
 

1 INTRODUCTION 

The finite element method is now established as an 
effective procedure to simulate on the computer the 
behavior of structures. Quite general structures can 
be analyzed, from large scale to very small scale 
structures, such as long and large bridges, to motor 
cars, to DNA structures (Bathe 2014, Bathe 2014a). 
However, in all finite element simulations, it is nec-
essary to establish an appropriate and effective mesh 
of elements, which may require a large effort for the 
analyst. Since also quite some experience is needed 
to construct an adequate mesh, we see that mostly 
only experienced analysts can perform an effective 
simulation, even in linear analysis. The difficulties 
of  obtaining an adequate and hence  good mesh  
should ideally be removed from the analysis process. 

These meshing considerations are quite different 
from establishing in the first instance a proper 
mathematical model and thus finite element model 
for simulating an event. For complex analyses, the 
proper modeling can be regarded to be an art  be-
cause of the creativity, imagination and skill needed 
(Bathe 2014). In this paper we assume that the 
mathematical model is relatively simple and that the 
task of analysis is given by creating an adequate fi-
nite element mesh. In fact if a good mesh could be 
easily created, the finite element method would be 
much more employed,  notably by designers in the 
CAD environment. 

Since there are the difficulties of meshing, many 
meshless methods have been designed, see Nayroles, 
Touzot & Villon 1992, Belytschko, Krongauz, Or-
gan, Fleming & Krysl 1996, Duarte & Oden 1996, 
Atluri & Zhu 1998, De & Bathe 2000, De & Bathe 

2001a, Liu 2002 and the references therein. Much 
research effort has been expended to develop an ef-
fective meshless method. Nevertheless,  all  mesh-
less methods  have been identified to be numerically 
expensive for practical use when compared with the 
traditional finite element method (Dolbow & Be-
lytschko 1999, De & Bathe 2001b, De & Bathe 
2001c, Mazzia, Ferronato, Pini & Gambolati 2007, 
Babuška,  Banerjee, Osborn & Li 2008, Babuška, 
Banerjee,  Osborn & Zhang 2009). Here we focus 
only on methods that do not entail the adjustment of 
numerical factors (such adjustments are undesirable 
in practice) (Bathe 2014). Hence, while the overall 
aim of using meshless methods is very attractive, 
such methods have not yet found broad use in engi-
neering practice. 

The objective in this paper is to review our efforts 
in establishing a meshless method, the 'method of fi-
nite spheres', in which the spheres are in fact  'over-
lapping finite elements', and propose how this con-
cept can be used effectively in engineering  practice.  
The key aspect is that we no longer have  the restric-
tion of traditional finite elements that they   must 
abut each other and can not overlap. 

We first review the 'method of finite spheres', 
presenting briefly the theory and some solution re-
sults in static and dynamic analyses. We only con-
sider in this paper linear analysis conditions of sol-
ids. While the concepts can also be used for the 
analysis of shells, fluids and nonlinear analysis, such 
applications require further research.   

We then present how overlapping finite elements 
may be used efficiently together with traditional fi-
nite elements  to remove  meshing difficulties in 
CAD driven analyses while at the same time not 
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adding an undue amount of computational effort for 
the system matrices.   

The presentation in this paper is forward-looking 
which also means some reasonable conjectures are 
given. 

2 THE METHOD OF FINITE SPHERES 

The solution procedure was designed in an attempt 
to establish a truly meshless method (a scheme that 
does not use a spatial mesh and does not use a back-
ground mesh for numerical integration). The method 
was proposed in De & Bathe 2000 and De & Bathe  
2001a but was originally only tested in two-
dimensional static analyses. The scheme is closely 
related to other meshless methods (Liu 2002).  

The objective in this section is to briefly review 
the theory of the method of finite spheres and then 
give some example solutions that demonstrate how 
the method performs when compared with the use of  
traditional finite element discretizations.  

2.1 The theory of 'overlapping sphere elements' 
Consider the body shown in Figure 1 discretized us-
ing spheres.  For illustrative purposes we show in 
fact disks as used in two-dimensional solutions, but 
in three-dimensional analysis, we would have  
spheres. As indicated, the spheres overlap each 
other,  overlap the boundary of the body, and to-
gether cover the complete body. 

Of course, we  recall that in a traditional finite 
element mesh,  the elements need to abut each other 
and must not overlap, also not the boundary of the 
analysis domain.  Hence the only difference in the 
discretization used in Figure 1 is that the overlap-
ping is present.  For this reason, we call the spheres 
simply 'overlapping finite elements' and we mention  
in section 3 that the same concept can also be used 
to construct other than spherical 'overlapping finite 
elements'. 

Using the general principle of virtual work, as in 
traditional finite element analysis, we have: 
Find  ( )1H∈ Ωu  such that 
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where u is the unknown displacement field, ε  is the 
strain vector, C is the elasticity matrix, v is the vir-
tual displacement field, Sf  is the prescribed surface 
traction vector on the boundary Sf , Su  is the pre-
scribed displacement vector on the boundary Su, Bf  
is the body force vector (including inertia forces) 
and 1H  is the first  order Hilbert space. The last two 
terms are Lagrange multiplier terms that impose the 
displacement boundary condition with  

 ( ) ( ),= =λ NCε u λ NCε v  (2) 

where N is the direction matrix, in two-dimensional 
analysis  
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and where the overbar signifies a virtual quantity. 
We note that these terms furnish a symmetric contri-
bution to the stiffness matrix. 
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Figure 1 General problem domain V with domain boundary 
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The stiffness and mass matrices and the load vec-

tor are evaluated from Equation  (1) using numerical 
integration. Much effort has been expended to obtain 
a reliable and efficient  scheme, where we mean by 
reliability that the integration ensures that important 
strain terms included in the interpolation are also 
contained in the numerically evaluated matrices. Un-
fortunately, a high order numerical integration is 
needed which is expensive. 

For lack of a better scheme, we use a simple stan-
dard Gauss numerical integration scheme (Ham, Lai 
& Bathe 2014, Lai & Bathe 201x). 

2.2 Evaluation in static three-dimensional analyses 
Some evaluations for two-dimensional solutions 

have been presented in De & Bathe 2000, De & 
Bathe 2001a, De & Bathe 2001b, De & Bathe 
2001c, Hong & Bathe 2005, Macri & De 2005, 
however a more severe comparison is established in 
three-dimensional analyses. Such analyses are more 
complex and numerically more intensive, also in the 
required numerical  integrations. Furthermore, static 
solutions provide a good evaluation because the 
stiffness matrix calculation frequently corresponds 
to a large  part of the solution effort.  For the com-
parison, the method was implemented in the user-
supplied element routine of  ADINA in order to be 
able to use the same sparse solver for all analyses 
(Lai & Bathe 201x).    

A cantilever beam of square hollow cross-section 
subjected to a tip load is considered. Figure 2 shows 
two finite sphere discretizations used.  We note that 
for a coarser discretization, the centers of all spheres 



 

are located on the outside surface of the beam. For 
spherical domains that are geometrically equal, the 
numerical integration is only performed once, and 
the result is then reused in the element assemblage 
process. This approach can save considerable com-
putational time with overlapping finite elements but 
is, in general,  only possible to some extent.   

 

 
 
Figure 2. MFS1 and MFS3 discretizations at a section for a 
short cantilever beam of square hollow section 
 

For the traditional finite element solutions,  we 
use a sequence of compatible uniform meshes con-
sisting of eight-node brick elements. The mesh re-
finement involves subdividing each brick element 
into eight brick elements, so that the coarser mesh is 
embedded in the finer mesh and we can expect 
monotonic convergence.   

Figure 3 gives the convergence of the solutions 
obtained and Table 1 gives more  details on these  
data.  Here the error is calculated by comparison 
with the solutions obtained using the finest tradi-
tional finite element mesh. We deem this solution to 
be quite close to the unknown mathematically exact 
solution. The time multiplier gives how much faster 
(or slower) the solution is when compared to the so-
lution using the finest 8-node brick element mesh.  
However, when studying the time multipliers for 
comparisons, we need to take into account the solu-
tion accuracy obtained, so here the MFS3 solution 
time might be approximately compared with the 
FEM2 solution time. More details on these solutions 
are given in Lai & Bathe 201x. 

 

 
 
Figure 3 Convergence of strain energy for the method of finite 
spheres (MFS) and the finite element method (FEM) 

 
 
 
 
 

Table 1 Strain energy errors and computational time multipli-
ers for MFS and FEM discretizations (as compared to the 
FEM3 reference solution) 

 

 Number of 
nodes 

Strain 
energy 

error (%) 

Time multi-
plier 

MFS1 80 6.87 0.68 
MFS2 288 4.04 2.38 
MFS3 3024 1.04 6.54 
FEM1 840 4.81 0.01 
FEM2 4920 1.52 0.05 
FEM3 32400 * * 
*FEM3: Strain energy (N⋅mm) = 4096.9; Time (s) = 11.64 
 
Studying further analyses, see Lai & Bathe 201x, 

we see that using the overlapping spheres, the solu-
tion is  between 1 to 2 orders of magnitude more 
expensive than the traditional finite element solution 
using 8-node brick elements. This conclusion 
becomes  more favorable towards the finite sphere 
method when traditional 27-node brick elements are 
used (Lai & Bathe 201x). However, here 
considering a single load case, the major numerical 
expense is in establishing the stiffness matrix by 
numerical integration. In practice,  many load cases 
are solved for (indeed a hundred load cases may be 
considered) and in such cases, the stiffness matrix is 
only established once, factorized once, and then 
forward-reductions and back-substitutions are car-
ried out on the load vectors. A large solution effort 
is then expended to  solve for the different load 
cases and the comparison using overlapping finite 
elements with  traditional finite elements will be 
more favorable for the overlapping finite element 
scheme. 

Indeed, we show this fact  in the next section in 
which dynamic solutions are considered. 

2.3 Evaluations in dynamic analyses 
Dynamic solutions are generally obtained using 
mode superposition or direct time integration. We 
consider here first a direct time integration solution 
of a wave propagation problem in a two-dimensional 
domain, the data of which are taken from Ham, Lai, 
& Bathe 2014.  A pre-stressed membrane, with a 
Ricker wavelet applied at its center is considered. 

We use the implicit Bathe method for the time in-
tegration because it provides more accurate solutions 
than the trapezoidal rule, both schemes not using 
any solution factor to be adjusted (Bathe & Noh 
2012 ). 

Table 2 gives the error of displacements, meas-
ured in the L2 norm for the overlapping and tradi-
tional finite element discretizations. We observe that 
in this analysis, for an error of less than 4% , the ap-
proach of using spheres  gives a solution time close 



 

to the one used with the traditional finite element 
scheme. This is clearly due to the fact that the K and 
M matrices are only calculated once, and the time 
stepping, using a major part of the solution effort, 
only requires vector forward-reductions and back-
substitutions. 

 
Table 2.  Percent relative errors and computational times using 
(a) the traditional finite element method, 4-node elements, and 
(b) the method of  finite spheres with order p harmonics  

 
Discretiza-

tion (a) 160x160 (b) 9x9, p=3 

Timestep 
size (s) 

0.003125 
(CFL=0.5) 

0.00625 
(CFL=1) 0.003125 0.00625 

Relative   
error (%) 5.59 3.27 3.55 10.37 

Solution 
time (s) 110.06 59.75 48.37 36.99 

 
Furthermore, there is an important additional ob-

servation. Wave propagations in traditional finite 
element analyses are difficult to compute because an 
optimal time step has to be selected, and this step 
depends on the speed of the wave (Bathe 2014, Noh, 
Ham & Bathe 2013). If the time step is larger than 
the optimal time step, the solution is unstable when 
using conditionally stable schemes (e.g. the central 
difference method) and loses accuracy when using  
unconditionally stable schemes (e.g. the trapezoidal 
rule). Moreover, in all time integrations using tradi-
tional finite element discretizations, if a time step 
smaller than the optimal time step is used, the solu-
tion accuracy is worse. This effect can be clearly 
seen in Table 2 where with a smaller CFL than  the 
optimal one (here = 1.0)  the solution error is larger. 
In practical analyses, there are multiple wave 
speeds, (e.g. compression, shear and Rayleigh 
waves) of which only one can be chosen for the op-
timal time step selection. Therefore, the other waves 
will not be accurately solved for.    

However, Table 2 also shows that a decrease in 
the time step size using the overlapping finite ele-
ments leads to an increase in solution accuracy. This 
is an important fact and an analyst may expect this 
intuitively. With  this characteristic, in practical 
analyses, the  largest  wave speed c might be chosen 
to establish the time step size, with the other waves 
then automatically being solved for more accurately. 

We can analyze the numerical dispersion error 
occurring when using a direct time integration 
scheme for the traditional and the overlapping finite 
element discretizations, see Noh, Ham & Bathe  
2013, Kim & Bathe 201x. 

Here we should first note that in the method of fi-
nite spheres, an individual sphere has the same stiff-
ness and mass properties in any direction, whereas 
the traditional finite elements  have different 'effec-

tive' lengths depending on the direction chosen 
through the element. Therefore,  the direction of 
wave travel through a traditional uniform 4-node 
element mesh will significantly  affect the solution 
error, but not so for the method of finite spheres.   

Figure 4 shows the error in the wave speed ob-
tained as the wave travels in the x-direction through 
a homogeneous arrangement of spheres with  the bi-
linear polynomial and one harmonic in the "basis". 
The radius of the spheres is h, and the centers are 
spaced the distance h apart. A small error is obtained 
at CFL = 0.5 for h ≤  / 6hλ , and (as shown for CFL 
= 1) when the spatial discretization is too coarse to 
represent the wave, the Bathe method cuts out the 
wave response from the response prediction.  This 
property of the time integration scheme is very use-
ful in practical analyses because waves that cannot 
be resolved are not included in the solution. Similar 
observations hold for the traditional finite element 
solutions (see Noh, Ham & Bathe 2013). 

 

 
 
Figure 4.  Relative wave speed errors; MFS, Bathe method; 
discarded wave modes dotted; λ is the wave length; x h∆ =  

  
In the above solutions, direct implicit time inte-

gration was performed and we could conclude that 
the finite element method using overlapping spheres 
shows some good attributes and in some analyses 
may even be competitive, compared with  the tradi-
tional finite element discretizations. 

The other approach widely used for dynamic 
analyses, but largely for structural response solu-
tions, is mode superposition (Bathe 2014). Here  the 
mass and stiffness matrices are established and then 
the natural frequencies and mode shapes are calcu-
lated. The response is obtained by superimposing the 
modal responses that are excited by the initial condi-
tions and the load vector. 

In the traditional finite element discretizations, by 
far the largest solution effort is in calculating the re-
quired frequencies and mode shapes. Considering 
the method of finite spheres, we may conjecture that 
the method may, in some analyses, also be good in 
solution time compared with the use of traditional 



 

finite elements. The reason  is that the major solu-
tion effort will also be in solving the eigenvalue 
problem, and not in establishing the K and M matri-
ces. However, actual numerical comparisons should 
be established. 

3 AN EFFECTIVE WAY OF MESHING USING 
TRADITIONAL AND OVERLAPPING FINITE 
ELEMENTS 

The method of finite spheres, a meshless method,  
was designed to reduce the time of preparing a nu-
merical model for a given physical problem; namely 
the time and effort spend on meshing. In most cases 
however the method is numerically too expensive to 
use.  

Our objective in this section is to suggest that the 
overlapping elements can be used effectively with 
very simple Cartesian meshes of traditional finite 
elements.  This novel approach is in fact a further 
development of the immersed boundary cut-cell ap-
proach used in the FloEFD program of Mentor 
Graphics for CFD analyses. The meshing is with 
FloEFD relatively  simple and the meshing and solu-
tion procedure are tightly coupled into CAD pack-
ages. 

Consider the geometry of a two-dimensional part 
generated using a CAD software, like SolidWorks, 
as shown in Figure 5. The discretization would be 
performed as follows. 
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Figure 5.  Schematic of  two-dimensional CAD part; the (∆x, 
∆y) grid generated; the internal cells retained and converted to 
4-node traditional finite elements; the straight-line ∆s-
segmentation of the boundary; and some overlapping spheres 
and quadrilateral elements used along and near the boundary 
 

The first step is to generate a two-dimensional 
grid over the whole part, with ∆x and ∆y distances 
between lines, see Figure 5. The part can be thought 
of as being 'immersed' in the grid of Cartesian cells 
which can obviously be established with negligible 
human and computational effort.  

In the second  step a 'characteristic straight line 
length' ∆s is used for discretizing the boundary of 
the part. This length should be small enough, so that 
straight lines of this length will represent the com-
plete boundary of the part with sufficient accuracy, 
see Figure 5.  

This first and second step need to be automatized 
to have (in general varying) ∆x, ∆y and ∆s conform 
to the part geometry. 

The third step is that all Cartesian cells that do 
not cut the boundary are represented  by traditional 
finite elements, like 4-node elements. The other cells 
are removed. 

The fourth  step is that the boundary is meshed 
with overlapping finite elements using the  charac-
teristic length as spacing. It is important to place the 
centers of the spheres at these boundary points (the 
end points of the boundary lines) because then the 
displacement boundary conditions can be easily im-
posed. These overlapping finite elements must ex-
tend over to the traditional finite elements (estab-
lished in step 3). Usually the one layer of spheres 
placed along the boundary does not extend suffi-
ciently into the traditional finite elements and addi-
tional spherical elements need to be placed, so that 
the union of traditional finite elements and overlap-
ping finite elements covers the complete geometric 
part and displacement continuity is ensured. We il-
lustrate this process  in Figure 5 and indicate also 
how quadrilateral overlapping finite elements could 
be employed. These quadrilateral elements are for-
mulated in the same way as the  spherical elements 
but now the Shepard functions are tensor products of 
the one-dimensional functions aligned along the lo-
cal element directions. 

In three-dimensional analysis, the same steps are 
followed but the grid is for the three Cartesian coor-
dinate directions and a 'characteristic surface' is used 
in step 2. Then traditional brick finite elements 
would be employed with overlapping spheres or the 
three-dimensional generalization of the  overlapping 
quadrilateral  elements. 

The coupling between the overlapping finite ele-
ments and the traditional finite elements is achieved 
as presented in Hong & Bathe 2005; see also Macri 
& De 2005. 

The effort in meshing using this approach is 
clearly much smaller than when using traditional fi-
nite elements throughout the analysis domain. The 
accuracy of solution for a given number of elements 
may in many analyses (like in the solution of fluid 
flow problems) increase because mostly undistorted 
elements can be used. The computational time might 
be in most cases larger than when using the tradi-
tional finite element discretizations. However, based 
on  all the  experience reviewed above, this new ap-
proach will quite likely require much less total engi-
neering time (time of meshing by an engineer + 
computer solution time of finite element model), 



 

with the actual time gained dependent  on the spe-
cific analysis  performed. 

The use of the overlapping finite elements can 
also be attractive to refine a mesh, and to embed 
special functions in the approximation spaces, like 
harmonic functions for wave propagation problems 
(as for Table 2 solutions), see e.g. Hong & Bathe 
2005, Ham, Lai & Bathe 2014, Kim & Bathe 201x. 

4 CONCLUDING REMARKS 

The objective in this paper was to review our lat-
est developments on the use of the method of finite 
spheres (overlapping finite elements), and then pre-
sent a new meshing scheme for  CAD  driven finite 
element simulations. 

We concluded that the use of overlapping finite 
elements is, mostly, computationally still very ex-
pensive in static analyses when these elements are 
used for  the complete geometric  domain. In dy-
namic analyses, however, the solution times used 
with overlapping  finite elements compare better in 
expense with traditional finite elements, since the 
step-by-step solution or the solution of the eigen-
value problem require a considerable part of the 
computational effort in both approaches. 

Based on this experience, we finally proposed a 
novel scheme for meshing and  finite element solu-
tions of solids tightly coupled to the use of CAD 
programs.  A Cartesian mesh of traditional finite 
elements is used as much as possible but in conjunc-
tion with overlapping finite elements near the 
boundary to properly represent the boundary (and 
the nearby volume) of the geometric part. 

This last section of the paper does not give solu-
tions, but the proposed scheme is further presented 
in Bathe 2016. The main point of the scheme using 
overlapping finite elements is that finite element so-
lutions of solids are efficiently and directly embed-
ded into the computer-aided design process. 
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