
What can go wrong
in FEA? As finite-elem ent analysis spreads

to designers who naay lack formal training in numerical
I must ask whether the mostproc edures, practltloners

approp nate techniques are being used-and whether they

are producing accurate results. By Klaus-Jiirgen Bathe

INITF,-EI,EMENT METHODS ATC lN

abundanr usc in today\ engi-
neering prrcti,'e rhrough vari-

ous general-purpose commercial
computer programs and many spe-

cial-pr-rrpose programs written for
specific applications. These tech-
niques Jrc. to ln increasing extent.
being used to help identiS' good new
designs and improve designs with
respect to performance and cost.

Considering the important role
that finite-element methods now
play in various areas of engineering.
practitioners need to ask themselves

whether their procedures are the
most appropriate techniques avail-
able and whether the methods will

A schematic plot of strain energies Ep of finite-element solutions is given when the element size h is de-

creased. The plot shows convergence as the mesh is refined.

This article is not intended to resolve the question in the

broadest sense; rather, we shal1 focus on some aspects

of the reliability of finite-element methods and their
accurate use. To illustrate. we will consider linear elastic

solutions and assume that the aigebraic finite-element
equations are solved exactly. For a more cornplex analysis,

the sarne considerations ho1d, but additional requirements

need to be addressed as we1l.

MRrnemRrlcAl MoDELS

First of all, engineers should recall that the finite-ele-
rrent method is used to solve a mathematical model,

E5 with h very small = E

lead to accr-lrate results. These questions are particularly
important because more and more design engineers who
have not necessarily been trained in numerical procedures

are applying finite-element techniqr-res in their work.
As the use of these methods expands to a larger and

more diverse group, users must address the irnportant
question of what can go wrong in finite-element analysis.
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Finite* element formulatio ns

still in use could yield
grossly erroneous solutions.

which is the result of an idealization of the actual physi-
cal problem considered. The mathematical model is
based on assumptions made regarding the geometry,
material conditions, loading, and displacement boundary
conditions. The governing equations of the mathemati-
ca1 model are in general partial differential equations sub-
jected to boundary conditions. These equations cannot
be solved in closed analytical form. Therefore, engineers
resort to the finite-element method to obtain a numeri-
ca1 solution.

Consider, for example, an analysis of a valve housing of
axisymmetric geometry and axisymmetric loading. In
such a case, it is reasonable to assume axisymmetric con-
ditions for analysis. The complete marhematical model
and thus the analysis problem is obtained by specifying
the geometry and dimen-
sions, support conditions,
material constants, and
loading.
While engineers can-

not, in general, obtain
analytically the exact
solution for the posed
mathematical model in closed form, the exact solution
of the mathematical model does exist, the solution is

unique, and an approximation of this exact solution can
be obtained with very high accuracy using finite-ele-
ment methods.

To quantify these observations, the notion of conver-
gence must be introduced. Let E denote the (unknown)
exact strain energy of the mathematical model. Also, let
-87, denote the strain energy corresponding to the finite-
element solution with a mesh of element size ft. Then
convergence means:

1T lt- Ehl : s

The schematic piot on page 63 shows how convergence
is reached. As the mesh is refined (that is, the element size
h is decreased), the strain energy E1 approaches a value -E.

The rate at which the error between E and 81, is reduced
depends on the problem solved as well as on the element
and meshes used. Cleariy, higher*order elemenrs will re-
duce the error at a faster rate with mesh refinement than
lower-order elements.

THE QUESTtoN oF ReLtRerLlry

Reliability in finite-element methods means that in the
solution of a well-posed mathematical model, the finite-
element procedures will have two attributes: The finite-
element solutions will converge to the exact solution of
the mathematical model as /r approaches 0 for any (physi-
cally realistic) material data, displacement boundary con-
ditions, and loading applied; and for a reasonable finite-
eiement mesh, a reasonable finite-element solution will be
obtained. Furthermore, the quality of the finite-element
solution does not change drastically when the material
data (or thickness of a shell) are changed.

These conditions are of crucial importance. If the first
condition (convergence) is violated, then with rnesh re-

finement a solution is
approached that is not
the exact solution of thc
mathematical model.
Such erroneous solutions
could lead to wrong de-
sign decisions and disas-
trous consequences. Of

course, finite-element methods that violate the first con-
dition should not be used.

To consider the second conditi.on-obtaining a reason-
able solution using a reasonable mesh-assume, for ex-
ample, that the valve housing is made of steel (Young s

modulus is 200,000 megapascals; Poisson's ratio, V, is 0.30).
The analysis using a reasonable mesh has given accept-
able results (that is, the error lE- Et l is acceptably smali).
Suppose that we now change the material to a piastic, for
which Poisson's ratio is 0.49-close to the incompress-
ible condition of 0.50. This change in material condition
might result in a relatively small change in the exact solu-
tion, and it should then result only in the corresponding
small change in the finite-element solution. lJnfortu-
nately, finite-element formulations are still used that violate
the second condition and yield a soiution grossly in error
when Poisson's ratio is changed to 0.49.

This solution phenomenon is observed with displace-
ment-based finite elements. The large errors are present
because the elements are much too stiff when v is close
to 0.50, and cannot be used when V:0.50. The under-

lying mechanical reason is that,
considering the stresses, p:Ke,

l6-element 16x64 
- , wherep is pressure, Kis bulk mod-model elementmodel r.rlur, ,od ej is volumetric strain. As3x3Gauss 2x2causs 3x3Gauss V approaches 0.50, K becomesMode intesration integration integration 

"";;rl;r;" and is infinite when1 LL2.4 110.5 110.6 : _^ '
2 634.5 617.8 60;:; v:0.50. Also, as v approaches 0.50,

3 906.9 905.5 go',.2 in the exact solution, eu becomes
4 1,548 958.4a L,44L very smal1 and is zero when V :
5 2,654 1,528 2,345 0.50. Therefore, in an almost in_6 2'691 2'602 2'664 cornp'essible analysis. the pressure is

aspurious, i.e., phantom mode. given by a very large number (the
bulk modulu$ multiplied by a very

Forthesixsmallestfrequencies(inhertzlofthebracketpresentedonpage65,theconsistentmass - rr ,' ,.r' ,'
matrixwasused.Theresultsusingafinemesh(with64elementsreplacing"""rrri""-""d""1".""i"i small number (the volumetrlc
the l6-element mesh) are included for comparison purposes. strain), and must be accurately cal-
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The geometry and material data of a bracket used in an analysis are shown on top; the 16-element

mesh of nine-node elements used in the analysis is given on the bottom.

nesh. As predicted bY theorY, using
full i.ntegration, the frequencies of
the coarse 16-element mesh are

larger than the accllrate solution
frequencies. When reduced inte-
gration is used, some frequencies
are better approximated than when
using full integration, but among
those few listed i.s a Phantom fre-
quency. Phantom frequencies do

not physically exist but are only in-
trocluced by the reduced-integration
scheme. If a dynamic step-by-step
solution is performed, such Phan-
tom frequencies are not noticed and

absorb energy, introducing large
errors into the solution. Error mea-

sures would detect that the errors
are large, but they are frequently not
available in dynamic analysis. Thus,

reduced integration is unreliable and

should be avoided.
Instead, only reliable mixed fi-

nite-eiement formulations, which
do not require reduced integration,
should be used. Such formr-rlations

satisfy the first and second condi-
tions, are currently available, and

can be employed confidentlY for
the solution of mathematical models

with any material properties, load-
i.ng, and boundary conditions. A
displacement/pressure-based for-
mulation i.s particularly attractive
when incompressible materials are

considered and was used to analYze

a plastic bracket with Poisson's ratio
equal to 0.499 (see Analysis Clinic,

March) . The formulation is also used effectively in
nonlinear analysis, where almost incompressible condi-

tions are widely encountered. Inelastic conditions of
plasticity and creep, and rubberlike conditions. give rise

to (almost) incompressible behavior.

Similar difTiculties, as described for almost-inconlpress-

ible analysis, are also encountered in the analysis of plate

and shell structures. Here, too, some finite-element tech-

nology still uses reduced integration, and the results can

be very much in error. Again, reliable formulations,
which are now available, should be used instead of such

reduced-integration schemes.

To sum up, finite-element methods can now be em-

ployed with great confidence, but only the methods con-

sidered rehable should be used' Earlier technology based on

reduced integration should not be used, or should at any

rate be employed with great care. By proceeding in this

way, practitioners can have confidence that a finite-element

analysis will be effective and will not go wrong' r

Tht matcrial prescnted in thk artidt k tre ated at -futthct kngtlt in Finite Elenent

Procedures lty Klaus-lilrgen Bathe (Prentice Hall' 1996)

culated to balance the applied suface tractions. While the

bulk modulus becomes very large, the pressure is always

a finite number and usually does not change much as V

approaches 0.50.
As a remedy in displacement-based finite-element

methods, "reduced integration" is employed- This means

that in the numerical integration of the element stitTness

matrices, the exact matrices are not evaluated. The
method is simple to program and requires less computa-

tion tirne to establish the matrices, and with experience

acceptable results are frequently obtained. However, the

technique can also lead to very large errors.

Consider the frequency analysis of the bracket detailed

in the table on page 64 and the figure on page 65. In this

case, using nine-node elements, 3 X 3 Gauss integrrtion
corresponds to fu1l numerical integration tnd 2x2
Gauss integration is "reduced integration." Since no

analytical closed-form solution exists for the frcquencies

of the bracket, a very fine mesh (the 16 X 64 element

model) was used to obtain an accluate solution' Of inter-

est are the solutions obtained with the coarse 16-element
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