

subspace converged, the eigenvalues and vectors cal"eulated are

those required. However, we did not discuss the convergence of the

vector iterates to the required subspace and the ultimate rate of

convergence.

Following the work of Rutishauser [10], the convergence of the

subspace iterations is conveniently studied by first changing basis

from the finite element coordinate basis to the basis of eigenvectors

17, p. 425f. This change of basis is achieved using the following

relation for the veetors XU in Eq. (4),

Ir. = 9Zr. ,
(26\

where Q is the matrix storing all eigenvectors, 6 = [9f r... r9rr1.

Since O is nonsingular, there is a unique \for any Ik, and vice

versa.
Introducing the relation of Eq. (26) into Eq. (4) and premultiply-

.n
ing by O' we obtain for the first equation that is solved in subspace

iteratiJn,

However, since \ a ry*t', because EUrr-is-gontained in the space

spanned by gt,...,grrr and atso If +1) I i.f*t', because the restric-

tion in Eq. (21) is the most severe one, we conclude that \ = ^f*t).
In analogr to the conclusion reached on the calculation of

f,*t', we can conclude that in the subspace iteration, we evaluate

fnt' = min p(o)

subject to the constraint,

tP^NkP. = 0 ,- --J
j = 1r...ri-l

(24)

{25)

Hence, in the calculation of the approximation to the irth eigenpair,

(i-1) constraint equations have to be satisfied. This observation
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LZv*t= Zu (27)

and then equations equivalent to Eqs. (5) to (8), but which express

the relations in the new basis, are used to evaluate !O*r. The con-

vergence rate of the iteration is established from E,q. (27) and using

the fact that in the subspace iterations always the optimum approxi-

mations to the required eigenvalues and eigenvectors are calculated.

For the convergence analysis let the iteration matrix ZO be

denoted as follows,

ffi

0

0

0

0

1

0

0

I

0

0

0
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L/\
0

0

0

L/\,

0

0

Vx*t=

ry_
3k+1 -

1

0

;

&)
"qitrt

tk)
"qizrt

:

(k)

"ii,

7/)\q

'flr,n/\*,
"f;|r,n/\*,

.!iL'u

-(k) -L'q+lr9 trn+1

-(k) -L'q+zrg )\q+2

::
00

'flr, r/tn*t 'St, z/\q+r(k) /\ &)
"f,12,/\q*z "f,lz,z/ \q*z

::

'fri'^" 'Y';'r\

(2e)

(30)

Vy=
::
00

(k) &)
"qit,t zqit,z
{k} ft}zqiz,t 'qiz,z

::
lkl &)
'i.,', "ijz

(28) 0

0

1

0

1

0

0

:

I{Kl o
"nrq \

:

\ a.)btr "i,'z\

\E
\
d;

1

_(k)
'q+1, q

-(k)"q+2rq

,klntQ 
-

-(k)"q+Lr2

-(k)^q+2r2where ZO is completely general, because the unit qxq matrix I can

always be obtained by linearly combining columns, provided ZO is

not deficient in the vectors 9i, i = 1, . . ., e. Using Eq. (27) we then

obtain,

The subspac" Ek*l spanned by ZX*, is not changed if we multiply
column i in ZO*, by \, i. "., %*t is also spanned by i.*r, where

\E
),2

E;

But in the previous section we have shown that in Eqs. (b) to (8)

we calculate the best approximations to the eigenvectors that can be
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extracted from {o*r. Similarly, in the subspace iteration using Eq.
(271 the best eigenvector approximations are extracted from the vec-
tors stored 

^ \U*r. But on inspecting the columns of ZV*tin Eq.
(30) we find that ultimately the i'th column is the best approximation
to the vector 9i in the subspace E1*1. The order and ultimate rate
of convergence to the i'th eigenvector is thus obtained by evaluating

iteration vectors are used that span the least dominant p-dimensional
subspace of 5 and M, the subspace iteration in Eqs. (4) to (g) calcu_
lates in the first iteration the required vectors g1r... rgp. The aim
in the selection of the starting iteration vectors is, therefore, to
obtain vectors that as closely as possible span the least dominant
subspace of E and M.

T\vo cases for which the starting vectors can be chosen to span
exactly the least dominant subspace of E a.nd M are, firsily, when
the mass matrix is a diagonal matrix with only q nonzero masses
and, secondly, when S and U are both diagonal matrices.

In the case of a diagonar mass matrix with onry q nonzero diag-
onal mass elements, the first subspace iteration yields

(33)

where

ll z$*rl - 9i llz ).i

IDF)-cil" =\;

where Zf) i" the ifthcolum n of. !o, and similar for iG+l).

ilz{k*rl - s, ll, )..

liprjt==\;

P{'rr'')'

, (31)

Hence,

(32)

[;:: ;lu, [;;][l

i;l
and convergence is linear with the rate of convergence equal to
.\r/trn+f . We, therefore, conclude that provided the columns io Ik*f
in Eqs. (4) and (8) are ordered appropriately, md provided the start-
ing subspace is not orthogonal to the required least dominant sub-
space spanned by gr, .. . tgqt the itth column io y_L*f converges
linearly with the sate ),'Aq+f to gi. Since the eigenvalues are cal_
culated using the Rayleigh quotient, the irth eigenvalue in Eq. (T)
converges linearly with the rate ().r/trO..r)2 to tr..

5. Selection of Starting Subspace

The first step in the subspace iteration method is the selection of
the starting iteration vectors in Ir. we showed that if starting

82=

The projections of E and M are

-.n5=E;u

and

Uz = I"UI" .

(34)

(35)

(36)

The eigenproblem corresponding to the projected matrices is thus



jl:ril
j,{*i

t_rii:
r_1.: r

iilr,
:1,.

!t:1,

,il:

1,',,

ir

ii.
I
ll

1:r

_m
F'NIx= ),F^MF x .
-a-- -a--a-
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(3?)

Now substitutine F = F M. where F-l = t< and K is the stiffness" -a" -a-' -a -a -a
matrix obtained by statically condensing out in K all zero mass de-

grees of freedom, we realize that Eq. (3?) can be rewritten as

Kx=)Mx
-a-

(38)

But Eq. (38) is the eigenproblem from which all finite eigenvalues of
Eq. (1) are evaluated. Hence, we obtain in the first subspace itera-
tion the lowest q finite eigenvalues and corresponding eigenvectors.

In the second case, when 5 *d U are both diagonal matrices,

which is really a trivial case, the unit entries in the unit starting
iteration vectors are chosen to correspond to the smallest values of

k../m... Thus, the unit starting vectors are already multiples ofll 11

the required eigenvectors and the values k,,/m,, are the correspond-

ing required eigenvalues.

In practice, the specific matrices assumed above are hardly en-

countered, but the results concerning the construction of the starting

iteration vectors indicate, how in general analysis effective start-
ing vectors can be established. The fundamental observation is that

in both cases above the degrees of freedom with the smallest ratios
k,"/m.. are excited, and because the mass of the system was already

1l' ll
lumped to a sufficient extent, convergence is obtained in one sub-

space iteration. If mass is not lumped to the extent used in the two

cases above, iteration is required, but the starting vectors should

still be unit vectors with their entries corresponding to the degrees

of freedom with the smallest values kii/-ir. The actual scheme

proposed in[4], which has been employed extensively, uses as the

first column in MX. the diagonal of the mass matrix M, and as the
--rnext columns unit vectors with their entries +1 corresponding to the

Convergence of Subspace Iteration 589

smallest ratios kil/*ii. The first full column is used in order to
excite all mass degrees of freedom. Since we are iterating with q

vectors, q ) p, when we want to converge to p vectors, the (q-1)
unit vectors would assure convergence in one subspace iteration if
one of the two special cases above is considered.

It has been claimed that starting iteration vectors with random

numbers are sufficiently effective [10,11]. Based on the above ob-
servations, and some numerical experiments, it is believed that in
most cases the above starting subspace is considerably more effec-
tive tharr the use of random numbers in the starting vectors. But to

improve the solution characteristics it is recommended that the qrth

iteration vector be a random vector and be generated new in each

iteration.
In addition to considering the degrees of freedom corresponding

to the smallest values kii/-i' it appears that an additional impor-
tant consideration can be derived from the values f.fiZCrrf.rrl.
Physically, the magnitude of the vatue tl/{k.. k..) is" a measure oflJ u lJ',
the eoupling between the degrees of freedom i and j. However, if
this coupling is high, it is probably not effective to excite both de-
grees of freedom i and j in the starting iteration vectors, because
ilstiffrt relative displacements are only activated in the higher modes.

6. Acceleration of ConverBence

In the solution of some problems, notably those with high mass lump-
ing, only a few subspace iterations, say 6 to 8, are required for
convergence to 6 digit precision on the eigenvalues. However, when

systems with a continuous mass distribution are considered, such as

dams, a large number of iterations may be required. hr such cases,

schemes to accelerate the convergence are very desirable.



590 K Bathe

6.1 Shifting

One way to accelerate convergence is to impose a shift F onto the

matrix E, i. ". , to iterate on the matrlx 5 -li$ rather than on 5. In

order to preserve stability and convergence to the requlred lowest

eigenvalues and eigenvectors it is necessary to choose the shift

Judtciously. A conservative value for p is l,l < tr1, and in practice

we may choose p = 0. 9).1. However, it then follows that P can only

be chosen once )., has been approximated to a sufficient accuracy

(say, to three digits), which means that the shift will be imposed af-

ter the first few subspaceiterations. The new rate of convergence of

the i'th iteration vector to the irth eigenvector is then (\-p1/(trq+1-F).

It is noted that this shifting will, therefore, greatly increase the rate

of convergence to the lower eigenvalues, but if q is large the rate of

convergence to the higher eigenvalues of the required spectrum may

only be marginally increased.

Together with imposing a shift Chebyshev polynomials may also

be employed in the iteration vectors to accelerate the convergence

t10lt12l. Although some experience has been obtained, the overall

effectiveness of using Chebyshev polynomials in the eigensolution of

large systems has not been established as yet.

For small banded systems, the determinant search algorithm

presented in[7] has proven to be efficient, and it appears that de-

pending on the bandwidth of the system the shifting strategies used

tr that technique could be very effective in subspace iterations.

6.2 Use of Aitkenrs acceleration process

Assume that we have calculated \, 1L*1,Ip*2, then using Aitkenrs

acceleration technique, improved iteration vectors for XO*, are ob-

tained by calculatinS [13]

*ff*r,-*$., _ (,.$,, _ "i1..')7\ff, _ zx$.+1) **{f*r) , (re)

Convergence of Subspace Iteration 591

where "$"" element (i, j) of \. Aitkenrs acceleration procedure

has been applied successfirlly in iteration methods and the use of the

technique in subspace iteration might, therefore, be promlsing.

A practical disadvantage using Aitkenrs acceleration technique

may already be noted. Namely, Y "ofy 
the current iteration vec-

tors, but also the vectors from the two preceding iterations must be

stored in high speed storage or on back-up storage, because they

are used whenever the improved iteration vectors are calculated as

given in Eq. (39).

6.3 Overrelaxation

It is an established fact that overrelaxation can reduce the number

of iterations required in the solution of systems of linear equations

t7lt14l. Specifically, in the Gauss-Seidel method with successive

overrelaxation, the number of iterations required for convergence

can be reduced by a factor of 2 or more. Similar improvements

have been observed in the iterative solution of eigenproblems, when

searching for the minimum of the Rayleigh quotient [3]. It appears,

therefore, that in some cases overrelaxation might also significantly

improve the convergence characteristics of the subspace iteration
method.

To incorporate overrelaxation into the subspace iterations, Eqs.

(4) to (7) remain unaltered, but the new iteration vectors Ik*1 .""
obtained from

It*r = 5. * '(It*r &*r - It) '
(40)

where crl is the overrelaxation factor.
For an analysis of the effect of the overrelaxation factor, we

consider the eigenproblem formulated in the basis of the eigenvec-

tors. The convergence analysis in Section 4 shows that we would

like to have

fli

i
i.ilif

,tl,

.:l
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EXAMPLE I ANALYSIS OF 60 ELEMENT UNIFORM
SPRING MODEL
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Vu*t

But then using Eq.

that

(41)

(40) we conclude that 0J should be selected such

(43)

zq+i,i*'(n*r,: 
*'o.t,) l; ::: ;l-i $zt

which gives

,rr=f:T* - .

J' q+l

l=

E=3OOOO, I=0.0833
L= lO, A = l,
P= o.ooo lo4

Hence, it appears that a differeut trl should be employed for each iter-
ation vector j = 1, ... re. Although we could, based on the current

eigenvalue approximations, at best estimate appropriate (d-values

for the iteration vectors, Eq. (43) shows that tl) should be larger

than one.

7. Some Numerical Solutions

To study in a preliminary manner the convergence characteristics

of the subspace iteration method with and without the acceleration

schemes discussed above, the solution of a few eigenproblems was

considered. The immediate aim was to identify whether the acceler-

ation schemes would indeed be reducing the number of iterations

considerably. The next step of this work will be to optimize the

acceleration schemes and develop an improved subspace lteration

method.

Figure 1 summarizes the discrete systems that have been anal-

yzed in this study using the subspace iteration method, and gives the

size and order of the corresponding stiffness and mass matrices.

EXAMPLE 2 ANALYSIS OF IO STOREY AND 3 BAY
FRAME ON SPRING SUPPORTS

Flgure 1. Sample analyses.

These problems have been selected because a relatively large num-
ber of iterations are required for solution of the required eigen-
pairs.

Tables 2 and 3 summarize the results obtained in the analyses.
Convergence in the iterations was measured by[?, p. 504]
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Table 2. Analysts o[Spring Model: k=3?5; m=0.00013; consis-
tent mass, tol= 10-E

Convergence of Subspace Iteration

Using the overrelaxatlon scheme with an arbitrarily picked
value co = 1.6 for all iteration vectors the number of iterations re-
quired for convergence was reduced in almost all cases.

Considering shifting to a lower bound on tr1, it is seen that the
number of iterations required for convergence is reduced signifi-
cantly wheu only a small number of eigenpairs are sought but, as

expected, when relatively marry eigenpairs are to be extracted a
single shift into the vicinity of the smallest eigenvalue required
does not result in a substantial decrease in the total number of sub-
space iterations needed.

since shifting accelerates the convergence to the eigenvarues in
the vicinity of the shift, additional shifting to the higher eigenvalues
should be performed, but a stable and effective algorithm is still to
be developed.

In these analyses the Aitken acceleration did not reduce the total
number of subspace iterations required for solution. rrn addition, it
was observed that the process of using Aitkenrs acceleration was
very sensitive to the time at which the acceleration was applied. It
was found that Aitkenrs formula should only be employed once the
iteration vectors converged linearly, otherwise the application of the
formula could result in an increase of the number of iterations needed
for the solution.

8. Conclusions

Based on the theoretical convergence study of subspace iteration
and the few numerical experiments presented in this paper, it is
concluded that the original subspace iteration method can, for many
eigensolutions, still be improved significanily. Improvements in the
starting subspace should be possible. Among the acceleration tech-
niques presented in the paper the use of overrelaxation factors ap-
pears very promising. In addition, shifting strategies as employed
in the determinaat search method should be explored.
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Case
no with over-
acceleration relaxation

with shifting
to tt with Aitkenrs
(Sect. 6.1) acceleration

number of 2
eigenpairs

2222

30

222 22

number of 4
iteration
vectors

16 30 304 30

number of 7

iterations
10 25 206 25 26

Table 3. Analvsis of Frame Model:
mass, toL = 10-7

kr-= 105; kn= 106; lumPed

Case
no with over-
acceleration relaxation

with shifting
to p with Aitkents
(Sect. 6.1) acceleration

number of 2
eigenpairs

22 222 22

number of 4
iteration
vectors

16 30 16304 30

number of. 25 14 18
iterations

t2 20 11 18 2516

lrF*rl - rF) I

j$;ul<tot '
i = 1r. '.;P r

where l$) i" the approximation to )., calculated in the k'th subspace

iteration. The results in the tables display the following solution

feafures.
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I.n this paper, the use of the subspace iteratlon method was only

considered for the calculation of the smallest eigenvalues and cor-

responding eigenvectors but the development of shifting strategies

should a-lso lead to an extension of the technique to be able to calcu-

late intermediate eigenvalues.
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