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We consider the new paradigm of finite element analysis, present an effective overlapping finite element,
and study the computational efficiency of the discretization scheme.
The important new ingredient in the formulation of the overlapping element is that, unlike in meshless

methods, we only use local polynomial functions in the displacement interpolations. We achieve this
property by replacing the Shepard functions by local polynomials. As a consequence, the bandwidth of
the resulting stiffness matrix for the overlapping finite element is much reduced when compared with
earlier developments.
We study the distortion insensitivity of the new overlapping finite element, the convergence properties

and the required computational effort when compared with the use of the traditional 4-node finite
element and that element with covers. The results show the overlapping element to be very promising,
in particular in the new paradigm of analysis using finite elements in CAD.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The computational procedures and resources available today
make the finite element analysis of complex structures and fluid
systems possible. However, due to meshing difficulties, significant
experience in building effective meshes is still needed. In practice,
much more time may be spent by an engineer to reach an adequate
mesh than the time used by the finite element program for the cal-
culation and solution of the governing equations. Indeed, it is well-
known that the experience and time required for an analysis
impedes the wider use of finite element analysis in the field of
computer-aided design (CAD).

To overcome the meshing difficulties, a number of unstructured
mesh generation algorithms have been proposed, see e.g. Refs.
[1–3]. The goal is to develop a robust and efficient mesh generator
that automatically builds high-quality finite element meshes for
large and complex geometries. Since the data defining the geometry
is frequently not directly usable, the engineer usually has to first
clean up the geometry [4]. Then in order to reach an adequatemesh,
a considerable amount of engineering time and computational
effort may be required [3]. Also, an unstructured mesh generator
may perform quite well for simple geometries but may fail in
building an adequate mesh for geometrically complex objects.
For these reasons, many meshfree or meshless methods have
been proposed, see e.g. Ref. [5]. However, while using a meshfree
method the time to establish the discretization is much less and
good solution accuracy can be obtained, the method may not be
stable unless artificial stability parameters are used, or the
required numerical integration may be computationally very
expensive, and inherently so, see e.g. Refs. [5–9] and the references
therein. These limitations largely restrict the wide use of meshfree
methods in engineering practice.

To significantly reduce the meshing effort required in finite ele-
ment analysis, we proposed a new paradigm of finite element solu-
tions in computer-aided design [10–12]. In the new paradigm, the
geometry is obtained from any CAD program or by any other
means. Hence the procedure is not limited, for example, to dealing
only with geometries represented by NURBS. The geometry is
immersed in a Cartesian grid of (usually uniform) cells, the bound-
ary of the geometry is discretized while defects are removed, and
cells within the analysis domain are automatically, and with little
computational effort, converted to traditional finite elements.
Thereafter, overlapping finite elements are inserted to fill-in the
empty space and couple with the traditional finite elements. The
solution accuracy is good because undistorted traditional finite ele-
ments [13,14] and distortion insensitive overlapping finite ele-
ments are used [12]. Moreover, since the analysis domain is
largely meshed with uniform finite elements, a stress improve-
ment procedure can be used effectively [15].
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This approach is clearly related to schemes using ‘‘overlapping
grids” in finite difference and control volume solutions of fluid
flows, see e.g. Refs. [16–20]. Here finite difference grids are super-
imposed to cover the complete analysis domain. While our
approach for finite element analysis is related to these schemes,
it shows much more generality.

In our previous papers, we proposed the general procedure of
the new paradigm of solutions, the coupling scheme between over-
lapping elements and traditional finite elements, and a new over-
lapping element that is distortion insensitive and not expensive
in the numerical integration. However, the overlapping element
leads to a much larger bandwidth than the traditional finite
elements.
Fig. 1. Schematic of the new overlapping element with triangular overlap regions; (a) the
virtual nodes included. (To see the colors in this figure and all subsequent figures, refer

Fig. 2. Schematic of shape functions ĥ1, ĥ5 corresponding to the overlap
In this paper, we focus on a significant improvement of the over-
lapping element of Ref. [12] and evaluate the computational effi-
ciency of the new paradigm of solutions when using this element.
First, in Section 2 we present the formulation of the improved over-
lapping element, which gives a much smaller bandwidth than the
element in Ref. [12], andwe discuss the required numerical integra-
tion and the element insensitivity to geometric distortions. Then in
Section3,we study the computational efficiency of the newoverlap-
ping element; namely in the required numerical integration and in
the solution of the equations in comparison to using the traditional
4-node finite elements.We also study the convergence properties of
the overlapping finite element. Thereafter, in Section 4,we illustrate
the complete analysis approach of the new paradigm in the analysis
7-node overlapping element DI; (b) the mesh of the overlapping elements with red
to the web version of the paper.)

region Em; there are 6 virtual nodes for Em , numbered from 1 to 6.
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Interpolation functions ûI
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Fig. 3. Schematic indicating nodal values that are used for the interpolation functions ûI
IðxÞ, ûI

JðxÞ and ûI
K ðxÞ, in the overlap region Em; the blue nodes denote the virtual nodes

corresponding to the listed nodal values.
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of a cantilever platewith holes, and in Section 5we give briefly some
remarks regarding the solution of three-dimensional problems.
Finally, we present our conclusions in Section 6.
2. The new overlapping finite element

Our objective in this section is to propose a significant improve-
ment on the overlapping finite element given in Ref. [12]. We use
no longer rational functions in the element formulation and, most
importantly, the bandwidth of the stiffness matrix is much
reduced.

2.1. Discretization using the new overlapping element

The new overlapping element is formulated quite similarly to
the element in Ref. [12]. The local analysis domain DI in Fig. 1,
given by the union of the 6 triangular ‘‘overlap regions” (or ‘‘re-
gions of overlap”), denotes the discretized support of node I, and
we refer to it as element I.

In order to reduce the bandwidth, virtual nodes (see the red
nodes in Fig. 1(b)) are automatically generated on the physical
nodes and at the middle of the sides of the triangles. The virtual
nodes are not real nodes since no degrees of freedom are assigned
and they are only used to establish the local field of the solution
approximation. These fields are then used to obtain the global
approximation.

2.2. Local interpolation

Let N I be the set of nodes contained in DI

N I :¼ fM : DM \ DI–£g ð1Þ

where M denotes a node number. Consider a sphere SI with center
at node I and containing all nodes in N I.

In the overlapping finite element of Ref. [12] the local field in
the domain SI is assumed to be

wIðxÞ ¼
X
J2N I

X
n2I

uI
JðxÞðpnaJnÞ ð2Þ

with the Shepard function uI
JðxÞ given as

uI
JðxÞ ¼

WI
JðxÞP

K2N I
WI

KðxÞ
ð3Þ
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where WI
JðxÞ is the weight function of node J in the overlapping ele-

ment DI. In Eq. (2), pn denotes the nth polynomial term correspond-
ing to node J in

pT ¼ ½1 x y x2 xy � � �� ð4Þ

Here, the coordinate variables ðx; yÞ are measured from node J, with
the origin of the coordinate system located at node J. In Eq. (2),
aJn ¼ ½au

Jn avJn� represents the unknown nodal variables. While we
refer in our description largely to a single overlapping element,
the formulation can thus also be interpreted to be for a family of
elements, because different basis functions can be used in Eq. (4).

We illustrated in Ref. [12] that for the proposed overlapping ele-
ment, numerical integration using 9 points in each overlap region
is sufficient (despite the use of the rational function in Eq. (3)).
However, the bandwidth of the stiffness matrix is relatively large
because all nodes contained in N I are used. In order to reduce
the bandwidth and interpolate the displacement field with polyno-
mials, we now replace the Shepard functions by quadratic
interpolations.

Specifically, using the virtual nodes, we define in every overlap
region an interpolation function ûI

JðxÞ that we use instead of the

function uI
JðxÞ:

ûI
JðxÞ ¼

X6
i¼1

ĥiûI
Ji ð5Þ

where ĥi is the usual shape function of second order two-
dimensional elements used in finite element analysis [14], and ûI

Ji

is the nodal value (obtained from the Shepard function) of the vir-
tual node i. The local field in the domain SI is then given as

wIðxÞ ¼
X
J2N I

X
n2I

ûI
JðxÞðpnaJnÞ ¼

X
J2N I

X6
i¼1

ĥiûI
Ji

X
n2I

ðpnaJnÞ
 !

ð6Þ

We shall use this local field to construct the global field with the
contribution of hIwI where hI is the standard 3-node element dis-
placement interpolation function, which is zero on the side J-K of
the overlap region shown in Fig. 2. The additional contributions
arise from the elements J and K, that is, the discretized supports
of nodes J and K (see Section 2.3).
Fig. 4. Schematic of the interpolation process; in the overlap region E1, the local field of e
nodes).
Accordingly, the function ûI
JðxÞ is built to satisfy three criteria:

Criterion I. In order to reduce the bandwidth, the local field
wIðxÞ in every overlap region is only defined using the physical
nodes of that region. For example, in Fig. 2, the local field wIðxÞ
in the overlap region Em is only defined by the values at the
nodes I; J; K.
Criterion II. The function ûI

JðxÞ must be continuous in the over-
lapping element DI . For example in Fig. 2, continuity requires
that the values of the functions corresponding to Em and En on
the edge I-K are defined only by virtual nodes on that line (like
continuity is established in usual finite element analysis [14]).
Criterion III. The function ûI

JðxÞ is greater than or equal to 0 at

the six virtual nodes, and the functions ûI
JðxÞ satisfy the parti-

tion of unity:
PN I

J¼1ûI
JðxÞ ¼ 1, with ûI

JðxJÞ ¼ 1, for J 2 N I .

Based on the above criteria, we use that for the nodal values ûI
Ji

in each overlap region of the overlapping element DI:
If I–J, the nodal values ûI

Ji are only nonzero with the weight
functions given in Table 1 at the virtual node located at node J
and the two virtual nodes adjacent to node J.

If I ¼ J, the nodal values ûI
Ji are only nonzero with the weight

functions given in Table 1 at the virtual node located at node J
and at the three mid-sides virtual nodes of the overlap region.

Fig. 3 gives the generic nodal values used in the interpolation
functions ûI

IðxÞ, ûI
JðxÞ and ûI

KðxÞ for the overlap region Em corre-
sponding to the overlapping element DI . Table 1 gives the actual
nodal values used based on the above criteria. We use, in this
paper, the interpolation functions defined in Table 1, but other
functions that satisfy Criteria I to III could also be established.

In Table 1, WI is the weight function for node I and is chosen to
be

WI ¼
1� 6s2 þ 8s3 � 3s4 0 6 s 6 1
0 s > 1

(
ð7Þ

with s given by

s ¼ dI

rI
ð8Þ
ach overlapping element is constructed from the physical nodes listed in I1 (see red
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where dI denotes the distance between node I and point x ¼ ðx; yÞ,
and rI is the radius of SI . This radius is selected to contain all six tri-
angular regions around node I, thus also defining the nodes in N I.

2.3. Global interpolation

Let fT hg :¼ fEmgem¼1 be the e triangular overlap regions that
together discretize the global analysis domain X

[
e

m¼1
Em ¼ X ð9Þ

Let Im be the set of indices defined by

Im :¼ fI : DI \ Em–£g ð10Þ

The global field is constructed from the local fields as

uðxÞ ¼
Xe
m¼1

X
I2Im

hIwIðxÞ ¼
Xe
m¼1

X
I2Im

hI

X
J2N I

X
n2I

ûI
JðxÞðpnaJnÞ

 !
ð11Þ

where wIðxÞ is the local field corresponding to node I (see Eq. (6))
and hI is the Ith nodal shape function of the traditional triangular
3-node finite element (a partition of unity function). Since the local
field in the overlap region Em of each overlapping element is only
Fig. 5. Eight meshes used in the analysis of a cantilever beam pro
constructed from the nodes listed in Im, the global field of Eq. (11)
can be written as

uðxÞ ¼
Xe
m¼1

X
I2Im

hIwIðxÞ ¼
Xe
m¼1

X
I2Im

hI

X
J2Im

X
n2I

ûI
JðxÞðpnaJnÞ

 !
ð12Þ

Considering Fig. 4, we note that D1, D2, D3 are overlapping ele-
ments with E1 then the overlap region. The local field of the ele-
ments for the overlap region E1 is constructed from the nodes in
I1 and the displacement field thus constructed is continuous and
is interpolated with polynomials (see Eqs. (6), (11) and (12)).

It is valuable to note that when the radius of the support func-
tion (in Eqs. (7) and (8)) becomes infinite, the triangular overlap
region becomes the ‘‘3-node triangular finite element with interpo-
lation covers”; for the formulation and theoretical foundation of
these elements see Refs. [21,22] and the references therein. The
details to reach this conclusion are presented in Appendix A.

We should also note that the element passes the basic numeri-
cal tests: it contains no spurious zero energy mode, satisfies the
isotropy condition and passes the patch test [14]. The governing
equations of the discretization are derived as in traditional finite
element analysis, see e.g. Ref. [14].
blem; plane strain conditions, p ¼ 100; E ¼ 200� 107; t ¼ 0:3.



Fig. 6. Percent error eh of the strain energy obtained using the overlapping element;
the reference solution is obtained using a mesh of 100� 1000 9-node finite
elements.
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2.4. Numerical evaluation of element matrices

For the overlapping finite element we use the same order of
numerical integration (9-point integration) as for the previously
presented scheme [12]. However, whereas rational functions were
integrated with a significant (albeit acceptable) integration error,
for the scheme given here the numerical integration could give
us the exact stiffness matrix (as analytically integrated). For the
overlapping element, to obtain the exact stiffness matrix, theoret-
ically, 12-point integration (which could accurately reproduce a
polynomial of degree 6) is needed if the linear polynomial basis
is used and 16-point integration (which could accurately repro-
duce a polynomial of degree 8) is needed if the quadratic polyno-
mial basis is used. The computational efficiency of the
overlapping element is studied in Section 3.1.

In two-dimensional solutions, we could use the higher integra-
tion orders without much effect on the total solution time, but in
three-dimensional analyses, it is important to use an effective
number of integration points (see Section 5).
2.5. Distortion insensitivity of the new element

An important advantage of the overlapping finite element in
Ref. [12] is that the element is relatively distortion insensitive, that
Fig. 7. A shaft fixed inside under plane strain conditions (E ¼ 100; t
is, the solution accuracy is almost independent of the geometric
shape of the element. Hence overlapping finite elements might
be used effectively in the new paradigm of finite element analysis
to couple regular meshes of traditional finite elements to the
boundaries of complex geometries. To evaluate the distortion sen-
sitivity of the above-presented overlapping finite element, we con-
sider two numerical examples.

2.5.1. A cantilever beam analysis using distorted meshes
The cantilever beam already considered in Ref. [12] is used to

study the performance of the overlapping element using distorted
meshes. Fig. 5 shows the 8 meshes we use, each containing only 8
nodes, hence each mesh is quite coarse and very accurate results
cannot be expected. We use the quadratic polynomial basis, 9-
point numerical integration, and the Dirichlet boundary condition
is imposed as discussed in our previous paper [12].

To show the performance of the overlapping element, the per-
cent error eh of the strain energy is presented in Fig. 6. The error
is for all meshes within about 1 to 3 percent illustrating that the
new element is quite insensitive to mesh distortions, although
these are quite high. The same conclusion was also reached in
Ref. [12] for the element presented therein.

2.5.2. A shaft problem using distorted meshes
We use the shaft problem shown in Fig. 7 to study the energy

convergence as the elements become distorted. In the study we
compare the results with those obtained using the traditional 4-
node finite elements and finite elements with interpolation covers
[21]. Fig. 8 shows the meshes used. To identify the distortion sen-
sitivity, we increase Dh but keep one layer of undistorted finite ele-
ments at the Dirichlet boundary (similar to when using the new
paradigm of finite element analysis). These elements are formu-
lated as coupling elements, see Refs. [11,12], and the interpolation
functions are

uðxÞ ¼
X
I2v

hI hIuI þ
X
K2j
K–I

hKaK1

0
@

1
Aþ

Xnoe
I¼1

hIŵIðxÞ ð13Þ

where v is the index set of the pure finite element nodes of the cou-
pling region considered, hI is Ith nodal shape function of the tradi-
tional triangular 3-node finite element, j is the index set of all
nodes of the element, aK1 ¼ ½auK1 avK1� is the unknown solution vector
of node K equal to uK , and noe is the number of overlapping ele-
ments which have an intersection with the element in the coupling
¼ 0:3) with loads applied on the boundary, p1 ¼ p2 ¼ p3 ¼ 1:0.
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region, see Refs. [11,12] for a detailed discussion. In Eq. (13), the
local field ŵIðxÞ is given as

ŵIðxÞ ¼
X
J2N I
JRv

ûI
JðxÞ

X
n2I

ðpnaJnÞ þ
X
J2v

ûI
JðxÞ hJuJ þ

X
K2j
K–J

hKaK1

0
B@

1
CA ð14Þ

The finite elements with interpolation covers use the same
mesh (as shown in Fig. 8(a)). To impose the Dirichlet boundary
conditions, no cover degrees of freedom are assigned for nodes
on the boundary.

To study the energy convergence, the strain energy Eh is calcu-
lated as the mesh is refined in the radial direction. The convergence
of the strain energy is obtained using meshes with various Dh
values.
Fig. 8. Meshes using 20� 4 nodes for the element distortion study, the nodes are equally
the radial direction; (a) mesh of the overlapping element and the finite element with co

Fig. 9. Meshes using 36� 6 nodes (Dh ¼ p=12); (a) mesh of the overlapping element an
Fig. 9 shows the mesh with 36� 6 nodes (Dh ¼ p=12) used in
the distortion study. Table 2 lists the strain energy error for the
scheme using the overlapping element (referred to as the ‘‘new
scheme” here and below), the finite element with quadratic covers
and the 4-node finite element. Fig. 10 shows the energy error as a
function of h, which is the element length in the radial direction. As
we see in Fig. 10, the solution accuracy using the 4-node finite ele-
ment and the finite element with interpolation covers decreases
with increasing element distortions. Indeed, the rate of conver-
gence using the 4-node finite element is practically zero for
Dh ¼ p=12. On the other hand, the solution accuracy of the new
scheme is hardly affected by the element distortions. Here the rate
of convergence of the solutions using the overlapping finite ele-
ment is only about 2 (see Fig. 10) because we use one layer of lin-
ear triangular elements at the Dirichlet boundary.
distributed along both the tangential and radial directions, h is the element length in
vers; (b) mesh of the traditional 4-node finite element.

d the finite element with covers; (b) mesh of the traditional 4-node finite element.
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3. Computational efficiency of the new paradigm

In this section we investigate the computational efficiency of
the new paradigm of solutions. We study the required numerical
integration, total number of degrees of freedom, half-bandwidth
of the stiffness matrix and the computational effort expended in
solving the governing finite element equations.

3.1. Computational efficiency of the numerical integration

To study the computational effort in the numerical integration,
we consider the meshes shown in Fig. 11 and evaluate the required
Table 2
Strain energy error (rounded) of the new scheme with overlapping finite elements, finite el
the ‘‘element length” in the radial direction. The reference strain energy Eref is obtained us
covers.

Nodes in mesh h logðjEref � Ehj=Eref Þ

Dh ¼ 0

New scheme with overlapping finite elements (quadratic polynomial basis)
36 � 4 1.00 �2.32
36 � 5 0.75 �2.57
36 � 6 0.60 �2.76
36 � 7 0.50 �2.95

Finite elements with quadratic covers
36 � 4 1.00 �2.06
36 � 5 0.75 �2.28
36 � 6 0.60 �2.46
36 � 7 0.50 �2.61

4-node finite elements
36 � 4 1.00 �1.43
36 � 5 0.75 �1.60
36 � 6 0.60 �1.72
36 � 7 0.50 �1.81

Fig. 10. Convergence of strain energy for various methods; using the traditional 4-node
quadratic polynomial covers are used with 7-point integration in each element; overlappi
each overlap region.
runtime to obtain the element matrices, when using the overlap-
ping element and the traditional 4-node finite element (we use
the QUADS code from Ref. [14]). Table 3 shows the total number
of integration points, the total number of degrees of freedom and
the CPU time used for the numerical integration as the h-type uni-
form refinement is performed. The CPU time is the total runtime
for computing the element matrices of the stiffness matrix from
all integration domains. We obtained the results using a laptop
with a single core 3 GHz Intel i7 CPU.

Fig. 12 presents the CPU time of the numerical integration as a
function of the total number of degrees of freedom. Clearly, in each
case, the numerical integration effort increases linearly with the
ements with interpolation covers and using 4-node finite elements for various Dh; h is
ing a mesh of 36� 30 nodes (Dh ¼ 0) of finite elements with quadratic interpolation

Dh ¼ p=36 Dh ¼ p=18 Dh ¼ p=12

�2.30 �2.27 �2.26
�2.57 �2.56 �2.55
�2.80 �2.80 �2.79
�2.98 �2.99 �2.97

�2.03 �1.97 �1.95
�2.23 �2.21 �2.18
�2.42 �2.39 �2.37
�2.58 �2.55 �2.51

�1.40 �1.34 �1.26
�1.55 �1.44 �1.31
�1.65 �1.49 �1.30
�1.71 �1.50 �1.27

finite element, the finite element with interpolation covers, and the new scheme;
ng elements are used with the quadratic polynomial basis and 9-point integration in



Fig. 11. Meshes for the numerical integration study; (a) N � N � 2 mesh of overlapping elements; (b) N � N mesh of traditional 4-node finite elements; E ¼ 100; t ¼ 0:3;
meshes are generated with N + 1 nodes equally distributed along the x and y directions.

Table 3
The total number of integration points, total number of degrees of freedom and CPU
times used for the numerical integrations, only two entries for each case need be
given.

Mesh Total number of
integration points

Total number of
degrees of freedom

CPU time
(s)

4-node finite elements
50 � 50 2500 � 4 5:20� 103 1:52� 10�2

800 � 800 640,000 � 4 1:28� 106 3:54� 100

Overlapping finite elements (bilinear polynomial basis)
50 � 50�2 5000 � 9 2:08� 104 3:25� 10�2

500 � 500�2 500,000 � 9 2:01� 106 3:32� 100

Overlapping finite elements (quadratic polynomial basis)
50 � 50�2 5000 � 9 3:12� 104 5:89� 10�2

500 � 500�2 500,000 � 9 3:01� 106 6:03� 100

Fig. 12. CPU time for the numerical integration as a function of the total number of
degrees of freedom; for the overlapping finite elements, 9-point integration is used;
for the 4-node finite elements, 2� 2 Gauss integration is used.

Fig. 13. A cantilever plate in plane strain conditions subjected to a uniformly
distributed load p per unit length; E = 100, t ¼ 0:3.
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number of elements used. We observe that measured on the num-
ber of degrees of freedom used, the numerical effort in the integra-
tion is less for the overlapping finite elements than for the
traditional finite elements. While, of course, additional considera-
tions are important when considering the overall efficiency of
using the elements, we see that the effort used in the numerical
integration is quite reasonable. For the illustrative examples in Sec-
tion 4, the computational time used for the numerical integration
is always small.
3.2. Computational efficiency in the analysis of a cantilever plate
problem

We solve the cantilever plate problem (see Fig. 13) already con-
sidered earlier [11] to study the computational efficiency of the
new paradigm of solutions. Fig. 14 shows the meshes employed.
In the new paradigm of solutions, the rectangular coupling regions
are used because a bilinear polynomial field is then accurately
reproduced (see the coupling schemes proposed in Refs. [11,12]).

In our studies we used the column reduction solver COLSOL [14]
but of course in practice a sparse solver would be employed. To



Fig. 14. Meshes of the cantilever plate equally discretized in the vertical and horizontal directions; (a) mesh of traditional 4-node finite elements (blue regions represent the
4-node finite elements); (b) mesh of overlapping finite elements (orange regions represent the overlap regions) and of finite elements using covers; (c) mesh of the new
paradigm (green regions represent the coupling regions); (d) a mesh of the new paradigm as the uniform mesh refinement is performed (always two layers of overlapping
elements are used near the boundary).

Table 4
Analysis of cantilever plate using 4-node finite elements, finite elements with
interpolation covers, overlapping finite elements and the new paradigm scheme;
strain energy error and total number of degrees of freedom.

h logðjEref � Ehj=Eref Þ Total number of degrees of freedom

4-node finite elements
0.4 �1.23 60
0.2 �1.65 220
0.1 �2.08 840
0.04 �2.65 5100
0.02 �3.09 20,200

Finite elements with bilinear covers
0.4 �1.65 240
0.2 �2.07 880
0.1 �2.50 3360
0.04 �3.07 20,400

Finite elements with quadratic covers
0.4 �1.88 360
0.2 �2.31 1320
0.1 �2.74 5040
0.04 �3.32 30,600

Overlapping finite elements (bilinear polynomial basis)
0.4 �2.42 264
0.2 �2.82 924
0.1 �3.25 3444
0.04 �3.84 20,604

Overlapping finite elements (quadratic polynomial basis)
0.4 �3.04 396
0.2 �3.44 1386
0.1 �3.91 5166
0.04 �4.88 30,906

New scheme (bilinear polynomial basis)
0.4 �2.36 240
0.2 �2.54 630
0.1 �2.84 1710
0.04 �3.35 7350
0.02 �3.78 24,750

New scheme (quadratic polynomial basis)
0.4 �2.65 356
0.2 �2.67 896
0.1 �2.94 2276
0.04 �3.44 8816
0.02 �3.87 27,716
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measure the computational effort for the solution of the finite ele-
ment equations we can thus use

SolE ¼ 1
2

Xn
i¼1

m2
i ð15Þ
where n denotes the total number of degrees of freedom and mi

denotes the column height of column i (including the zero elements
in the column [14]). This measure can be useful to predict a
required solution effort prior to an actual analysis run as we show
also below.

Table 4 lists the strain energy errors and total number of
degrees of freedom of the solution schemes as the h-type uniform
refinement is performed. To establish the reference strain energy
for comparison, we used a mesh of 300� 300 traditional 9-node
finite elements. For the overlapping finite elements, we always
used 9-point integration and for finite elements with interpolation
covers we always used 7-point integration.

Table 5 shows the actual and predicted CPU times used for the
coarsest mesh solutions referred to in Table 4 that gave at least an
energy error of 10�3. We obtained all solutions on a laptop with a
single core 3 GHz Intel i7 CPU. To predict the solution times (SolE),
we used the actual CPU time for the solution of the traditional 4-
node finite element mesh as reference and scaled that solution
time using Eq. (15).

We see that in this analysis using the proposed new paradigm
scheme with the bilinear basis for the overlapping finite elements
requires much less computational time than using the 4-node
finite element mesh. This is because the force (natural) boundary
conditions can be more accurately captured with the overlapping
finite elements. Indeed, in this case the use of the overlapping
finite elements for the complete domain of analysis is computa-
tionally very effective, whereas the use of finite elements with cov-
ers is not leading to an efficient solution.

Fig. 15 shows the convergence in strain energy as the meshes
are refined, as also given in Table 4. The figure shows that the
orders of convergence (the slopes of the curves) are almost the
same for the schemes (with the overlapping finite element using
the quadratic basis reaching for small h a better order), but the
rate (which includes the constant, i.e. shift down of the curve
[14]) is the worst when using the traditional 4-node finite ele-
ment. The figure also shows that different meshes need to be
used to achieve a given level of accuracy, as employed in Table 5,
and shows that in this example solution the use of overlapping
elements for the complete analysis domain can then be
competitive.

Table 6 shows that the use of the new scheme is effective, and
indeed in this example also using only overlapping finite elements
is quite effective. Here we give the actual and predicted solution
times when refining the mesh as given in Table 4. We also list in
this table the time used for the numerical integration in the finest
mesh used. This time can be linearly scaled to any mesh employed.



Table 5
Actual and predicted CPU times (both rounded) for the solution of the finite element equations analyzing the cantilever plate for the coarsest meshes with a strain energy error of
at least 10�3 .

Scheme logðjEref � Ehj=Eref Þ Actual CPU time (s) Predicted CPU time SolE (s)

4-node finite elements �3.09 1.3 –
Finite elements with covers Bilinear basis �3.07 5.1 5.4

Quadratic basis �3.32 18 19

Overlapping finite elements Bilinear basis �3.25 0.16 0.16
Quadratic basis �3.04 0.007 0.004

New scheme Bilinear basis �3.35 0.4 0.4
Quadratic basis �3.44 1.0 1.0

Fig. 15. The energy convergence curves with various methods; OFE denotes the overlapping finite element.
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For a fine mesh, the time is always small compared to the time
required for the solution of the equations, and indeed for the given
entries in Table 6 the time used for the numerical integration is
about two of magnitude smaller.
4. The new paradigm used to solve a cantilever plate with holes
problem

In this section, we illustrate the complete procedure of the new
paradigm of solutions (with the overlapping element) by solving a
cantilever plate with holes (see Fig. 16). We illustrate that using
the new meshing scheme, the geometrical defects in the CAD
geometry of the plate can be automatically removed and obtain
the solutions for two load cases (see Fig. 17.).

The new scheme consists of four steps, see Refs. [10,11]. As
shown in Fig. 18, in the first step the algorithm immerses the can-
tilever plate in a Cartesian grid. In the second step the boundaries
are discretized with straight line segments Ds, during which the
three geometry deficiencies are automatically removed (see
Fig. 18(b)). Thereafter, in the third step the algorithm converts



Table 6
Analysis of cantilever plate; strain energy error, numerical integration time, actual and predicted times to solve the governing finite element equations; all times are rounded.

h logðjEref � Ehj=Eref Þ Numerical integration time (s) Actual CPU time (s) Predicted CPU time SolE (s)

4-node finite elements
0.4 �1.23 Order of 10�5 Order of 10�5

0.2 �1.65 Order of 10�4 Order of 10�4

0.1 �2.08 2.9 �10�3 2.5 �10�3

0.04 �2.65 9.0 �10�2 8.6 �10�2

0.02 �3.09 5.5 �10�2 1.3 �100 –

Finite elements with bilinear covers
0.4 �1.65 1.4 �10�3 1.0 �10�3

0.2 �2.07 1.4 �10�2 1.1 �10�2

0.1 �2.50 1.5 �10�1 1.5 �10�1

0.04 �3.07 3.5 �10�2 5.1 �100 5.4 �100

Finite elements with quadratic covers
0.4 �1.88 3.9 �10�3 3.5 �10�3

0.2 �2.31 4.2 �10�2 4.2 �10�2

0.1 �2.74 5.3 �10�1 5.5 �10�1

0.04 �3.32 6.8 �10�2 1.8 �10þ1 1.9 �10þ1

Overlapping finite elements (bilinear polynomial basis)
0.4 �2.42 2.0 �10�3 1.0 �10�3

0.2 �2.82 1.3 �10�2 1.2 �10�2

0.1 �3.25 1.6 �10�1 1.6 �10�1

0.04 �3.84 3.4 �10�2 5.4 �100 5.5 �100

Overlapping finite elements (quadratic polynomial basis)
0.4 �3.04 6.8 �10�3 4.0 �10�3

0.2 �3.44 4.5 �10�2 4.4 �10�2

0.1 �3.91 5.4 �10�1 5.7 �10�1

0.04 �4.88 7.7 �10�2 1.9 �10þ1 1.9 �10þ1

New scheme (bilinear polynomial basis)
0.4 �2.36 1.1 �10�3 1.0 �10�3

0.2 �2.54 6.1 �10�3 4.5 �10�3

0.1 �2.84 2.8 �10�2 2.8 �10�2

0.04 �3.35 3.9 �10�1 4.0 �10�1

0.02 �3.78 6.8 �10�2 3.5 �100 3.7 �100

New scheme (quadratic polynomial basis)
0.4 �2.65 4.7 �10�3 2.8 �10�3

0.2 �2.67 1.5 �10�2 1.4 �10�2

0.1 �2.94 8.4 �10�2 8.0 �10�2

0.04 �3.44 1.0 �100 1.0 �100

0.02 �3.87 7.1 �10�2 8.2 �100 8.3 �100

Fig. 16. Cantilever plate in plane stress conditions (E ¼ 200� 109, t ¼ 0:3, thick-
ness = 1.0), radii of holes = 2 and 3; (a) quadratic tangential traction; (b) linear
normal pressure; p = 1000.
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the internal cells into traditional finite elements. Finally, in the
fourth step the algorithm covers the empty space with overlapping
finite elements (see Fig. 18(d)).

In order to compare the traditional finite element analysis with
the new paradigm of solutions, we also solve the problem using
only the 4-node finite element. Fig. 19 shows the mesh of the tra-
ditional 4-node finite element and the new scheme using the tra-
ditional 4-node element and the overlapping element, with
coupling regions. Table 7 gives the total number of equations, cal-
culated strain energies and computational efforts used in both
solutions. Figs. 20 and 21 show the resulting stress plots; with

shyy and srefyy denoting the predicted and reference normal stresses
(obtained with the very fine mesh of 9-node finite elements). We
see that the new scheme gives a slightly higher strain energy for
the load case of the tangential traction (indicating a more accurate
solution [14]), and smoother stress fields with smaller absolute
stress errors for both load cases. Table 7 shows that the computa-
tional effort for solving the finite element equations using the new
scheme is not much higher than when performing the traditional
analysis, although COLSOL was used with no optimization on the
ordering of the equations for the new scheme (while the ordering
of the equations was optimized for the traditional analysis). The
table also shows that the CPU time used for the numerical integra-



Fig. 17. A CAD representation of the cantilever plate; three geometrical imperfections.

Fig. 18. The steps of the new meshing scheme; (a) the generated Cartesian grid; ① gap; ② invalid manifold; ③ overlap; (b) the straight line Ds - segmentation of the
boundary, 3 different defects are removed; ① Ds1 - segmentation; ② Ds2 - segmentation; ④ Ds3 - segmentation; (c) the internal cells retained and converted to 4-node
traditional finite elements; (d) overlapping finite elements used to fill in empty space.
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tion is in this analysis, for the new scheme, about two orders of
magnitude smaller than required for the solution of the equations.
Hence in this analysis, the new paradigm of solution clearly
resulted into an overall effective solution.
5. A few remarks on 3D solutions

In this Section, we briefly comment on the computational effort
of using the overlapping finite elements in the solution of three-



Fig. 19. The meshes of the traditional 4-node finite element and the new scheme
with the 4-node finite element and the overlapping element; for the overlapping
element, the bilinear polynomial basis is used with 9-point integration; for the
traditional finite element 2� 2 Gauss integration is used; in the coupling regions
3� 3 Gauss integration is used.
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dimensional (3D) problems. The computational effort in solving
the equations is determined by Eq. (15). In the solution of 3D
problems the total number of degrees of freedom and the column
Table 7
Analysis of the cantilever plate example: comparison of the calculated strain energy, total
time used for the solution of the equations.

Load case Strain energy Total number of degrees of fr

Mesh, 4-node elements
Tangential traction 1:80� 10�2 4986

Normal pressure 4:00� 10�4

New meshing scheme
Tangential traction 1:82� 10�2 2032

Normal pressure 4:00� 10�4

Fig. 20. Stress shyy and absolute error jshyy � srefyy j in case of tangential
heights can become very large, and our objective is here to obtain
only some insight into the use of the overlapping finite elements.
We only solve a single problem, see Fig. 22, and consider the dis-
cretizations of the structure shown in Fig. 23. The structure is in
essence the plate in Fig. 13 extruded into the third direction.
Tables 8 and 9 give the solution times and the time for the
numerical integrations for the different discretizations used. For
the new elements, we use the scheme of Ref. [23] with 15 inte-
gration points in each overlap region. The reference strain energy
was obtained using a very fine mesh of traditional 27-node
elements.

We see that the solution times using the overlapping finite ele-
ments are quite reasonable when considering about the same
accuracy reached as with the traditional 8-node element. Of
course, detailed further studies are required to investigate the per-
formance of the new overlapping elements and the new paradigm
of solution considering the accuracy reached, like we have pursued
above in the analyses of two-dimensional problems.
6. Concluding remarks

The objective in this paper was to present a new overlapping
element that is significantly more effective than the previously
proposed elements, including the disks/spheres in the method of
finite spheres.

The important step is that we interpolate the Shepard function
by polynomials over the triangular domain and then use in the glo-
bal field interpolation only the solution unknowns corresponding
to the three corner nodes of the triangular overlap region. We
therefore do not integrate rational functions in the formulation
number of degrees of freedom, time used for the numerical integration time and the

eedom Numerical integration time (s) Actual CPU time (s)

1.4 �10�2 2.6 �10�1

3.5 �10�3 3.0 �10�1

traction; (a) 4-node finite element mesh; (b) new scheme mesh.



Fig. 21. Stress shyy and absolute error jshyy � srefyy j with linear normal pressure; (a) 4-node finite element mesh; (b) new scheme mesh.

Fig. 22. A cubic structure subjected to a uniformly distributed load p = 1.0 on its
top; E ¼ 100; t ¼ 0:3.

Fig. 23. Meshes of the structure equally discretized in the x, y, z directions; (a) mesh
of the 8-node traditional finite element (b) mesh of the overlapping finite elements.

Table 8
Analysis of the 3D structure using 8-node brick elements, strain energy error, numerica
equations; all times are rounded.

Mesh logðjEref � Ehj=Eref Þ Numerical integration tim

8-node finite elements
10� 10� 10 �1.65

20� 20� 20 �2.09

30� 30� 30 �2.36 1:1� 100
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(avoiding the need of a high-order numerical integration) and the
bandwidth of the resulting stiffness matrix is, in essence, as for
traditional finite elements, but accounting for the fact that at each
element node the number of unknowns is equal to the number of
polynomials used in the basis of the element formulation. We also
pointed out how the element relates to the finite elements with
covers.

The interpolation of the Shepard function by polynomials to
avoid the numerical integration of rational functions may also be
effective in other procedures, like meshless methods.

We illustrated the effectiveness of the new overlapping element
in various examples, in which we focused on the insensitivity of
the element to geometric distortions, the rate of convergence
reached, and the computational time used. We also illustrated
the use of the element in an example solution using the new para-
digm of analysis for meshing a solution domain.

However, the computational times reported for these studies
are based on using a standard column reduction equation solver
when in practice a sparse solver would be employed. Since the final
columns in our studies are established during the assemblage of
the finite element equations, we could employ an effective estima-
tor for the solution times used and thus obtain insight into the new
discretization scheme.

While we considered in depth only 2D problems, we also com-
mented briefly on the use of the discretization scheme in 3D
analyses.

We can conclude that the solution scheme presented in this
paper is very promising, but more research on overlapping finite
elements is needed — to study the proposed element further and
develop and study new elements, for 2D and 3D solutions, incom-
pressible media, shells, for linear and nonlinear, static and dynamic
analyses, and so on. Using such elements in the new paradigm of
analysis should lead to effective finite element procedures for
use in computer-aided design and hence to the wide democratiza-
tion of numerical simulations.
l integration time, actual and predicted times to solve the governing finite element

e (s) Actual CPUtime (s) Predicted CPU time SolE (s)

6.4 �10�1 –

6:6� 10þ1 6:4� 10þ1

1:0� 10þ3 1:0� 10þ3



Table 9
Analysis of the 3D structure, strain energy error, numerical integration time, actual and predicted solution effort using overlapping finite elements; all times are rounded.

Mesh logðjEref � Ehj=Eref Þ Numerical integration time (s) Actual CPU time (s) Predicted CPU time SolE (s)

Overlapping finite elements (linear polynomial basis)
5� 5� 5 �1.74 4.2 �10�1 4.1 �10�1

8� 8� 8 �2.04 8.7 �100 8.4 �100

10� 10� 10 �2.19 4.0 �10þ1 3.7 �10þ1

15� 15� 15 �2.46 5:3� 100 5.3 �10þ2 5.5 �10þ2

Overlapping finite elements (quadratic polynomial basis)
5� 5� 5 �2.17 7.8 �100 7.0 �100

8� 8� 8 �2.49 1.3 �10þ2 1.4 �10þ2

10� 10� 10 �2.65 5.6 �10þ2 6.0 �10þ2

15� 15� 15 �2.98 3:2� 10þ1 8.4 �10þ3 8.9 �10þ3

Fig. A1. Coordinate system and nodal points for triangular element.
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Appendix A. The finite element enriched by interpolation covers
as a special case of the overlapping element

We show here how the proposed approximation scheme (see
Eq. (12)) relates to the scheme of enriching finite elements by
interpolation covers, see Ref. [21] and the references therein.

For a triangular overlap region as shown in Fig. A1, the global
field of Eq. (12) can be written in the form

u ¼
X3
J¼1

f J
X
n2I

pnaJn ð1:1Þ

where

f J ¼
X3
I¼1

hIûI
J ð1:2Þ

Using the interpolation functions defined in Table 1 for ûI
J ,

I; J ¼ 1;2;3, the f J , J ¼ 1;2;3, are

f 1 ¼ ĥ1 þ ĥ4ðh1 þ h2Þ
W1

W1 þW2

����
x4

þ ĥ4h3
W1

W1 þW2 þW3

����
x4

þ ĥ5h1
W1

W1 þW2 þW3

����
x5

þ ĥ6ðh1 þ h3Þ
W1

W1 þW3

����
x6

þ ĥ6h2
W1

W1 þW2 þW3

����
x6

;

f 2 ¼ ĥ2 þ ĥ4ðh1 þ h2Þ
W2

W1 þW2

����
x4

þ ĥ4h3
W2

W1 þW2 þW3

����
x4

þ ĥ5ðh2 þ h3Þ
W2

W2 þW3

����
x5

þ ĥ5h1
W2

W1 þW2 þW3

����
x5

þ ĥ6h2
W2

W1 þW2 þW3

����
x6

;

f 3 ¼ ĥ3 þ ĥ4h3
W3

W1 þW2 þW3

����
x4

þ ĥ5ðh2 þ h3Þ
W3

W2 þW3

����
x5

þ ĥ5h1
W3

W1 þW2 þW3

����
x5

þ ĥ6ðh1 þ h3Þ
W3

W1 þW3

����
x6

þ ĥ6h2
W3

W1 þW2 þW3

����
x6

ð1:3Þ

where in the natural coordinate system r; s,

h1 ¼ 1� r � s;
h2 ¼ r;

h3 ¼ s

ð1:4Þ
and

ĥ4 ¼ 4rð1� r � sÞ;
ĥ5 ¼ 4rs;

ĥ6 ¼ 4sð1� r � sÞ;

ĥ1 ¼ 1� r � s� 1
2
ðĥ4 þ ĥ6Þ;

ĥ2 ¼ r � 1
2
ðĥ4 þ ĥ5Þ;

ĥ3 ¼ s� 1
2
ðĥ5 þ ĥ6Þ

ð1:5Þ

Note that

X3
J¼1

f J ¼
X6
i¼1

ĥi ¼ 1 ð1:6Þ

In the form (1.1), the overlapping procedure given in Section 2
is implicit in the functions f J , J ¼ 1;2;3.

If rI ! 1, I ¼ 1;2;3, we see thatWI ! 1, I ¼ 1;2;3, and we have

f 1¼ ĥ1þ ĥ4ðh1þh2Þ
1
2
þ ĥ4h3

1
3
þ ĥ5h1

1
3
þ ĥ6ðh1þh3Þ

1
2
þ ĥ6h2

1
3
¼h1;

f 2¼ ĥ2þ ĥ4ðh1þh2Þ
1
2
þ ĥ4h3

1
3
þ ĥ5ðh2þh3Þ

1
2
þ ĥ5h1

1
3
þ ĥ6h2

1
3
¼h2;

f 3¼ ĥ3þ ĥ4h3
1
3
þ ĥ5ðh2þh3Þ

1
2
þ ĥ5h1

1
3
þ ĥ6ðh1þh3Þ

1
2
þ ĥ6h2

1
3
¼h3

ð1:7Þ
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i.e., Eq. (1.1) becomes

u ¼
X3
J¼1

hJ

X
n2I

pnaJn ð1:8Þ

which is the approximation scheme employed in the finite element
enriched by interpolation covers.
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