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We present novel overlapping finite elements used with the Bathe time integration method to solve tran-
sient wave propagation problems. The solution scheme shows two important properties that have been
difficult to achieve in the numerical solution of general wave propagations: monotonic convergence of
calculated solutions with decreasing time step size and a solution accuracy almost independent of the
direction of wave propagation through the mesh. The proposed scheme can be efficiently used with irreg-
ular meshes. These properties make the scheme (the combined spatial and temporal discretizations)
promising to solve general wave propagation problems in complex geometries involving multiple waves.
A dispersion analysis is given and various example problems are solved to illustrate the performance of
the solution scheme.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The finite element method with direct time integration is
widely employed to solve transient wave propagation problems.
Using the traditional finite element solution approach, however,
accurate solutions are difficult to obtain due to the dispersion
and dissipation errors caused by the spatial and temporal dis-
cretizations, see for example Refs. [1–7]. Accurate solutions can
only be obtained of rather simple problems, like one-dimensional
problems with a single wave traveling through the domain. In this
case, a uniformmesh and optimal time step size can be used. How-
ever, for geometrically complex problems, irregular meshes need
in general be used and it is difficult to improve the solution accu-
racy by refining the mesh and decreasing the time step size, which-
ever spatial and time discretizations are used. For such irregular
meshes, the solution accuracy depends on the propagation direc-
tion considered even when the wave is traveling through an isotro-
pic medium. The traditional finite element method with direct
time integration is, therefore, not very effective for the solution
of general two- and three-dimensional wave propagation problems
with waves propagating in different directions and at different
wave speeds.

Considerable research efforts have focused on reducing the
dispersion error of finite element solutions, see for example Refs.
[8–12]. Also, the spectral element method can be used [13,14].
However, the above difficulties have not been overcome when con-
sidering complex geometries, anisotropic media, general boundary
conditions and multiple waves traveling through the continuum.

The method of finite spheres, a meshless method, enriched for
wave propagation problems can be used with the Bathe time inte-
gration scheme to solve wave propagation problems but uniform
spatial discretizations need be used [15,16]. An important observa-
tion in Refs. [15,16] is that in the uniform spatial discretizations, a
decrease in the time step size leads to a more accurate solution,
which is what an analyst intuitively expects, and numerical aniso-
tropy is almost negligible. These are important observations
because by using the largest wave speed to establish the time step
size, accurate solutions for multiple types of waves can be obtained
and regardless of the propagation directions. The details of the
mathematical analysis of the solution procedure and illustrative
example solutions are given in Refs. [15,16].

However, the major difficulty in using the method of finite
spheres, like other meshless methods, is the very expensive
numerical integration for the construction of the mass and stiffness
matrices [17–19]. The integration cost is clearly prohibitive for
irregular discretizations using spheres, see Ref. [19]. For uniform
discretizations, the numerical integration can be performed only
once for a typical sphere and the result can then be reused [18],
but this approach can of course not be employed when non-
uniform spatial discretizations need be used. The high computa-
tional cost of the method impedes its wide practical use in
industry.
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Recently, we proposed a new paradigm of analysis using mostly
traditional finite elements with some overlapping finite elements,
like finite spheres [19–22]. We also developed novel overlapping
finite elements and demonstrated that for static analysis, using
these overlapping finite elements, the solution accuracy is almost
insensitive to geometric distortions and the numerical integration
is not very expensive compared to the use of traditional finite ele-
ments [22]. While we considered only static solutions, the use of
overlapping finite elements has clearly also good potential for
dynamic analyses.

In this paper, for the solution of transient wave propagation
problems, we enrich the overlapping finite elements of Ref. [22]
using trigonometric functions and use the Bathe time integration
method because of its favorable dissipation properties [23,24].
The same approach has already been applied for use of a traditional
finite element [25] and the method of finite spheres [15,16]. How-
ever, as already mentioned above, the use of the method of finite
spheres is not efficient in general practical analyses because of
the very expensive numerical integrations. For the traditional finite
element enriched with trigonometric functions, the solution effort
is more acceptable, although high, but the solution accuracy is not
as desired because the predicted response sensitively depends on
the directions of waves traveling through the mesh and fine
meshes or high-order harmonic functions are required.

Our objective in this paper is to analyze the overlapping finite
element enriched with trigonometric functions together with the
Bathe time integration method and illustrate that the combined
spatial and time discretization scheme can be used to solve wave
propagations in complex geometries using regular or irregular
meshes. Hence, as we also demonstrate, the element can be used
with the new paradigm of finite element solutions for CAD.

In the next section, we formulate the overlapping finite element
for transient wave propagation problems. Then, in Section 3, we
study the dispersion properties of the proposed scheme. There-
after, in Section 4, we provide the calculated solutions of various
wave propagation problems to illustrate the capability of the solu-
tion scheme. We focus on showing that even when using irregular
meshes good results are obtained. Finally, we give the conclusions
of our research in Section 5.
Fig. 1. Uniform mesh and propagation angle of a sinusoidal plane wave.
2. Spatial approximation scheme

In the new paradigm of finite element analysis, the global
analysis domain is discretized by traditional finite elements (that
do not overlap) and finite elements that overlap [20,21]. For every
overlap region, the solution variable u is approximated as [19,22]

u � uh ¼
Xq

I¼1

hIwI ¼
Xq

I¼1

hI

X
J2N I

ûI
J

X
n2IJ

pnaJn ð1Þ

where q is the number of nodes in the overlap region, hI is the shape
function used in the traditional finite element [26], wI is the local
field of the overlapping element I, N I is the set of nodes located
in the overlapping element I, ûI

J is a partition of unity function, IJ

is an index set and pn is a set of local basis functions (e.g., a polyno-
mial for elliptic problems) which span the local approximation

space Vh
J with the corresponding coefficient of node J. It is important

to note that the function ûI
J is a polynomial and hence the compu-

tational cost for establishing the stiffness and mass matrices is not
high.

For the solution of two-dimensional wave propagation (hyper-
bolic) problems, the bi-linear polynomials and trigonometric func-
tions (used like polynomials) are employed for the local
approximation space, i.e., at node J we use
Fig. 2. Dispersion properties of (a) OFE-TRI1 and (b) FE-TRI1 discretizations for
various propagation angles.
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where x and y are the Cartesian coordinates, kx and ky are the fun-
damental wavelengths in the x- and y-directions, respectively, and p
is the degree of the trigonometric functions used. Hence the num-
ber of degrees of freedom per node is 12, 20, 28 when p ¼ 1;2;3,
respectively.

In a one-dimensional wave propagation, the local approxima-
tion space is, for node J,

Vh
J ¼span 1;x;cos

2px
kx

� �
;sin

2px
kx

� �
;...;cos

2ppx
kx

� �
;sin

2ppx
kx

� �� �
:

ð3Þ
Note that in the local approximation space, the polynomials are

included to satisfy linear consistency, ensuring that the approxi-
mation can reproduce the linear field (e.g., rigid body displace-
ments and constant strain states). For some experiences using
such functions see, for example, Refs. [15,16,25,27].
Fig. 3. Uniform and distorted meshes used for the simple problem for which the exact so
In this study, we use kx ¼ ky ¼ 2h where h is the typical size of
overlap region and mainly focus on the use of p ¼ 1. Of course, the
use of a higher degree functions gives a better solution accuracy for
a given mesh, but the solution is also computationally more costly
[15,25].

3. Dispersion analysis

Following the approach given in Ref. [16], we investigate in
this section the dispersion properties when solving the standard
two-dimensional wave equation with the overlapping finite ele-
ments and the Bathe time integration scheme. We compare the
results obtained to those when using the traditional finite ele-
ments enriched for wave propagation problems [25]. We first
consider the dispersion errors caused by only the spatial dis-
cretization, and then analyze the additional effects resulting
from the temporal discretization using the Bathe implicit time
integration.

The wave equation is given by

r2u� 1
c2

@2u
@t2

¼ 0 ð4Þ

where t is time, r2 is the Laplace operator and c is the wave prop-
agation velocity. A basic sinusoidal plane wave solution to this
equation in a fixed Cartesian coordinate system is given by
lution is u ¼ sinð2pxÞ; h ¼ 1=N where N is the number of elements along each side.
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u ¼ Aeiðkn�x�xtÞ ð5Þ
where A is the amplitude, k is the wave number, n is a unit vector in
the direction of wave propagation, x is a position vector measured
from the origin of the Cartesian coordinate system, x is the angular
frequency and i ¼

ffiffiffiffiffiffiffi
�1

p
. Note that the analytical solution is non-

dispersive, i.e.,

c2 ¼ x
k

� �2
: ð6Þ
Fig. 4. The L2 relative error norms of the solutions to the simple problem when
using FE-TRI1 and OFE-TRI1 discretizations.
3.1. Spatial discretization error

We consider the time independent form of the wave equation,
the Helmholtz equation, given as

r2uþ k2u ¼ 0 ð7Þ
with a plane wave solution

u ¼ Aeikn�x: ð8Þ
The overlapping finite element discretization of the variational

form of Eq. (7) yields, without considering boundary conditions,

Ka� ðkhÞ2Ma ¼ 0 ð9Þ
where K,M and a are the corresponding dimensionless stiffness and
consistent mass matrices and the vector of unknown coefficients,
respectively.

For the dispersion analysis, we consider a uniform mesh which
is translationally-invariant, see Fig. 1. Using the same np local basis
functions for the local approximation space at each node, the coef-
ficient vectors aI associated with nodes I, I ¼ 1;2; . . ., can be
assumed of the form

aI ¼ âeikhn�xI ð10Þ
where â, kh and xI are the amplitude vector of order np, the numer-
ical wave number and the nodal position vector, respectively. Sub-
stituting from Eq. (10) into Eq. (9) gives, after canceling the
common factor, the same equation for all nodes, which can be writ-
ten as

ðDstiff � ðkhÞ2DmassÞâ ¼ 0 ð11Þ
where Dstiff and Dmass are both Hermitian matrices of order np � np.
The condition for the existence of nontrivial solutions to Eq. (11) is

detðDstiff � ðkhÞ2DmassÞ ¼ 0: ð12Þ
The solution to this equation provides a relation between the values
of kh and khh.

We also apply the same approach to the scheme discussed in
Ref. [25], i.e. the triangular traditional finite element enriched with
trigonometric functions of degree p ¼ 1.

Fig. 2 shows the dispersion properties of the overlapping finite
elements with the bilinear polynomials and the first degree
trigonometric functions (OFE-TRI1) and of the traditional finite ele-
ments enriched with the first degree trigonometric functions (FE-
TRI1). We see that the OFE-TRI1 discretization has practically no
dispersion for the wave modes with khh=p 6 0:8 regardless of the
propagation direction. For the wave modes with 0:8 < khh=p 6 1,
the dispersion errors depend on the propagation direction, but
the errors are small. On the other hand, these observations are
not applicable to the FE-TRI1 scheme, for which the dispersion
errors are quite large. To obtain better results higher-order har-
monic functions need to be included which however increases
the computational complexities [25].

To illustrate the performance of the methods in uniform and
distorted meshes, we solve a simple problem in the domain
V ¼ ½0;1� � ½0;1� for which the exact solution is u ¼ sinð2pxÞ, see
Fig. 3. Fig. 4 shows the L2 relative error norm er , defined by

er ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
V ðu� uhÞ2dVR

V u
2dV

s
; ð13Þ

of the solutions when using the OFE-TRI1 and FE-TRI1 discretiza-
tions with uniform and distorted meshes. As expected from the dis-
persion properties shown in Fig. 2, the OFE-TRI1 discretization with
all the uniform meshes considered gives solutions with
log10er 6 �3, while using the FE-TRI1 discretization, solutions with
log10er 6 �3 are obtained only when the uniform meshes are used
with h ¼ 1=64;1=32 (log10h ¼ �1:8;�1:5), see Fig. 4.

When the distorted mesh shown in Fig. 3 is used, to have a solu-
tion with log10er < �3, the OFE-TRI1 discretization with all the dis-
torted meshes considered can be used, but a very fine mesh is
required when using the FE-TRI1 discretization, see Fig. 4.

3.2. Additional effects introduced by the Bathe time integration

Temporal discretizations using time integration methods result
in period elongations and amplitude decays [26]. Period elonga-
tions lead to errors in the phase velocity (dispersion errors) and
amplitude decays result in attenuations of the wave modes (dissi-
pation errors). In this section, we analyze these additional numer-
ical effects when using the Bathe implicit time integration.

We consider the overlapping finite element wave equation

M€aþ c
h

� �2
Ka ¼ 0 ð14Þ

where an overdot denotes time derivative. Using the
translationally-invariant uniform mesh shown in Fig. 1 with Eq.
(10), the above equation becomes



22 K.T. Kim et al. / Computers and Structures 199 (2018) 18–33
Dmass
€̂aþ c

h

� �2
Dstiff â ¼ 0: ð15Þ

Note that the amplitude vector â is now a function of time. For
the analysis, we perform a change of basis from the amplitude vec-
tor to the basis of eigenvectors of the following eigenproblem:

Dstiffu ¼ k2Dmassu: ð16Þ
Using

âðtÞ ¼ UxðtÞ ð17Þ
where the columns in U are the Dmass-orthonormalized eigenvec-
tors u1; . . . ;unp , and substituting for â into Eq. (15) we have

€xþ c
h

� �2
K2x ¼ 0 ð18Þ
Fig. 5. Dispersion (left) and dissipation (right) properties of OFE-TRI1 scheme for v
where K2 is a diagonal matrix listing the eigenvalues k1; . . . ; knp .
To ascertain the dispersion and amplitude decay properties, we
can now focus on a typical row of Eq. (18) which may be written
as

€xþ c2x ¼ 0 ð19Þ
where c ¼ ck=h.

Using the Bathe time integration scheme [23], we obtain the
following relationship

tþDt€x
tþDt _x
tþDtx

2
64

3
75 ¼ A

t€x
t _x
tx

2
64

3
75 ð20Þ

where
arious propagation angles: when (a) CFL ¼ 1, (b) CFL ¼ 0:5 and (c) CFL ¼ 0:25.
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A¼ 1
b1b2

�28c2Dt2 cð�144cDtþ5c3Dt3Þ �c2ð144�19c2Dt2Þ
�4Dtð�12þc2Dt2Þ 144�47c2Dt2 c2Dtð�96þc2Dt2Þ

28Dt2 Dtð144�5c2Dt2Þ 144�19c2Dt2

2
64

3
75

ð21Þ

with b1 ¼ 16þ c2Dt2 and b2 ¼ 9þ c2Dt2. Note that the characteris-
tic polynomial of the matrix A is

pAðgÞ ¼ g3 � 288� 94c2Dt2

144þ 25c2Dt2 þ c4Dt4
g2 þ 144þ 25c2Dt2

144þ 25c2Dt2 þ c4Dt4
g

ð22Þ

and it can be found from pAðgiÞ ¼ 0; i ¼ 1;2;3; that there are two
complex conjugate eigenvalues, g1;g2, which satisfy jg1j; jg2j 6 1,
and a zero eigenvalue, g3 ¼ 0, of A.
Fig. 6. Dispersion (left) and dissipation (right) properties of FE-TRI1 scheme for va
The recursive use of Eq. (20) with the equilibrium equation (19)
gives

tþ2Dtx� 288�94c2Dt2

144þ25c2Dt2þc4Dt4
tþDtxþ 144þ25c2Dt2

144þ25c2Dt2þc4Dt4
tx¼0:

ð23Þ
By comparing this equation with the equation pAðgÞ ¼ 0, we

note that the discrete solution to the above equation is of the form

xh ¼ c1eð�nh þ iÞxhth þ c2eð�nh � iÞxhth ð24Þ

where c1 and c2 are undetermined coefficients, nh is a numerical
damping ratio, xh is the numerical angular frequency and th is
the discretized time. From this solution, we can obtain the relation
between the numerical wave number kh and the numerical angular
rious propagation angles: when (a) CFL ¼ 1, (b) CFL ¼ 0:5 and (c) CFL ¼ 0:25.
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frequency xh as a function of the CFL number defined as
CFL ¼ cDt=h. This number represents physically the ratio of the
traveled length, cDt, in the continuum per time step over the ele-
ment length h. The percentage amplitude decay is calculated using

Percentage amplitude decay ¼ ð1� e�2pnh Þ � 100: ð25Þ
Fig. 5 shows the dispersion errors and the percentage amplitude

decays of wave modes for various propagation angles when using
the OFE-TRI1 discretization with the Bathe time integration
(denoted by OFE-TRI1 scheme). It is important to note that practi-
cally all wave modes with khh=p 6 1 monotonically converge to
the exact wave modes when decreasing the CFL number and the
accuracy does not depend on the propagation direction. This is
not seen for the use of the FE-TRI1 discretization with the Bathe
time integration (denoted by FE-TRI1 scheme) as shown in Fig. 6.
The phase velocity shows a significant error, and this error depends
on the direction considered, even when using CFL = 0.25.

We also observed this characteristic when using the method of
finite spheres with the bi-linear polynomials and the trigonometric
Fig. 7. 1D impact of an elastic bar problem: problem description and mesh used.

Fig. 8. Velocity distributions of the bar at t ¼ 0:001 s calculated using FE scheme
with the uniform and non-uniform meshes when CFL ¼ 1; h denotes the element
size used for the CFL number.
functions and the Bathe time integration scheme, denoted as the
MFS-TRI scheme. In practical analyses, however, the MFS-TRI
scheme is very expensive to use because of the computational cost
when the nodes are distributed irregularly. Since the partition of
unity function used in the OFE-TRI scheme is a polynomial, the
computational effort in the OFE-TRI scheme is much smaller.

4. Numerical examples

In the previous section, we analyzed mathematically the impor-
tant properties of the OFE-TRI1 scheme. The result is however valid
only for the uniform mesh considered. Our objective in this section
is to illustrate the important properties of the OFE-TRI1 scheme in
both structured (regular) meshes and unstructured (irregular)
meshes through numerical examples, and then show that the
scheme can be used effectively with the meshing procedure
proposed in Refs. [20,21].

We first consider scalar wave propagations in one- and two-
dimensional media. Then we solve Lamb’s problem [28] where dif-
ferent waves propagate in a semi-infinite elastic medium. Finally
we solve a problem with transmitted and reflected waves.
Fig. 9. Velocity distributions of the bar at t ¼ 0:001 s calculated using (a) FE-TRI2
scheme and (b) OFE-TRI2 scheme with the uniform and non-uniform meshes; h
denotes the element size used for the CFL number.
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In all numerical examples, the waves do not reach the boundary
of the computational domain for the time considered. We,
therefore, do not use a technique such as a perfectly matched layer
[25,29–32] to suppress artificially reflected waves at the boundary.

We also note that, as in the discussions given above, in all solu-
tions we use the consistent mass matrices and for the evaluations
of all matrices we use the Gaussian quadrature rules of sufficiently
high order given in Ref. [33].
4.1. One-dimensional wave propagation

We consider the one-dimensional (1D) wave propagation due to
an impact on an elastic semi-infinite bar, see Fig. 7. The displace-
ment u is governed by the wave Eq. (4) with c ¼ 1000 m=s, zero
Fig. 10. Problem description of 2D scalar wave propagation in a pre-stressed
membrane.

Fig. 11. Structured and unstructured meshes used for the 2D scalar wave
initial conditions and a unit step velocity applied at the left end
of the bar. The computational domain V ¼ ½0;2� is considered and
discretized with nodes spaced Di; i ¼ 1;2; . . ., apart as shown in
Fig. 7. For the non-uniform mesh, we use
Di ¼ Dmax � Dmin

N � 1
ði� 1Þ þ Dmin; i ¼ 1;2; . . . ;N ð26Þ
where Dmax and Dmin are the maximum and minimum distances
between nodes, respectively, and N is the number of elements. In
this problem we use Dmax=Dmin ¼ 4.

We first solve the problem using the traditional two-node finite
element with the Bathe time integration (denoted by FE scheme).
In both uniform and non-uniform meshes, 200 elements are
employed. Using a uniform mesh the best result is obtained when
CFL ¼ 1, see Ref. [34] and Fig. 8. Using the non-uniformmesh, how-
ever, this optimal CFL number cannot be achieved for all elements
because each element has a different length. Fig. 8 shows the
velocity distributions calculated using different element sizes to
select the CFL number, namely with h ¼ Dmin, h ¼ Dmax and
h ¼ ðDmin þ DmaxÞ=2. We see that depending on the element size
used for the CFL number, spurious oscillations occur in front of
or behind the wave front.

We then calculate the solutions using the FE-TRI2 and OFE-TRI2
schemes, with the second degree trigonometric functions. Using
both the uniform and non-uniform meshes, the number of ele-
ments is equal to 50 and for the non-uniformmesh the CFL number
is chosen using h ¼ Dmin. Fig. 9 gives the results where we see that
quite accurate solutions are achieved with both schemes and the
OFE-TRI2 scheme performs slightly better.

The monotonic convergence property, as the element sizes and
the CFL number decrease, is very important when using a non-
uniform mesh. If the smallest element size is used to select the
CFL number, the other element sizes correspond to smaller CFL
numbers, for which (using each element in a uniform mesh) with
our scheme more accurate solutions are achieved. For this reason,
we can expect that the OFE-TRI2 scheme accurately solves the
problem using a non-uniform mesh with h ¼ Dmin for the CFL
number, see Fig. 9.
propagation problem; N is the number of elements along each side.
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4.2. Two-dimensional scalar wave propagation

We consider the two-dimensional (2D) scalar wave propagation
due to a concentrated force (a point excitation) Fc at the center of a
pre-stressed membrane, see Fig. 10, for which the transverse dis-
placement u is governed by

r2uþ Fcðx ¼ 0; tÞ ¼ 1
c2

@2u
@t2

ð27Þ
Fig. 12. Contour plots of displacement distributions of the membrane at t ¼ 0:95 s ca
structured mesh (h ¼ 0:03125 m): when (a) CFL ¼ 0:5, (b) CFL ¼ 0:25 and (c) CFL ¼ 0:12
with initial conditions

uðx; t ¼ 0Þ ¼ 0 m;

_uðx; t ¼ 0Þ ¼ 0 m=s
ð28Þ

and the wave propagation velocity c ¼ 1 m=s. Because of symmetry,
we mesh only the domain V ¼ ½0;1� � ½0;1� for the solution.

First, a Ricker wavelet [35] is considered as the concentrated
force, which is defined as
lculated using FE-TRI1 scheme (left) and OFE-TRI1 scheme (right), both with the
5.



Fig. 13. Displacement distributions of the membrane along various directions (h ¼ 0� ;22:5� ;45�) at t ¼ 0:95 s calculated using FE-TRI1 scheme (left) and OFE-TRI1 scheme
(right), both with the structured mesh (h ¼ 0:03125 m): when (a) CFL ¼ 0:5, (b) CFL ¼ 0:25 and (c) CFL ¼ 0:125.

Fig. 14. Displacement distributions of the membrane at t ¼ 0:95 s calculated using OFE-TRI1 with the unstructured mesh (h ¼ 0:03125 m): (a) displacement distributions
along horizontal axis with decreasing the CFL number and (b) displacement distributions along various directions when CFL ¼ 0:125.

K.T. Kim et al. / Computers and Structures 199 (2018) 18–33 27
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Fc ¼ 0:4 1� 2p2f 2pðt � tsÞ2
h i

e�p
2 f 2p ðt�tsÞ2 ð29Þ

where we use in this problem the peak frequency f p ¼ 5 Hz and the
time shift ts ¼ 0:25 s. For the solution, we use the OFE-TRI1 scheme
with the structured and unstructured meshes shown in Fig. 11 with
the number of elements along each side N ¼ 32 and the typical ele-
ment size h ¼ 1=N ¼ 0:03125 m.

Figs. 12 and 13 show comparisons of the displacements calcu-
lated using the FE-TRI1 and the OFE-TRI1 schemes at t ¼ 0:95 s
using the structured mesh. We observe that the FE-TRI1 scheme
does not give an accurate solution, whereas the solutions obtained
using the OFE-TRI1 scheme converge monotonically to the exact
Fig. 15. Displacement distributions of the membrane at t ¼ 0:9 s calculated using OFE-T
in both cases h ¼ 0:015625 m: (a) displacement distributions along horizontal axis with d
CFL ¼ 0:125 and (c) contour plots of displacement distributions when CFL ¼ 0:125.
solution as the CFL number decreases and are almost identical
for any propagation angle h considered.

In Fig. 14, we show the solutions using the OFE-TRI1 scheme
with the unstructured mesh. As when using the structured mesh,
we see that a more accurate solution is obtained with decreasing
CFL number and the solution accuracy is practically independent
of the propagation direction.

We next consider the concentrated force defined as

Fc ¼ 1:6� 102tð0:1� tÞ for 0 6 t < 0:1;
0 for t P 0:1:

(
ð30Þ
RI1 scheme with the structured mesh (left) and with the unstructured mesh (right);
ecreasing CFL number, (b) displacement distributions along various directions when
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For this load case, we use the structured and unstructured
meshes, both with N ¼ 64 (h ¼ 0:015625 m).

We compare the OFE-TRI1 solutions at t ¼ 0:9 s using the struc-
tured mesh to those using the unstructured mesh, see Fig. 15. Here
we again observe, like in the previous case, that using the struc-
tured mesh and unstructured mesh, the solution accuracy is
improved as the CFL number decreases and the results for different
propagation angles considered are almost the same.
Fig. 16. Problem description of Lamb’s problem [26] - 2D wave propagation in a
plane strain elastic half-space.

Fig. 17. Horizontal displacements (left) and vertical displacements (right) of the elastic m
displacement histories at x ¼ ð640;0Þ m with decreasing CFL number and (b) displacem
4.3. Two-dimensional elastic wave propagation

We consider here the solution of the 2D waves propagating in a
semi-infinite elastic medium in plane strain conditions [28], as
described in Fig. 16. For the concentrated line force located at the
free surface of the medium, we consider a Ricker wavelet, see Eq.
(29), with the magnitude 2� 106, f p ¼ 10 Hz and ts ¼ 0:1 s. The
isotropic semi-infinite elastic medium has the mass density
q ¼ 2200 kg=m3, the P-wave velocity cP ¼ 3200 m=s and the
S-wave velocity cS ¼ 1847:5 m=s, which gives the Rayleigh wave
velocity cR ¼ 1698:6 m=s. The initial displacements and velocities
are zero and the computational domain V ¼ ½0;3200� � ½0;3200�
is considered with the structured and unstructured meshes shown
in Fig. 11. This is a good test problem for a scheme to solve wave
propagations, e.g. see Refs. [25,34].

We solve the problem using the OFE-TRI1 scheme with N ¼ 64
(h ¼ 50 m), and show the displacement histories at two receivers
located at x ¼ ð640;0Þ m and at x ¼ ð1280;0Þ m in Figs. 17 and
18. The time step size Dt is calculated based on the P-wave velocity
because the other types of waves are then also accurately pre-
dicted. As expected, in both cases, all waves are simulated more
accurately as the CFL number is decreased.

To display the response predicted over the complete mesh,
Fig. 19 shows the calculated von Mises stress distributions at
t ¼ 1 s using the meshes when CFL ¼ 0:125.
edium calculated using OFE-TRI1 scheme with the structured mesh (h ¼ 50 m): (a)
ent histories at x ¼ ð1280;0Þm with decreasing CFL number.



Fig. 18. Horizontal displacements (left) and vertical displacements (right) of the elastic medium calculated using OFE-TRI1 scheme with the unstructured mesh (h ¼ 50 m):
(a) displacement histories at x ¼ ð640;0Þ m with decreasing CFL number and (b) displacement histories at x ¼ ð1280;0Þm with decreasing CFL number.

Fig. 19. Snapshots of von Mises stress distributions at t ¼ 1 s calculated using
OFE-TRI1 with the structured mesh (top) and with the unstructured mesh (bottom);
in both cases h ¼ 50 m and CFL ¼ 0:125. Brighter color represents larger stress.
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4.4. Two-dimensional wave propagation in a pre-stressed membrane
with circular holes

We consider again the scalar wave propagation in the pre-
stressed membrane but in this analysis, we have four circular
holes, as shown in Fig. 20. The objective in this example is to show
the performance of the OFE-TRI1 scheme when employed with the
meshing scheme given in Refs. [20,21]. The problem needs to be
solved for the excited wave, the transmitted wave and the reflected
wave. The calculated wave profiles in the red and green directions
in Fig. 20 are compared to a reference solution after the excited
wave has passed the hole.

The meshing scheme consists of four steps, see Refs. [20,21]. In
the first step the scheme immerses the pre-stressed membrane in a
Cartesian grid with Dx and Dy as distances between lines. In the
second step the boundaries are discretized with straight line seg-
ments Ds, during which geometry deficiencies are automatically
removed. Thereafter, in the third step the scheme converts the
internal cells into traditional finite elements. Finally, in the fourth
step the scheme covers the empty space (region near the holes)
with overlapping finite elements. Here for the wave propagation
analysis, as shown in Fig. 20, all the traditional finite elements in
the inner solution domain are also triangularized and converted
to overlapping finite elements. In this example, we use
h ¼ Dx ¼ Dy ¼ 0:02 m and Ds ¼ 0:004pm.

We use a Ricker wavelet (29) with magnitude 0:4, f p ¼ 10 Hz
and ts ¼ 0:1 s for the excitation force. The calculated solutions
using the OFE-TRE1 scheme are compared with the reference



K.T. Kim et al. / Computers and Structures 199 (2018) 18–33 31
solution obtained using the OFE-TRI1 scheme with a very fine
mesh of 28,055 elements.

Fig. 21 shows the calculated results after the wave passed the
hole. We see that, as in the previous example solution, a decrease
in the CFL number leads to a more accurate solution and that the
wave profiles in the two directions (h ¼ 22:5� and h ¼ 67:5�) are
in good agreement with the reference solution. Some snapshots
of calculated solutions at various observation times are shown in
Fig. 22.

4.5. Solution times

We list here the computational times required to solve the two-
dimensional example problems, in order to give some insight into
the computational effort using the OFE-TRI1 scheme. A laptop with
a single core Intel 2.40 GHz CPU and 24 GB RAM was used for cal-
culating the solutions.

Table 1 presents the CPU times spent to obtain the solutions of
the problems when using the OFE-TRI1 scheme with CFL ¼ 0:125.
It is seen that most of the computational effort is expended in
Fig. 20. 2D scalar wave propagation in a pre-stressed membrane: problem description a
colored in green is the direction of h ¼ 67:5� . (For interpretation of the references to col

Fig. 21. Displacement distributions of the membrane with circular holes at t ¼ 1 s calcu
h ¼ 22:5� with decreasing CFL number and (b) displacement distributions along the two
the time integrations, as expected, and this effort depends on the
total number of degrees of freedom, the mean half-bandwidth of
the stiffness and mass matrices and the number of time steps.
Hence, the use of higher degree trigonometric functions could lead
to a more efficient solution because for a required accuracy a coar-
ser mesh can be used. However, we recall that this approach may
lead to ill-conditioning of the coefficient matrices [25].

5. Concluding remarks

The objective in this paper was to present an overlapping finite
element enriched for transient wave propagation problems. We
investigated the dispersion and dissipation properties and numer-
ical anisotropy of the proposed overlapping finite element
discretization used with the Bathe time integration method in
two-dimensional solutions and illustrated these characteristics in
regular and irregular meshes through the solutions of numerical
examples.

The important property of the present scheme is that the
use of a smaller CFL number leads to a more accurate solution
nd the mesh used; the line colored in red is the direction of h ¼ 22:5� and the line
or in this figure legend, the reader is referred to the web version of this article.)

lated using OFE-TRI1 scheme: (a) displacement distributions along the direction of
directions (h ¼ 22:5� and h ¼ 67:5�) when CFL ¼ 0:125.



Fig. 22. Snapshots of displacement distributions of the membrane with circular holes at various observation times calculated using OFE-TRI1 scheme; CFL ¼ 0:125.

Table 1
CPU times required to solve the two-dimensional example problems when using OFE-TRI1 scheme with CFL ¼ 0:125.

Problem Number of degrees
of freedom

Mean half-
bandwidth

CPU time (s) for constructing
stiffness and mass matrices

CPU times (s) in the Bathe time integration

For initial
calculations

For calculations in each time
step (number of time steps)

For total
calculation

Membrane 13,068 412 0.3 6.6 0.1 (243) 33.6
Semi-infinite elastic medium 50,700 811 3.9 103.7 0.8 (512) 499.2
Membrane with holes 31,020 844 0.6 73.8 0.5 (400) 274.4
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irrespective of the propagation direction. Hence multiple types of
waves propagating in different directions at different speeds can
be accurately calculated at the same time by using the largest wave
speed to select the CFL number.

These desirable solution characteristics have been observed
even when using irregular meshes, which must often be employed
in practical analysis. Given that the computational effort involved
using the overlapping finite element is reasonable also when using
irregular meshes, see Ref. [22], the proposed scheme shows much
promise, including for use in the new solution paradigm of Refs.
[20,21] when transient wave propagation problems need be
solved.

While the cost of the numerical integrations of the element
matrices was here only a small fraction of the total solution cost
(see Table 1), a study to identify an optimal scheme for the numer-
ical integration of the element matrices would be valuable.

The field of research considered in this paper is very large and
important, in particular when general three-dimensional solutions
are considered. But we can see that the avenue of using overlap-
ping finite elements in direct time integrations (implicit or explicit
integrations, see e.g. Ref. [36]) for the accurate solutions of general
wave propagation problems, in linear and nonlinear analyses, with
multiple waves traveling through anisotropic media is very
promising.
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