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The subspace iteration method for solving symmetric eigenproblems in computational mechanics is 
considered. Effective procedures for accelerating the convergence of the basic subspace iteration 
method are presented. The accelerated subspace iteration method has been implemented and the 
results of some demonstrative sample solutions are presented and discussed. 

1. Introduction 

The analysis of a number of physical phenomena requires the solution of an eigenproblem. 
It is therefore natural that with the increased use of computational methods operating on 
discrete representations of physical problems the development of efficient algorithms for the 
calculation of eigenvalues and eigenvectors has attracted much attention [l]-[8]. In particular, 
the use of finite element and finite difference techniques on the digital computer can lead to 
large systems of equations, and the efficiency of an overall response analysis can depend to a 
significant degree on the effectiveness of the solution of the required eigenvalues and vectors. 

In this paper we consider the solution of the smallest eigenvalues and corresponding 
eigenvectors of the generalized eigenproblem arising in dynamic analysis: 

Kt#i = AM#, (1) 

where K and M are the stiffness and mass matrices of the discrete degree of freedom system, 
and (Ai, 4i) is the ith eigenpair. If the order of K and M is n, we have n eigenpairs which we 
order as follows: 

The solution for the lowest p eigenvalues and corresponding eigenvectors can be written as 

K@=M@A, (3) 

where the columns of Qi contain the required eigenvectors, and A is a diagonal matrix with 
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the eigenvalues on its diagonal: 

@ = Ml9 . . * 9 $Pl, A = [ I k* . 
P 

(4) 

It should be noted that the eigenproblem given in eq. (1) also arises in heat transfer analysis, 
the analysis of associated field problems and buckling analysis. 

Among the techniques for calculating the lowest p eigenvalues and corresponding eigen- 
vectors of eq. (1) the subspace iteration method has proven to be efficient. This solution 
method -referred to in this paper as the basic subspace iteration method -consists of the 
following three steps [3], [7], [lo]: 

Step (1). Establish q starting iteration vectors, q > p, which span the starting subspace E,. 
Step (2). Perform subspace iterations, in which simultaneous inverse iteration is used on the 
q vectors, and Ritz analysis is employed to extract optimum eigenvalue and eigenvector 
approximations at the end of each inverse iteration. 
Step (3). After iteration convergence use the Sturm sequence check to verify that the 
required eigenvalues and corresponding eigenvectors have been obtained. 

Considering step (1) the variable q is input by the user or q = min{2p, p + S}, and the 
starting iteration vectors are established as discussed in [7] or by using the Lanczos algorithm. 
Both procedures are briefly summarized in appendix A. 

Consider next step (2) and store the starting iteration vectors in X1. The subspace iterations 
are performed as follows: 
For k = 1,2, . . . iterate from subspace Ek to subspace Ek+,: 

K%+, = MX,. (5) 

Calculate the projections of the matrices K and M onto Ek+l: 

K k+l = %+,Kgk+,, 

M kfl = *:+&f%k+,. 

Solve for the eigensystem of the projected matrices: 

(6) 

(7) 

Kk+,Qk+, = Mk+,Qk+,hc+l. 

Calculate an improved approximation to the eigenvectors: 

X kfl = %+di?k+,. (9) 

Then, provided that the iteration vectors in X1 are not orthogonal to one of the required 
eigenvectors (and assuming an appropriate ordering of the vectors), we have that the ith 
diagonal entry in A k+l converges to hi and the ith vector in &+l converges to 4i. In this 
iteration the ultimate rate of convergence of the ith iteration vector to 4i is hi/hq+l, and the 
ultimate rate of convergence to the ith eigenvalue is (hi/A,+l)*. In the iteration, convergence is 
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measured on the eigenvalue approximations [7, p. 5041, 

where for convergence talc must be smaller than to/. This final convergence tolerance fol is 
typically equal to 10V6, which yields a stable eigensolution and sufficient accuracy in the 
calculated eigenvalues and eigenvectors for practical analysis [7]. 

In this basic subspace iteration method, convergence has been achieved if to/c I to1 for 
i = 1, . . . , p and the Sturm sequence check is passed. Considering the Sturm sequence check in 
step (3) above, the procedure to apply this check has been described in detail in [7]. The Sturm 
sequence check is very important in that it is the only means to make sure that indeed the 
required number of eigenpairs has been evaluated. 

Considering the solution of problems for a relatively large number of eigenpairs, say p > 50, 
experience shows that the cost of solution using the above basic subspace iteration method 
rises rapidly as the number of eigenpairs considered is increased. This rapid increase in cost is 
due to a number of factors that can be neglected when the solution of only a few eigenpairs is 
required. An important point is that a relatively large number of subspace iterations may be 
required if the default value for q given above is employed. Namely, in this case, when p is 
large, the convergence rate to &, equal to &,/A,+,, can be close to one. On the other hand, if q 

is increased, the numerical operations per subspace iteration are increased significantly. 
Another shortcoming of the basic subspace iterations with q large is that a relatively large 
number of iteration vectors is used throughout all subspace iterations in eqs. (5) to (9). 
Namely, convergence to the smallest eigenvalues is generally achieved in only a very few 
iterations, and the converged vectors plus the (p + l)st to qth iteration vectors are only 
included in the additional iterations to provide solution stability and to accelerate the 
convergence to the larger required eigenvalues. A further important consideration pertains to 
the high-speed core and low-speed back-up storage requirements. As the number of iteration 
vectors q increases, the number of matrix blocks that need be used in an out-of-core solution 
can also increase significantly and the peripheral processing expenditures can be large. Finally, 
it is noted that the number of numerical operations required in the solution of the reduced 
eigenproblem in eq. (8) becomes significant when q is large and cannot be neglected in the 
operation count of the subspace iteration method. For these reasons the operation count given 
in [7, p. 5071 is not applicable when q is large. 

The above brief discussion shows that modifications to increase the effectiveness of the basic 
subspace iteration procedure are very desirable, in particular when the solution of a large 
number of eigenpairs is considered. The development of acceleration procedures to the 
subspace iteration method has been the subject of some earlier research [9]-[ll]. In principle, 
a number of techniques can be employed, such as Aitken acceleration, overrelaxation, the use 
of Chebyshev polynomials and shifting; however, the difficulty is to provide a reliable and 
significantly more effective solution method, and such technique has not as yet been presented. 

The objective in this paper is to describe an accelerated subspace iteration method that is 
reliable and significantly more effective than the basic scheme. We first discuss the theory and 
implementation of the acceleration procedures employed. These acceleration schemes have 
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been implemented and used in the solution of a large number of problems. To demonstrate 
the basic features of the solution method, we present some solution results in the paper and 
compare these with the results obtained using the determinant search method and the basic 
subspace iteration method 171. We conclude that the new accelerated subspace iteration 
solution technique represents a very significant extension of the basic subspace iteration 
method. 

2. Ov~rrelaxa~n of iteration vectors 

Overrelaxation techniques are commonly employed in iterative solution methods, and it can 
be expected that overrelaxation is also useful in the subspace iteration solution of eigen- 
problems. To incorporate over-relaxation into the subspace iterations, eqs. (5) to (8) remain 
unaltered, but the new iteration vectors X k+l are obtained using instead of (9) the relation 

xk+l = xk + (%c+lQk+t - xk)% (11) 

where a, is a diagonal matrix with its diagonal elements equal to individual vector over- 
relaxation factors Cyi, i = 1, . . . , q, which are calculated as discussed below. 

2.1. Preliminary considerations on vector overrelaxation 

The use of overrelaxation of an iteration vector assumes that the vector has settled down 
and reached its asymptotic convergence rate. The overrelaxation factor is a function of this 
rate of convergence, and if the overrelaxation factor is chosen based on Aq+t, the analysis in 
[lo] gives 

1 
ai = 1- AJh,+,’ 

It is therefore necessary to have a reliable scheme for the calculation of the vector con- 
vergence rate hi/Aq+l. Such a scheme is the essence of our method of overrelaxation. 

2.2. The ove~elaxa~on method used 

Assuming that some of the iteration vectors have reached their asymptotic rate of con- 
vergence and we have a reasonable approximation to the corresponding eigenvalues, our 
objective is to calculate an approximation to hq+*, so that eq. (12) can be employed to evaluate 
the overrelaxation factors. The approximation to A,+* is calculated effectively using the 
successive eigenvalue predictions obtained during the subspace iterations. 

(12) 

Considering the convergence to Ai, let 

rjk+l) = A I’+l)- Ai 
Atk’--A. ’ t 

(13) 
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where thus 

lim rtk+l) = 
I 

k-u- 

Then we can say that, approximately, 

r!*+l)={wi, i = l,... ,p. 

(14) 

(15) 

Depending on the iteration number, the convergence rate estimates in eq. (15) can be grossly 
in error and, due to finite precision arithmetic, will certainly be meaningless at or near 
convergence. However, the estimates are fairly reliable if the following two conditions are 
satisfied: 

I 
++l) _ $Q 

I 

,.<k+l) I tolr and 1o-3 5 talc 5 lo-‘O, 
I I (16) 

where tolr is typically 0.2 to 0.35, and talc is defined in eq. (10). In using the above tolerances 
and all tolerances specified in the discussion to follow, we assume that a computer with 14 or 
more digit arithmetic is employed (e.g. CDC machines in single precision arithmetic, IBM and 
UNIVAC machines in double precision arithmetic). 

Assume that in iteration I there are some eigenvalue estimates (of the p eigenvalues to be 
calculated) for which the tests in eq. (16) are passed; then, using each of these eigenvalue 
estimates, we can calculate an approximation to Aqcl: 

A 
. A(“” 

q+1=* 

and use as the best estimate for A,,, the average iq+, of all estimates ever calculated 
iterations. 

The value iq+l is employed instead of Aq+1 in eq. (12) to evaluate the overrelaxation 
(Yi* 

3. Acceleration through shifting 

(17) 

in the 

factor 

The basic premise of using shifting procedures in the subspace iterations is that the rates of 
convergence to the required eigenpairs can be increased significantly and to such an extent as 
to outpay the added computational expense that is due to the additional triangular fac- 
torizations. It was shown earlier, when considering the solution of only a few eigenpairs, that 
for small-banded systems the determinant search algorithm is more effective than the basic 
subspace iteration method [7], and that for large-banded systems the subspace iteration 
method is more efficient. It can therefore be conjectured that, depending on the bandwidth of 
the system matrices and the number of eigenpairs to be calculated, some shifting procedure 
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that is similar to the one employed in the determinant search method should be effective in the 
subspace iteration method. 

3.1. Preliminary considerations on matrix shifting 

Considering shifting in the subspace iterations, it is most important to develop a stable and 
reliable solution scheme. A major difficulty in the use of shifting is that if a shift is on or very 
close to an eigenvalue, all iteration vectors immediately converge to the eigenvector cor- 
responding to that eigenvalue. The vectors can then not be orthogonalized any more and the 
iteration is unstable. If the shift is very close to an eigenvalue, the last pivot element in the 
LDL’ factorization of the coefficient matrix is small (compared to its original value) and the 
shift must be changed, but two serious situations can arise that are described qualitatively as 
follows: 

(1) 

(2) 

If a shift is close but not very close to an eigenvalue (which is a situation in between the 
case of a shift “exactly” on an eigenvalue and the case of a shift far away from an 
eigenvalue), the attraction of an iteration vector to the shift may just be counter- 
balanced by the vector orthogonalization process. In such case, if the convergence 
tolerance employed is not high enough, an iteration vector is erroneously considered to 
have converged to an eigenvector. 
Although an iteration vector may have converged already to a required eigenvector, if a 
shift is imposed, and this iteration vector is still included in the subspace iterations, it is 
possible that this iteration vector may deteriorate and suddenly converge to another 
eigenvector. 

With due regard to these difficulties the shifting procedure presented below is a simple and 
stable algorithm to accelerate the convergence of the subspace iterations. 

3.2. The shifting procedure used 

Assume that the smallest r eigenvalues have already converged, i.e. we have talc 5 to1 
(using eq. (10)) for the approximations to the r smallest consecutive eigenvalues. The 
calculated r eigenvalue approximations the estimate for Aq+l defined in section 2.2 as &+, 
and the eigenvalue iterates that are converging to the higher eigenvalues (i > r) and satisfy eq. 
(10) with talc s lo-’ are employed to establish an appropriate algorithm for shifting in the 
subspace iterations. 

In order that the iteration vectors continue to converge monotonically to the required p 
eigenvectors, the shift ,u, must satisfy the following condition: 

CLs-A1<A,+l-Ps, (18) 

which means that CL, is in the left half of the eigenvalue spectrum A1 to A,,,. After shifting to 
pS the new convergence rates to the eigenvectors are Ihi - ~~l/lA~+~ - E.c,~. To satisfy eq. (18) in 
a conservative manner, we use 

(19) 
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where h, is the calculated approximation to A,. 
A second requirement for continued stability of the subspace iterations is that pS must be 

relatively far away from an eigenvalue. The shift pS is therefore chosen to lie midway between 
two well-spaced eigenvalue approximations, and these iterates must have converged to a 
tolerance (tuk) equal to lo-” in eq. (10). 

The criterion for shifting in the iterations is that the improvement in the convergence to the 
higher eigenvalues must outweigh the computational expense of performing a shift. Therefore, 
a shift is performed if the following condition is met: 

[ 
number of operations to 

perform the shift 
I! 

number of operations to 
+ 

obtain convergence 
after shifting I 

C 

number of operations to 
< obtain convergence . (20) 

without shifting 1 
Let A tk+*) be the latest estimate of Ai with talc s lo-’ in eq. (lo), where r < i I p, and let &+, 

be the latest estimate for A,+1; then we can estimate the convergence rate to Ai as d = 
(Afk+l)/&+J2. Also, let t be the number of additional iterations to reach convergence without 
shifting. We can estimate t using 

d’ = toli, (21) 

where to/i is the increase in accuracy still to be gained in the subspace iterations; here we have 
toli = tolltolc. Hence 

(22) 

Using the information in eqs. (20)-(22), we can evaluate whether it is efficient to shift. Assume 
that a stable shift is given by pS (i.e. ~~ is chosen using eq. (19)); then the convergence rate d 
to hi after shifting would be approximately 

(j=~* 
q+l s 

(23) 

Hence the number of subspace iterations required for convergence after shifting are ap- 
proximately 

7 _ log(to~)* 

log(d) (24) 

The above values for t and ? are calculated for all eigenvalue iterates A ik+l), where r < i 5 p. 

The maximum difference between t and 6 given by (t - &,,, is then used in eq. (20). Thus a 
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shift is efficient if (see [7, table 12.3, p. 5071) 

; ~WZ* < (n(2qm + 2q2) + 18q3}(t - &,,, 

; ltm* < (n(4qm + 2q*) + 18q3}(t - F),,, 

(lumped mass matrix), 

(banded mass matrix), 
(2% 

where m is the average bandwidth of the stiffness matrix in eq. (1) m,,, = 0 for a lumped mass 
idealization, and mM = m for a consistent mass idealization. 

In the operation count shown in eq. (25) it is assumed that all q iteration vectors are included in 
the complete subspace iterations. Eq. (25) is modified if some of the iteration vectors are 
accurately approximating respective eigenvectors, i.e. in eq. (10) talc I 10-‘“. In such case we 
accept the iteration values as fully converged and, corresponding to the converged vectors, we 
dispense with additional inverse iterations in eq. (5), the projection calculations in eqs. (6) and 
(7) and the calculation of new iteration vectors in eq. (9). Apart from saving some numerical 
operations, by not performing these calculations we also safeguard against a possible loss of 
accuracy in the already converged vectors during further subspace iterations at new shifts. 

3.3. Iteration procedure for the case q < p 

In the previous sections we discussed the acceleration of the basic subspace iteration scheme 
by shifting and overrelaxation when throughout the solution the number of iteration vectors is 
significantly larger than p. However, in some cases, when p is large, the effectiveness of the 
solution is increased if the required p eigenpairs are calculated with a number of iteration 
vectors q smaller than p. Basically, two advantages can arise in such solution. Firstly, the 
required high speed core storage decreases, and, secondly, unnecessary orthogonalizations of 
iteration vectors to already calculated eigenvectors are automatically avoided. 

In case q < p the solution algorithm proceeds as described in section 3.2 with the following 
modifications (see fig. 1). Since the required eigenpairs cannot be calculated effectively without 
shifting, and a shift should lie in-between eigenvalue iterates that have converged to a 
tolerance of 10-‘” (using eq. (lo)), the decision on whether to shift is based on the eigenvalue 
iterates that have not yet converged to the 10-‘” tolerance. Hence, in the analysis of section 3.2 
the variable r is equal to the number of consecutive smallest eigenvalue iterates that have all 
converged to to/c 5 lo-“. 

Assume next that eq. (25) shows that /.L$ should be increased beyond the limit given by eq. 
(19). In this case a shift is not performed, but the iteration vectors that correspond to the 
smallest eigenvalue iterates and that consecutively all satisfy eq. (10) to a tolerance of lo-” are 
transferred to back-up storage and replaced with new starting iteration vectors. The effect of 
this procedure is to increase &+l, by which the rate of convergence of the iteration vectors is 
improved, and also allow further shifting. Considering the next subspace iterations, it is 
important to assure that the iteration vectors do not converge to already calculated eigen- 
vectors, and it is effective to employ Gram-Schmidt orthogonalization. All q iteration vectors 
are orthogonalized prior to a subspace iteration to the eigenvectors & that have already been 
stored on a back-up storage and correspond to eigenvalues Ai with 
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Fig. 1. Calculations in accelerated subspace iteration method. 
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where A * is the largest eigenvalue estimate calculated in the current subspace iteration, and & 
represents the calculated approximation to hi. The number of Gram-Schmidt orthogonaliza- 
tions thus performed is conservative. 

Considering the selection of additional shifting, we note that once accurate approximations 
to the eigenvectors &, . . . , t& have been calculated and stored on back-up storage, the 
smallest eigenvalue to be calculated next is hj+l, and hence eq. (19) is modified to 

(27) 

where ii+1 is the calculated approximation to hj+l. 
This shifting strategy is used effectively if 4 <p, but to avoid convergence difficulties, the 

strategy is also best employed if 4 is only slightly larger than p. We thus recommend using the 
iteration vector replacement strategy when q is smaller than the default value quoted in 
section 1, i.e. when 4 < min{2p, p + 8). 

4. Computer implementation 

The solution scheme presented in the previous section has been implemented in the 
computer program SSPACE [7, p. 5091. The purpose of this section is to summarize how the 
solution procedures have been implemented in the program (see fig. 1). 

4.1. Overrelaxation 

Having calculated X k+l in eq. (9) an overrelaxation is performed for an iteration vector if 
eq. (16) is satisfied. In the overrelaxation the iteration vectors from the previous iteration are 
read from back-up storage, and we calculate 

x,+,+x, + (xk+l -x&. (28) 

4.2. Shifting 

Considering the matrix shifting strategy, the initial shift is zero and then p, is increased with 
each shift. Based on the considerations in section 3.2, we assess after 4 subspace iterations at a 
shift whether it is effective to shift to a new position. Namely, about 4 subspace iterations are 
required for the iteration vectors to settle down after a shift, so that the analysis presented 
above is approximately applicable. Also, a shift is performed only if there is a saving of at least 
3 subspace iterations, i.e. in addition to satisfying eq. (25), we must also have (t - F),,,,, 13. 

After 4 subspace iterations have been performed at the current shift the following 
procedure is employed to establish a new shift CL,. 

(a) Calculate the convergence rates ri of the eigenvalue iterates using eq. (15) at the end of 
each iteration, and calculate &+, using eqs. (15) and (17). 



04 Establish the largest allowable shift j..~~. This shift is calculated as 

where h, is the calculated approximation to A, and h, is the largest eigenvalue for which 
all eigenvalue iterates, below and including A,, have converged to a tolerance of lo-*’ 
using eq. (10). Check whether this shift satisfies eq. (19) (or eq. (27)) and also the 
condition 

(4 

(4 

l.Olh,_l I j& 5 0.99h,. (30) 

If either eq. (19) (or eq. (27)) or eq. (30) is not satisfied, decrease s (using S+S - 1) until 
both conditions are met. It is next assessed whether shifting to p, is effective if the value 
of ps thus obtained is still larger than the current shift. 
If only a few subspace iterations have been performed, reasonably accurate estimates 
for all A,,,, s < m sp, may not ye_t be attainable. Hence, to evaluate eqs. (21)-(25) we 
use only the eigenvalue iterates A, for which talc 5 lo-*. In order that shifting to pu, be 
performed, eq. (25) must be satisfied. 
If a shift is performed, use the Sturm sequence information and error estimates on the 
calculated eigenpair approximations to establish whether all eigenvalues between the 
previous shift and the new shift have been obtained [7, p. 5051. Assume that j 
eigenvalues have been calculated between the previous and the current shift; then the 
following physical error norms [7, p. 4131 should be small for all eigenpairs calculated: 
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(29) 

and j additional negative elements must be measured in D, where 

K - p,M = LDL’. (32) 

In theory, it could happen that an eigenpair has been missed [7, p. 5051. However, in 
practice, such a situation is extremely rare and would always be detected; therefore, the 
solution procedure is a reliable analysis tool. Also, because the missing of an eigenpair 
is so rare, the recommended remedy is somewhat crude; namely, stop the solution and 
repeat with a larger number q of iteration vectors and possibly a tighter convergence 
tolerance fol [7]. 

Considering the case q < min{2p, p + 8}, the matrix shifting strategy is as described above 
with one additional calculation procedure. Assume that the candidate shift is discarded based 
on eq. (25) and is the maximum value possible satisfying eq. (19) (or eq. (27)). In this case, all 
iteration vectors that correspond to the smallest eigenvalue iterates and that consecutively all 
satisfy eq. (10) to a tolerance of lo-” are written on back-up storage and replaced by new 
starting iteration vectors. Further checking on whether additional matrix shifting is effective is 
then performed after four more subspace iterations. 
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5. Demonstrative sample analyses 

The accelerated subspace iteration method has been employed in the computer program 
ADINA [12] for the solution of a large number of eigenproblems. We present in this section 
the analysis results of three solutions that demonstrate typical features of the solution scheme. 

5.1. Solution of a 16-degree-of-freedom tridiagonal system 

The eigenvalue problem summarized in fig. 2 was solved with p = 4 and q = 8 using the 
basic subspace iteration scheme and the accelerated method. Using the basic subspace 
iteration method, the solution of this problem requires theoretically about 55 iterations to 
calculate the 4 smallest eigenvalues with to1 = 10e6. Thus, the eigensolution requires a 
relatively large number of iterations and provides a good testing ground for the accelerated 
iteration scheme. Table 1 gives the actual number of iterations employed in the solutions using 
the basic subspace iteration method and the accelerated procedure. The table shows that the 
accelerated method provides a significantly more effective solution to this problem. 

” 
K = 

EIGENVALUES 

A, = 102.2 ) 

x, =113.4. 

X,=l2l.I, 

Alo= 132.3 , 

X,,=l42.1 , 
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- 
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;M=I -- 
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A,= 115.6. 

X8= 124.7. 

A,,= 135.9, 

A,,= 144.6, 

X3 = 110.6, 

Ag=l17.9, 

Xg =128.5, 

A,,= 139.2, 

A,,= 147.6, 

Fig. 2. A 16-degree-of-freedom tridiagonal system. 
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Table 1. Analysis of the tridiagonal system (p = 4, q = 8) 

Accelerated scheme 

Standard starting subspace Lanczos starting subspace 

Basic Overrelaxation Shifting Overrelaxation Overrelaxation 
scheme only only and shifting and shifting 

Number of iterations 49 35 31 23 20 

Fig. 3 shows a computer plot of the piping system considered in this study. For this system 
the order yt of the stitIness and mass matrices is 330, the mean half-bandwidth mK of the 
stiffness matrix is 26, and a diagonal mass matrix was employed. The sixty smallest eigenvalues 
and corresponding eigenvectors were required. 

Table 2 summaries some relevant solution data corresponding to the various analyses 
performed. 

Conside~ng the solution with 68 iteration vectors (4 = 68), the ratio (A~~A~~)* is equal to 0.3, 
resulting in rapid convergence using the basic scheme. In this case there is no reduction in the 
number of iterations and the required high speed storage using the accelerated method. 
However, considering the solution with q = 20 and 4 = 4, sig~cantly less high speed storage 
is needed at no increase in central processor time. Since the average bandwidth of the stiffness 
matrix is small, the determinant search method is equally effective for this problem 171. 

It is interesting to note that in the solution using the Lanczos starting subspace, with q = 68, 
after two iterations the first 34 eigenvalue iterates and after a total of only five iterations the 
smallest 45 eigenvalue iterates had converged to fok = lo-“. Since the converged iteration 
vectors are no longer included in the iterations (see section 3.2), about the same total solution 

Table 2. Comparison of different solution strategies in the analysis of the piping system (n = 330, mK = 26). 
Diagonal mass matrix was used (Computer used was CDC Cyber 175, fol = 10m6) 

Accelerated scheme 

Basic 
scheme Standard starting subspace 

Lanczos starting Determinant 
subspace search 

PI4 60168 60168 60120 4014 60/68 

Total number of subspace 

iterations 13 13 74 408 23 
Total high speed core 

storage used 42,494 42,494 17,870t 11,700t 42,494 
Solution time (CPLJ set) 90 74 65 63 77 

*Average number of fa~o~ations and inverse iterations per eigenpair 
tAdditiona1 secondary storage was required for storing converged eigenvectors 

60/100 60/l 

2 (5 f 6)* 

64,094 12,490t 
71 63 
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times are required using the “standard” and the Lanczos starting subspaces although more 
iterations are required using the Lanczos starting vectors. 

Finally, table 3 summarizes the complete solution steps for the case 4 = 20. As seen from 
this table, a total of ten matrix shifts were performed in the solution, and the required sixty 
eigenpairs were calculated in bundles of 15, 13, 15, 5 and 12 each from five iteration vector 
sets. 

5.3. Analysis of a building frame 

The building frame shown in fig. 4 was earlier analyzed in [3]. We analyzed the same 
structure in this study to demonstrate some important features of the accelerated subspace 
iteration method. For this system n = 468 and mK = 91, and a diagonal mass matrix was 
employed. The sixty smallest eigenvalues and corresponding eigenvectors were required. 

Since the stiffness matrix has a relatively large bandwidth, a determinant search solution is 
not effective, and only subspace iteration solutions have been calculated. 

Table 4 gives the characteristics of the solutions obtained. It is seen that the accelerated 
subspace iteration method yields a significantly more effective solution than the basic scheme. 
Table 5 summarizes the solution steps for the case 4 = 20. 

In this analysis the Lanczos starting subspace was not employed because the stiffness matrix 
had to be processed in blocks due to high speed storage limitations [7]. The generation of the 
starting vectors using the Lanczos method in such a case requires considerable peripheral 
processing and is not effective when a large number of vectors need be calculated in the 
solution. 

Table 3. Solution steps in the analysis of the piping system (p = 60, q = 20) 

Converged Matrix shifts applied 

trial vectors at l/2(& + A,-,) 

Iteration Iterations simultaneously Eigenpair based on convergence 

vector performed removed to approximations of hk Calculatton of A,+, 

set Eigenpairs with these back-up carried over Iteration q+l &+, &+I 
numbers sought vectors storage to next step no. i k (estimated value) 

1-15 5 1 14 24,501 
1 l-20 1-17 at iteration 16-20 9 4 17 21 29,738 

17 13 11 17 32.847 40,373 

16-28 24 18 35 125,604 
2 16-35 18-36 at iteration 29-35 28 22 35 36 118,106 

36 32 25 35 113,883 102,360 

29-43 40 31 44 182,623 

3 29-48 37-52 at iteration 44-48 44 34 46 49 227,682 

52 48 41 46 232,584 254,685 

4448 

4 44-63 53-66 at iteration 4%3 61 49 60 64 658,386 548,048 
66 

49-60 
5 49-68 67-73 at iteration 

74 



328 K.J. Bathe, S. Ramaswamy, An accelerated subspace iteration method 

Table 4. Comparison of different solution strategies in the analysis of the building frame (n = 468, 
mK = 91). Diagonal mass matrix was used (Computer used was CDC Cyber 175, to1 = 10e6) 

Basic scheme 
Accelerated scheme 

(standard starting subspace) 

PI4 

Total number of subspace iterations 

Total high speed core storage used 

Solution time (CPU set) 

60168 60168 60120 

47 36 80 

66850* 66850: 55282t 

570 279 209 

*Stiffness matrix was stored out-of-core (4 blocks) 
tStiffness matrix was stored in-core, but additional secondary storage was required for storing 

converged iteration vectors 

Table 5. Solution steps in the analysis of the building frame (p = 60, 9 = 20) 

Converged Matrix shifts applied 

trial vectors at l/2(& + A,-1) 

Iteration Iterations simultaneously Eigenpair based on convergence 

vector performed removed to approximations 
of & Calculation of A,+1 

set Eigenpairs with these back-up carried over Iteration 9 + 1 ;rq+, Ap+l 
numbers sought vectors storage to next set no. i k (estimated value) 

1-12 9 6 15 21 9.59 
1 l-20 l-17 at iteration 13-20 13 9 16 10.01 11.58 

17 

13-27 21 13 24 33 17.71 
2 13-32 18-37 at iteration 28-32 25 17 30 28.38 

37 29 24 32 29.64 
33 25 32 30.31 29.44 

28-42 42 29 34 48 41.51 
3 28-47 38-54 at iteration 43-47 46 34 42 55.03 

54 50 41 43 65.23 86.12 

43-48 58 43 48 63 87.64 
4 43-62 55-72 at iteration 49-62 64 46 59 122.75 

72 68 47 60 122.81 122.63 

49-60 
5 49-68 73-80 at iteration 

80 
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(a) ELEVATION OF BUILDING 

i T_ 2fiJ20’ 

80’ 7 

-..--- 

,- 

FRONT _ : BUILDING 
WITH 3 

: 
FLOORS 

2@ 20’ 

. 

(b) PLAN OF BUILDING 

YOUNG’S MODULUS= 432000, MASS DENSITY =I.0 
COLUMNS IN FRONT BUILDING A,=3.0,1,=12=13=I.0 

COLUMNS IN REAR BUILDING A,=4.0,1,=12=13= 1.25 

ALL BEAMS INTO X-DIRECTION A,=2.0,1,=12=Ij0.75 

ALL BEAMS INTO Y-DIRECTION A,=3.0,1,=12=13=I.0 

UNITS : FT, KIP 

Fig. 4. A three-dimensional building frame (order of matrices n = 468, mean half-bandwidth rnK = 91). 

6. Conclusions 

Effective strategies for accelerating the basic subspace iteration method in the calculation of 
the smallest eigenvalues and corresponding eigenvectors of generalized eigenproblems have 
been presented. The solution strategies have been implemented, and the results of some 
sample analyses are reported. Based on the theory used and the experience obtained with the 
accelerated subspace iteration method, we conclude that the technique can in some cases 
provide significantly more effective solutions than the basic method. The increase in solution 
effectiveness depends on the properties of the eigensolution sought, such as the number of 
eigenpairs to be calculated, the spreading of the eigenvalues and the order and bandwidths of 
the matrices. The accelerated solution scheme is in particular more effective than the basic 
subspace iteration method when the basic method converges only using relatively many 
iterations. Also, since the accelerated subspace iteration method can be employed with a small 
or large number of iteration vectors q, the method is more general than the basic method; e.g. 
the accelerated method can be applied effectively to the solution of eigenproblems in which 
the matrices have small or large bandwidths. 
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Appendix. Calculation of starting iteration vectors 

Two procedures have been employed to generate the starting iteration vectors. 
Using the “standard” procedure, the vectors are generated as described in [7, p. 5011. 

Briefly, the first starting iteration vector is a full unit vector, the next q - 2 vectors each are 
unit coordinate vectors with the unit entries corresponding to degrees of freedom with large 
mass and low stiffness values, and the qth starting iteration vector is a random vector. This 
procedure was always used in the basic subspace iteration method. 

In the second procedure the Lanczos algorithm is employed to generate the starting 
iteration vectors [S]. This procedure is in general effective if q is considerably larger than p. 
Using this method, we proceed as follows: 

Let 

?={l l...l} (with all elements 1). 

Calculate 

a2 = x”MX’, 

and take the first starting iteration vector as 

Xl = i/a. 

Now calculate the starting iteration vectors x2, . . . , x4-l, using the following equations (with 
p, = 0): 

Kefi+l = MXi, (A4 
(Yi = f~+*MXiy (A-2) 
ii+1 = 4+1 - CuiXi - p&-l, 64.3) 

PKI = -f:+lM-fi+l, 64.4) 

xi+1 = ~i+llpi+l* (A.5) 

The qth starting iteration vector is established using a random vector and orthogonalizing this 
vector to all vectors Xj, i = 1, . . . , q - 1. 
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Theoretically, the vectors Xi, i = 1, . . . , q, that are generated by the above algorithm form an 
M-orthonormal basis. However, in practice, the computed vectors are in general not ortho- 
gonal because of round-off errors. For this reason we orthogonalize the vectors Xi+1 obtained 
in eq. (A.5) to all previously computed vectors Xi, j = 1, . . . , i. 

Another consideration is that the generated vector Xi+1 would theoretically be a null vector 
if the starting vector x1 lies in an i-dimensional subspace of the operators K and kf. Hence, we 
compute yi+l = (ZI+IM3i+l)l”, and whenever the ratio pi+l/yi+l is smaller than 10P4, the 
computed vector x, ,+, is discarded. Then we use the (i + l)st vector generated by the above 
“standard” procedure as the vector x. r+l, orthogonalize it to all vectors Xi, j = 1, . . . , i, and with 
pi+* equal to zero we continue the recurrence algorithm in eqs. (A.l)-(A.5). 
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