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We present in this paper the development and use of a novel and promising numerical scheme, the
method of finite spheres, for the analysis of wave propagations. The solution of two-dimensional linear
elastic and visco-elastic waves is considered. The procedure does not require a mesh and hence avoids
element distortions. We discuss the construction of the interpolations in which harmonic functions are
included to make the method effective for the analysis of wave propagations. A simple and efficient
numerical integration scheme is proposed and the solution effort is evaluated versus using the standard
finite element method. Several numerical examples are used to demonstrate capabilities of the method.
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1. Introduction

The objective in the development of the method of finite
spheres is to obtain a reliable and efficient method to solve com-
plex boundary value problems without the construction of a mesh
[1–6]. The method was developed during a period of increasing
awareness and promise of meshless methods with the aim to over-
come some inherent limitations of numerical methods that rely on
the use of a mesh [7]. The finite element method requires the dis-
cretization of a problem domain into a set of non-overlapping ele-
ments. The consequence of a poorly constructed discretization can
be a significant loss in accuracy of the solution [8]. In addition, for
wave propagation problems, the standard finite element method
may not be effective since very fine meshes are required and even
when using such fine meshes the solution may still show signifi-
cant spurious oscillations, and dispersion and dissipation errors.
The enriched finite element method using an implicit time integra-
tion scheme was developed to address these difficulties [9–11].
However, measured on the experiences obtained, there is still
significant need for improved solution procedures.

Several other methods have been proposed for the solution of
wave propagation problems [12–32]. The spectral element method
is a high-order Lagrangian-based finite element technique that
combines the approach of using finite elements with the accuracy
of spectral methods. Lagrange polynomials approximate the field
variables and Gauss–Lobatto quadrature is used for the required
integrations leading to a diagonal mass matrix when using
quadrilateral or hexahedral elements in two- and three-
dimensional solutions, respectively, which is advantageous for
the analysis of transient wave propagation problems [13–15].
The major difficulty, however, is to mesh complex two- and
three-dimensional domains and obtain effective solutions using a
mixture of elements.

Meshless methods have attracted significant attention for the
analyst to solve boundary value problems without the use of a pre-
defined mesh. Some meshless procedures have also been devel-
oped for the solution of wave propagation problems and can
generally be categorized into strong-form and weak-form meth-
ods. Smoothed particle hydrodynamics (SPH) is a well-known
strong-form method, initially used for modeling astrophysical phe-
nomena [16,17]. Weak-form methods include the element-free
Galerkin method (EFG) [18,19], the meshless local Petrov–Galerkin
method (MLPG) [20–23], and the method of finite spheres (MFS)
[1]. Meshless methods can also be categorized by their choice of
interpolation functions. For example, methods employing radial
basis functions (RBF) have been developed for the solution of tran-
sient acoustic wave propagation problems [24–26].

The SPH scheme is a commonly used method for simulating flu-
ids. The method represents the field quantity in an integral form
based on kernel approximation functions. Current research has
also illustrated the applicability of SPH for the solution of wave
propagation problems in solid mechanics. The major difficulties
commonly cited for SPH are tensile instability and boundary
deficiency [16,17]. Tensile instability refers to an unstable solution
when tensile stresses are present. Boundary deficiency is a conse-
quence of not satisfying zeroth-order consistency near or on the
boundary of the problem domain. Improvements addressing these
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Fig. 1. General problem domain V with domain boundary S = Su [ Sf.
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difficulties have been developed and the improved schemes were
shown to provide good accuracy for the solution of shock wave
propagations in viscoplastic media [17]. However, the SPH scheme
still requires the use of a large number of nodes to obtain reason-
ably accurate solutions and the use of some ‘adjustable solution
factors’ that render the method not applicable, for example, to
the solution of simple linear elastic static problems.

The element-free Galerkin method has been shown to provide
good results for acoustic and elastic wave propagation problems
[19]. Imposing the Dirichlet boundary conditions, however, is not
straightforward since the interpolation functions do not satisfy
the Kronecker delta property. Lagrange multipliers can be used,
but this leads to a larger system of algebraic equations and a loss
of positive definiteness which reduces the computational
efficiency. Alternatively, the penalty method can be employed,
but then appropriate penalty factors need to be chosen, that may
depend on the problem considered [18,19].

The meshless local Petrov–Galerkin method adopts trial and
test functions from different approximation spaces, resulting in
various formulations [20–23]. The MLPG approach has been used
to solve for the propagation and scattering of electromagnetic
waves, where the trial functions are constructed from moving least
squares approximations and the test functions from solutions of
Green’s problem [22]. The method has also been used for the solu-
tion of wave propagations in three-dimensional poroelastic solids,
with the trial functions constructed using radial basis functions
and the test functions being simply unit step functions [23]. While
the given numerical solutions are in good agreement with
analytical solutions, these methods are computationally expensive
due to the non-symmetry of the coefficient matrices and the numer-
ical integration of complex expressions within the subdomains.

The method of finite spheres is related to the above techniques
in that it is based on a weak formulation of boundary value
problems using overlapping subdomains, and hence also does not
require a mesh. In fact, the only difference to the standard finite
element method is that the spheres (subdomains, or elements)
overlap, and indeed other subdomains (like bricks) could be
employed. The method is using symmetric coefficient matrices
and was initially presented for the analysis of linear static solids
and fluids [1]. Further research focused on the method of finite
spheres in a mixed formulation, improved numerical integration,
automatic discretization, coupling with the finite element method,
and enrichment strategies [2–6]. In this paper, we seek to demon-
strate that there is significant promise of reliability and efficiency
for the method of finite spheres in the solution of wave propaga-
tion problems.

We briefly review the method of finite spheres in Section 2. We
give the interpolation functions used for general elliptic problems
and introduce the special interpolation functions used for wave
propagation problems. In Section 3, the formulation for the
analysis of two-dimensional linear elastic wave propagation prob-
lems is presented. Since efficiency is a particular concern for the
use of the method of finite spheres, a simple improved numerical
integration scheme is given in Section 4. Finally, to illustrate
the capabilities of the developed scheme, we present in Section 5
the results of several wave propagation problems in elastic and
visco-elastic media.

Since we consider in this paper only the solution of two-
dimensional problems, we should note that when referring to a
‘‘sphere’’, a ‘‘disk’’ is implied.

2. Interpolation scheme

The method of finite spheres uses the Shepard partition of unity
functions. The interpolations are defined by the Shepard functions
times local basis functions that can include any desired
enrichments [1]. Consistency and continuity conditions are satis-
fied by proper selection of the local basis functions that together
span the local approximation space. Computational efficiency
depends on the suitability of these functions when considering
the degree of the governing partial differential equations and the
nature of the solutions to be predicted.

2.1. Shepard partition of unity functions

Let V 2 Rd(d = 1, 2, or 3) be an open bounded domain and let S be
the domain boundary, with S = Su [ Sf and Su \ Sf = 0, where Su is
the Dirichlet boundary and Sf is the Neumann boundary. Then let
{B(xI, rI); I = 1, 2, . . ., N} be a set of spheres which form a covering
for V, i.e., V �

SN
I¼1BðxI; rIÞ, where xI and rI refer to the center and

radius of the sphere BI, respectively, and where I is the nodal label
of each sphere and N is the total number of spheres. The unit
normal to the domain boundary, n, is positive in the outward
direction. As illustrated in Fig. 1, spheres are either interior
spheres, entirely within the problem domain, or boundary spheres
intercepting the domain boundary.

Let WI(x) denote a positive radial weighting function of the form
WI(x) = W(sI), with sI = ||x � xI||/rI where ||�|| is the Euclidean norm.
We use the quartic spline weighting function defined as

WðsIÞ ¼
1� 6s2

I þ 8s3
I � 3s4

I ; 0 6 sI 6 1
0; sI > 1

(
ð1Þ

The Shepard partition of unity function is then given by

u0
I ðxÞ ¼

WIPN
J¼1WJ

; I ¼ 1;2; . . . ;N ð2Þ

Hence
PN

I¼1u0
I ðxÞ ¼ 1 8x 2 V . These functions are rational, non-

polynomial functions satisfying zeroth order consistency, ensuring
that rigid body modes can be reproduced exactly.

To generate approximation spaces of higher order consistency, a
local approximation space Vh

I ¼ spanm2J fpmðxÞg is defined at each
node I, where h is a measure of the sphere size, J is an index set,
and pm(x) is a member of the local basis. Then the global approxi-
mation space Vh is defined as the product of the Shepard function
at each node I and the functions from the local bases

Vh ¼
XN

I¼1

u0
I Vh

I ð3Þ

Hence any function vh in the solution space Vh can be written as

vhðxÞ ¼
XN

I¼1

X
m2J

hImðxÞaIm ð4Þ



Fig. 3. One-dimensional interpolation functions with p = 1 for hyperbolic problems

hI1 ¼ u0
I , hI2 ¼ u0

I x, hI3 ¼ u0
I cos 2px

Kx

� �
, hI4 ¼ u0

I sin 2px
Kx

� �
.
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with the interpolation functions

hImðxÞ ¼ u0
I ðxÞpmðxÞ ð5Þ

and the mth degree of freedom aIm at node I. Hence, the number of
degrees of freedom depends on the number of functions included in
the local approximation space. Furthermore, depending on the nat-
ure of the solutions, the optimal choice of the members of the local
basis can improve the accuracy and efficiency of the solution.

An important point pertaining to the method of finite spheres is
that we are able to choose effective functions for solving specific
problems, unlike done in the standard finite element method.
The nature of the solutions is distinctly different for different cat-
egories of problems [8] and so it is natural to employ different
interpolation functions for different classes of problems.

2.2. Interpolation functions for elliptic problems

For the solution of elliptic problems [8], a suitable local approx-
imation space defined in two dimensions is

Vh
I ¼ spanf1; x; y; x2; xy; y2g ð6Þ

containing the terms of a complete second order polynomial. Fig. 2
shows the one-dimensional interpolation functions for elliptic
problems.

2.3. Interpolation functions for hyperbolic problems

For the solution of two-dimensional hyperbolic problems, a
suitable local approximation space is [9]

Vh
I ¼ span

1;x;y;xy;

cos 2pkxx
Kx

� �
;sin 2pkxx

Kx

� �
;cos 2pky y

Ky

� �
;sin 2pky y

Ky

� �
;

cos 2pkxx
Kx
� 2pky y

Ky

� �
;sin 2pkxx

Kx
� 2pkyy

Ky

� �
8>>><
>>>:

9>>>=
>>>;
;
kx;ky ¼1; . . . ;p
p2f1;2;3g

ð7Þ

where Kx and Ky are fundamental wavelengths in the x- and
y-directions, respectively, kx and ky are integers from 1, . . ., p, and
p is the cutoff number. A suitable choice for the fundamental wave-
lengths is Kx = Ky = 2rI [9]. Higher-order trigonometric functions
are included as the cutoff number increases, but the condition
number of the constructed matrices increases as additional terms
are included, hence an upper bound of p = 3 has been selected.
Fig. 3 shows the one-dimensional interpolation functions with
Fig. 2. One-dimensional interpolation functions for elliptic problems hI1 ¼ u0
I ,

hI2 ¼ u0
I x, hI3 ¼ u0

I x2.
cutoff number p = 1 for hyperbolic problems. We note that with this
choice of basis functions, the scheme satisfies the patch tests [8].

3. Two-dimensional wave propagation

In this section we apply the framework of the method of finite
spheres to solve two-dimensional wave propagation problems
using the displacement-based formulation of the method of finite
spheres.

3.1. Governing differential equations

The governing differential equations for a linear elastic domain
V 2 R2 with boundary S are

@T
e sþ f B ¼ 0 in V ð8Þ

with Neumann boundary conditions

Ns ¼ f S on Sf ð9Þ

and Dirichlet boundary conditions

u ¼ uS on Su ð10Þ

The strain–displacement relation is

e ¼ @eu ð11Þ

and the linear elastic constitutive relation is

s ¼ Ce ð12Þ

In Eqs. (8)–(12), u, e, and s are the displacement, strain, and
stress vectors, respectively, fB is the body force vector (including
inertia terms), fS is the prescribed traction vector, uS is the pre-
scribed displacement vector, oe is a linear gradient operator, N is
the direction cosine matrix for the unit normal to the domain
boundary (positive outwards), and C is the elasticity matrix.

3.2. Variational formulation

For the linear elastic domain V 2 R2, the variational indicator is

PðuÞ ¼ 1
2

Z
V
eTðuÞCeðuÞdV �

Z
V

uTðf̂
B
� q€uÞdV �

Z
Sf

uT f SdS

�
Z

Su

f uTðu� uSÞdS ð13Þ
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where f̂
B

does not include inertia forces, q is the mass density, €u is
the acceleration vector, and fu = NCe(u) is the traction vector on the
Dirichlet boundary. Invoking the stationarity of the given
variational indicator P, we obtain the following weak form:

Find u 2 H1(V) such thatZ
V
eTðvÞCeðuÞdV þ

Z
V

vTq€udV �
Z

Su

½eTðvÞCNT uþ vT NCeðuÞ�dS

¼
Z

V
vT f̂

B
dV þ

Z
Sf

vT f SdS�
Z

Su

eTðvÞCNT uSdS 8v 2 H1ðVÞ ð14Þ

where H1(V) is the first-order Hilbert space [8].
3.3. Nodal interpolations

For two-dimensional analysis, the displacement field approxi-
mation is

uðx; yÞ ¼
uðx; yÞ
vðx; yÞ

� �
¼
XN

J¼1

X
n2J

HJnðx; yÞaJn ¼ Hðx; yÞU ð15Þ

The corresponding strain field is

eðx; yÞ ¼
exx

eyy

cxy

8><
>:

9>=
>; ¼

XN

J¼1

X
n2J

BJnðx; yÞaJn ¼ Bðx; yÞU ð16Þ

and the stress field is hence

sðx; yÞ ¼
sxx

syy

sxy

8><
>:

9>=
>; ¼

XN

J¼1

X
n2J

CBJnðx; yÞaJn ¼ CBðx; yÞU ð17Þ

where aJn ¼ uJn v Jn
� �

is the vector of nodal unknowns at node J cor-
responding to the nth degree of freedom, uJn and vJn are the x- and
y-direction displacements, respectively, at node J corresponding to
the nth degree of freedom, and U ¼ a11 a12 a13 � � �aJn � � �½ �T is the
vector of nodal unknowns.

In the above equations we have

HJnðx; yÞ ¼
hJnðx; yÞ 0
0 hJnðx; yÞ

� 	
ð18Þ
BJnðx; yÞ ¼ @eHJnðx; yÞ ¼
@hJn=@x 0
0 @hJn=@y
@hJn=@y @hJn=@x

2
64

3
75 ð19Þ

and the elasticity matrix

C ¼
c11 c12 0
c12 c11 0
0 0 c33

2
64

3
75 ð20Þ

where for plane stress conditions,

c11 ¼
E

1� m2 ; c12 ¼
Em

1� m2 c33 ¼
E

2ð1þ mÞ

and for plane strain conditions,

c11 ¼
Eð1� mÞ

ð1þ mÞð1� 2mÞ ; c12 ¼
Em

ð1þ mÞð1� 2mÞ ; c33 ¼
E

2ð1þ mÞ

with E and m being Young’s modulus and Poisson’s ratio of the mate-
rial, respectively.
3.4. Discrete equations

Substituting Eqs. (15)–(17) into Eq. (14), the discretized system
of algebraic equations corresponding to node I and degree of free-
dom m is

XN

J¼1

X
n2J

MImJn€aJn þ
XN

J¼1

X
n2J

KImJnaJn ¼ f Im þ f̂ Im ð21Þ

where the mass matrix is

MImJn ¼
Z

VI

HImqHJndV ð22Þ

the stiffness matrix is

KImJn ¼
Z

VI

BT
ImCBJndV ð23Þ

and the body force load vector is

f Im ¼
Z

VI

HImf̂
B
dV ð24Þ

with VI = V \ B(xI, rI).
The traction force vector corresponding to node I and degree of

freedom m is

f̂ Im ¼

0; for an interior sphereR
SfI

HImf SdS; for a Neumann boundary sphere

XN

J¼1

X
n2J

KUImJnaJn � f UIm; for a Dirichlet boundary sphere

8>>>>><
>>>>>:

ð25Þ

where

KUImJn ¼
Z

SuI

HImNCBJndSþ
Z

SuI

BT
ImCNT HJndS ð26Þ

and

f UIm ¼
Z

SuI

BT
ImCNT uSdS ð27Þ

with Sf ¼
S

I2Nf
SfI , Nf = index set of nodes with nonzero intercept on

the Neumann boundary and Su ¼
S

I2Nu
SuI , Nu = index set of nodes

with nonzero intercept on the Dirichlet boundary.

4. Integration scheme

Numerical integration is a focal point of development for the
method of finite spheres and in general for meshless methods
[3,33,34]. In the finite element method, numerical integration
is efficient due to polynomial interpolation functions, non-
overlapping elements, and Gauss–Legendre product rules used
over the finite element domains. The method of finite spheres
requires integration of nonpolynomial functions over complicated
integration domains, namely spheres, truncated spheres, and gen-
eral lens-shaped regions for the overlap of spheres. Specialized
integration schemes have been developed such as the piecewise
midpoint quadrature rule [3]. In this research we use a simple
and quite efficient procedure.

4.1. Piecewise Gauss–Legendre quadrature

For the integration, we divide the domain of each sphere (here
disk) into four quadrants, as shown in Fig. 4. Within each of these
quadrants, the usual Gauss–Legendre quadrature rule (the same as
in standard finite element analysis [8]) is used with the objective of
achieving a reasonably accurate solution using a minimal number
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Fig. 4. Integration points for an interior sphere.
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of integration points. Instead of considering different quadrature
rules for different regions, simply the same rule is used for all
regions in a quadrant. The advantages are that we have a uniform
density of integration points and that the overlap regions are inte-
grated directly.

This quadrature rule is very simple, and different from other
schemes where isoparametric mapping is performed or different
rules are used for different parts of the domains [3,5,20].

4.2. Interior disk

Considering the four quadrants, Fig. 4a, only the integration
points within the disk will contribute to the evaluation of the
matrices and vectors. Similarly, Fig. 4b shows the integration
points used to evaluate the contributions of the lens-shaped region
of overlap.

4.3. Boundary sectors

For these sectors, also no special scheme is used but simply the
same integration stations used otherwise are also employed.
Fig. 5a gives the integration points used within a boundary sector
and Fig. 5b shows the integration points for the lens-shaped region
of overlap. In each case, as above, only the integration stations
within the regions considered contribute to the evaluations of
the element matrices and vectors.

5. Numerical examples

The objective of this section is to demonstrate the potential of
the method of finite spheres for the solution of wave propagation
problems. The examples demonstrate novel features of the method
of finite spheres, namely the use of interpolations enriched by
(a) Boundary sector
x

y

Fig. 5. Integration points f
trigonometric functions as well as the use of the piecewise
Gauss–Legendre quadrature rule for the numerical integration.
5.1. Scalar wave

The scalar wave equation with a Ricker wavelet source at the
origin is given by

€uðx; tÞ � c2r2uðx; tÞ ¼ Fð0; tÞ in VT ¼ V � I ð28Þ

with

Fð0; tÞ ¼ 10½1� 2p2f 2ðt � t0Þ2� exp½�p2f 2ðt � t0Þ2� ð29Þ

and initial conditions

uðx;0Þ ¼ _uðx;0Þ ¼ 0 in V ð30Þ

where u is the unknown displacement, c is the wave velocity, f is the
peak frequency, and t0 is the time shift. In this example, c = 1 m/s,
f = 6 Hz, and t0 = 0.25 s. We consider the domain V = [0, 1]� [0, 1],
see Fig. 6, with appropriate symmetry boundary conditions, and
the time domain of interest is I = [0, 0.95 s].

For the solution of the transient scalar wave, the Bathe time
integration method is used since it provides more accurate solu-
tions for wave propagation problems than the trapezoidal rule
[11]. The time step Dt = 0.003125 s was used. Fig. 6 gives the wave
response at t = 0.95 s for different combinations of cutoff number
and sphere size, where Fig. 6d compares these approximate solu-
tions to the analytical solution along the x-axis. The numerical
results are satisfactory. We use this example to further investigate
the accuracy of the method as a function of the spatial and tempo-
ral discretizations.
(b) Overlap region
x 

y

or a boundary sphere.



Fig. 6. Displacement contours at t = 0.95 s and comparison between analytical and numerical solutions.

6 S. Ham et al. / Computers and Structures 142 (2014) 1–14
5.1.1. Spatial and temporal discretizations
Numerical inaccuracies are usually a consequence of the spatial

and temporal discretizations [8,11,35–37]. In order to minimize
the spatial discretization error in the method of finite spheres,
the sphere size can be decreased or the cutoff number increased,
similar to h- and p-refinements, respectively, in the finite element
method [8,27]. To examine h- and p-convergence of the method of
finite spheres, we use the percent relative error in the L2-norm
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
V ju� uhj2dVR

V juj
2dV

vuut � 100 ð31Þ
where u is the analytical solution and uh is the numerical solution.
The value of d is quite a severe measure for wave propagation prob-
lems, because any small dispersion error can result in a large value
of d. Nevertheless we use this measure in our comparative studies.
In engineering practice a less severe measure might be used.
Fig. 7 shows the h- and p-convergence behavior of the method of
finite spheres at t = 0.95 s for the scalar wave, always using
Dt = 0.003125 s. As expected, the percent relative error in the
L2-norm decreases for decreasing sphere radius, and for increasing
cutoff number. The remaining error of about 3% is due to the time
discretization.
5.1.2. Time step size
Spatial and temporal discretizations are related by the wave

speed. In order to estimate the numerical dispersion as a function
of the CFL number, a deeper analysis as given in Ref. [11] should be
performed. However, in the first instance we may simply use the
approach given in Ref. [8]. If the critical wavelength is Lw, then
the time it takes for the wave to travel this distance is

tw ¼
Lw

c
ð32Þ

If n steps are required to approximate the traveling wave accu-
rately, the appropriate time step size for the traveling wave is

Dt ¼ tw

n
ð33Þ

The smallest wavelength that the method of finite spheres can
approximate accurately is kp ¼ 2rI=p, where rI is the radius of the
sphere centered at node I and p is the cutoff number. We assume
that the critical wavelength is Lw ¼ kp, so the time step size is

Dt ¼ tw

n
¼ Lw

cn
¼ 2rI

pcn
ð34Þ

Assuming that the smallest wavelength to be represented is based
on an estimate, a reasonable value to use in practice [8] might be



Fig. 7. Convergence behavior at t = 0.95 s.
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n = 6, but we have used a larger value in our numerical experiments
to obtain very accurate solutions.

Using this formula, the time step Dt = 0.003125 s used in
Section 5.1.1 corresponds to the value of n = 20 for the discretiza-
tion of 33 � 33 spheres with p = 1. This value of n is large but we
have found that with n = 20, the error is always relatively small
in the severe error measure using the L2-norm given in Eq. (31).

5.1.3. Computational cost
The computational times used to obtain the scalar wave results

shown in Fig. 6 are given in Table 1. The percent relative error in
the L2-norm and the solution times are given for two different time
step sizes for each of the three spatial discretizations. For compar-
ison, the computational times used with the traditional finite
element method and 4-node elements are given in Table 2. For
each discretization, two different time step sizes based on the
CFL number are used.

Comparing the solution techniques, we observed that using the
method of finite spheres, a smaller time step size always resulted
in a decrease in the percent relative error. However, using the tra-
ditional finite element method, there is a CFL number for optimal
accuracy, which for the Bathe time integration scheme is
CFL = 1.0 [11]. Using a smaller time step size results in less
accuracy (see also Table 2) and a coarser discretization is in general
more sensitive to such change. Considering the data in Tables 1 and
2, we see that for this problem the method of finite spheres gives as
efficient a solution as the traditional finite element method.

Another advantage of the method of finite spheres is that dis-
torted elements are not an issue, that is, such sub-domains of
course do not exist. Grading is simply achieved by the use of differ-
ent sphere sizes. However, in traditional finite element analyses of
practical problems, distorted elements are oftentimes inevitable.
The distortion ratio is defined as the ratio of the longest side length
to the shortest side length of any element in the domain [8].
Considering the solution of the scalar wave problem using dis-
torted meshes, the percent relative error in the L2-norm is given
for varying distortion ratios for two finite element discretizations
Table 1
Percent relative errors and computational times using the method of finite spheres.

Discretization 9 � 9, p = 3 17

Time step size (s) 0.003125 0.00625 0.0

Relative error (%) 3.55 10.37 2.9
Solution time (s) 48.37 36.99 69
in Fig. 8. As expected, the percent relative error increases signifi-
cantly with increase in the distortion ratio.

5.2. Scattered waves

Here we consider problems of scattered waves due to an array
of rigid circular cylinders in an infinite medium. These problems
are commonly encountered in the construction of ocean structures,
such as oilrigs with a number of tension-legs anchored to the
bottom of the ocean. The interaction between water waves and
the circular cylinders is the phenomenon of interest [38,39]. We
consider the wave scattering problem for a single rigid circular
cylinder and for an array of rigid circular cylinders.

Fig. 9 describes the problem when there is a single rigid circular
cylinder. A plane wave traveling in the x-direction strikes the circu-
lar cylinder, and the wave scatters around and radiates away from
the cylinder. The analytical solution for the scattered wave is given
by

uðr; hÞ ¼ �
X1
n¼0

inqn
J0nðkaÞ
H0nðkaÞ

HnðkrÞ cosðnhÞ ð35Þ

where u is the wave response, r and h are polar coordinates mea-
sured from the center of the cylinder, qn = 1 for n = 0 and qn = 2
for n P 1, Jn is the Bessel function, Hn is the Hankel function,
ka = 6p is the wave number, and a = 1 is the radius of the cylinder.
Since the analytical solution consists of an infinite number of terms,
we sum from n = 0, . . ., 20 to obtain our reference analytical
solution.

For the numerical solution, we apply the reference analytical
solution to the boundary of the circular cylinder as a Dirichlet
boundary condition. The radiation boundary condition to model
an infinite domain is replaced by a perfectly matched layer
[9,39,40]. Using either an absorbing boundary condition or a
perfectly matched layer to simulate the unbounded physical
domain results in some numerical errors, but here the error is neg-
ligible. The computational domain using a 21 � 21 discretization of
� 17, p = 2 33 � 33, p = 1

03125 0.00625 0.003125 0.00625

8 10.54 2.63 10.27
.97 45.09 90.63 52.11



Table 2
Percent relative errors and computational times using the finite element method, 4-node elements.

Discretization 80 � 80 160 � 160

Time step size (s) 0.00625 (CFL = 0.5) 0.0125 (CFL = 1) 0.003125 (CFL = 0.5) 0.00625 (CFL = 1)

Relative error (%) 21.26 12.73 5.59 3.27
Solution time (s) 12.32 6.13 110.06 59.75

Distortion ratio = 1 Distortion ratio = 5 Distortion ratio = 10

(a) Schematic of distorted meshes used, showing 8x8 element mesh 

(b) Error as a function of element distortions 

Fig. 8. Percent relative error in the L2-norm as a function of distortion ratio.

(a) Single rigid cylinder (b) 21x21 sphere discretization 
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Fig. 9. Problem description and discretization of the computational domain edged with a perfectly matched layer, case of 1 cylinder.
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Fig. 10. Real part of numerical solution and percent relative error in the L2-norm as a function of cutoff number.

(b) 37x37 sphere discretization

8a 

Incident 
wave

x

y

Unbounded 
domain

a
i

r
i

R
jp

α
jpj-th 

cylinder 

p-th 
cylinder 

i-th 
cylinder 

θ
i

S
u

V

(a) Array of rigid cylinders

Fig. 11. Problem description and discretization of the computational domain edged with a perfectly matched layer, case of 4 cylinders.
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regularly arranged spheres is shown in Fig. 9b. Fig. 10 provides
plots of the real part of the scattered wave solutions using cutoff
numbers p = 1, 2, 3. The results obtained using the cutoff number
p = 1 show a scattered wave deterioration since the reflected wave
is not completely absorbed by the perfectly matched layer, due to
inadequate spatial discretization. However, the results obtained
using the cutoff number p = 3 are in close agreement with the
analytical reference solution.
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Next we consider the same problem but with an array of four
rigid circular cylinders, see Fig. 11. The scattered wave from one
cylinder now interacts with the other cylinders, causing multiple
scattering of waves. The analytical solution is given by

uðr; hÞ ¼
XN

j¼1

XM

q¼�M

Bj
q

J0qðkajÞ
H0qðkajÞ

HqðkrjÞ expðiqhjÞ ð36Þ

where the unknown coefficients Bj
q are found by solving

Bp
l þ

XN

j¼1;j–p

XM

q¼�M

Bj
q

J0qðkajÞ
H0qðkajÞ

exp½iðq� lÞajp�Hq�lðkRjpÞ

¼ � exp i kxp þ
p
2

l
� �h i

ð37Þ

with p = 1, . . ., N and l = �M, . . ., M. The wave number is kaj = 8p and
the radii of the cylinders are aj = a = 1 for all j. Higher accuracy is
achieved by increasing M. We used M = 10 for the problem
reference solution [38,39].

We discretize the domain using 37 � 37 spheres, see Fig. 11b,
and prescribe the analytical reference solution as a Dirichlet
boundary condition on the boundaries of the cylinders. A perfectly
matched layer is used along the edges of the domain boundary.
Fig. 12 provides plots of the real part of the scattered wave
solutions using cutoff numbers p = 1, 2, 3, where the results
obtained using the cutoff number p = 3 are in good agreement with
the analytical reference solution.
Fig. 12. Real part of numerical solution and percent relativ
5.3. Elastic waves

In this section, we solve for the elastic waves propagating within
a semi-infinite domain due to an imposed surface force. The isotro-
pic plane strain elastic medium has P-wave velocity vp = 3200 m/s,
S-wave velocity vs = 1847.5 m/s, and mass density q = 2200 kg/m3.
The domain size is 4000 m � 2000 m and the forcing function is a
Ricker wavelet, see Eq. (29), with magnitude 106, frequency
f = 10 Hz, time shift t0 = 0.10 s and vertically imposed on the surface
at (x, y) = (2000 m, 2000 m), see Fig. 13. The spatial discretization is
51 � 26 spheres using the cutoff number p = 2. The simulation
duration is 1.0 s and the Bathe time integration method is used with
time step size Dt = 0.0008 s. Fig. 13 shows the wave profiles at
t = 0.74 s, where the P-, S-, and Rayleigh waves can be identified.
Fig. 14 provides a comparison between the analytical and numeri-
cal solutions at two receivers, (x1, y1) = (2640 m, 2000 m) and
(x2, y2) = (3280 m, 2000 m).

The Rayleigh wave traveling along the surface might be used to
test whether a numerical method is capable of accurately
approximating the free-surface boundary condition [14]. Fig. 14
illustrates that the method of finite spheres results are in good
agreement with the analytical solutions for the two receivers on
the surface.

An important point is here that all three waves with different
wave speeds are quite accurately solved for. The reason is that
we do not choose a time step size based on a CFL number (see
Section 5.1.3).
e error in the L2-norm as a function of cutoff number.



Fig. 13. Displacement field in semi-infinite elastic domain at t = 0.74 s.

Fig. 14. Comparison between analytical and numerical solution for displacement variations at two locations.
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5.4. Viscoelastic waves

Wave propagations in an actual body can be quite different
from waves in an idealized linear elastic body due to friction
effects. The viscous property in actual media causes dispersion
and attenuation of the traveling waves [29–32].

Here we consider the wave propagations in a two-dimensional
plane strain viscoelastic domain with a vertically applied Ricker
wavelet at its center. The viscoelastic medium has P-wave velocity
vp = 3000 m/s, S-wave velocity vs = 2000 m/s, and mass density
q = 2000 kg/m3. The domain size is 2000 m � 2000 m and the Rick-
er wavelet has magnitude 2 � 1010, frequency f = 50 Hz, and time
shift t0 = 0.06 s. The spatial discretization is 33 � 33 spheres with
cutoff number p = 3. The simulation duration is 0.5 s and the Bathe
time integration method is used with time step size Dt = 0.0004 s.
We use the quality factors Qp = 26 for the P-wave attenuation and



Fig. 15. Quality factors as a function of number of relaxation mechanisms.

Fig. 16. Displacement field in viscoelastic medium.

Fig. 17. Comparison between analytical and numerical solution for displacement variations at (x, y) = (1500 m, 1500 m).
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Qs = 19 for the S-wave attenuation. The analytical solution of this
viscoelastic wave propagation problem can be obtained using
Ref. [29].

Fig. 15 illustrates the approximations to the quality factors 1/Qp

and 1/Qs, for an increasing number of relaxation mechanisms using
the generalized Maxwell model. As the number of relaxation
mechanisms n increases, the error decreases, but the computa-
tional cost increases.

Fig. 16 shows the displacement fields in the viscoelastic body at
t = 0.22 s and t = 0.32 s solved for when using n = 3. A comparison
of the x- and y-displacement history at (x, y) = (1500 m, 1500 m)
between the numerical and analytical solutions is shown in
Fig. 17. We observe that the amplitude of the S-wave is smaller
than of the P-wave due to a stronger attenuation of the S-wave.
The method of finite spheres solution is in good agreement with
the analytical solution.
6. Concluding remarks

The objective in this paper was to present in essence ‘a finite
element method with overlapping elements’ – the method of finite
spheres – for the solution of wave propagation problems. A main
advantage of this formulation is that the solution is obtained with-
out a mesh, avoiding discretization difficulties and element
distortions.

With the method of finite spheres, the use of special interpola-
tions for specific classes of problems is natural and we exploited
this feature here using harmonic functions. A piecewise
Gauss–Legendre quadrature rule was presented for the numerical
integration. The reliability of the method was illustrated in the
solution of some wave propagation problems, defined for elastic
and viscoelastic media, by comparison with the analytical
solutions.

However, while the results given in the paper are valuable,
there is much further research to be performed regarding the
method. We used in this paper only equal size spheres (or rather
disks) and only solved problems involving simple geometries. It
should still be investigated how the procedure performs when
complex geometries are considered and non-equal size spheres
are employed. In these studies also the condition numbers of the
matrices employed in the solutions need to be considered, since
these might grow due to the use of different sizes of spheres [8]
and the use of harmonic functions [9]. Furthermore, the numerical
integration scheme employed should be analyzed deeply. Such
analysis might result in a more effective scheme.

An advantage that we observed with the method is that the use
of smaller size time steps leads to more accurate solutions. Hence
an optimal CFL number is not used, and multiple waves traveling
through media can be accurately simulated. However, a deeper
investigation in the choice of a ‘‘best’’ time step size using the
Bathe method and also other implicit time integration schemes
would be valuable.

Although only two-dimensional problems have been consid-
ered, the method of finite spheres can, theoretically, directly be
extended to the solution of three-dimensional problems. Indeed,
it is in the solution of three-dimensional problems where good
finite element meshes, without highly distorted elements, are
difficult to reach.

However, the first step might then be to first identify whether
the method of finite spheres with the integration scheme proposed
in this paper (or a more effective one) is indeed competitive in the
solution of three-dimensional linear static problems, when com-
pared to the use of the finite element method. In such study, also
the use of parallel processing should be included. Thereafter, the
solution of three-dimensional wave propagation problems might
be tackled, where instead of implicit integration, like using the
Bathe method in this paper, also explicit time integration should
be explored, like using the Noh-Bathe scheme [40].

Hence, altogether, many research topics still exist regarding the
method of (overlapping) finite spheres, where indeed the words
‘‘overlapping finite spheres’’ should be interpreted in a more gen-
eral sense as ‘‘overlapping finite simple domains’’. For example,
also the use of square domains and equal-faced bricks in two-
and three-dimensional analyses, respectively, might be valuable.
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