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In this paper, we focus on an enriched finite element solution procedure for low-order elements based on
the use of interpolation cover functions. We consider the 3-node triangular and 4-node tetrahedral dis-
placement-based elements for two- and three-dimensional analyses, respectively. The standard finite
element shape functions are used with interpolation cover functions over patches of elements to increase
the convergence of the finite element scheme. The cover functions not only capture higher gradients of a
field variable but also smooth out inter-element stress jumps. Since the order of the interpolations in the
covers can vary, the method provides flexibility to use different covers for different patches and increases
the solution accuracy without any local mesh refinement. As pointed out, the procedure can be derived
from various general theoretical approaches and the basic theory has been presented earlier. We evaluate
the effectiveness of the method, and illustrate the power of the scheme through the solution of various
problems. The method also has potential for the development of error measures.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Since the finite element method is frequently more robust and
effective in the solution of problems compared to other methods,
it has been widely used for the numerical analysis of solids, fluids,
including heat transfer, and multi-physics problems. However,
despite the success of the finite element method, there is still the
burden that a good mesh for the analysis of a physical problem is
needed. Indeed, in engineering practice, a substantial effort may
be required to ensure that the mesh is fine enough in certain areas,
but not too fine in other areas, and to achieve the desired solution
accuracy may require that a problem be solved with a number of
meshes. Also, in large deformation analyses, the mesh may need
to be adapted during the incremental solution because distorted
elements cause loss of accuracy and inhibit ideal convergence rates
[1]. However, adaptive remeshing algorithms require projections of
solutions from one mesh to another, which requires special proce-
dures in order to avoid a significant loss in solution accuracy [2–6].

In order to develop more effective finite element methods,
various approaches have been pursued. One approach is to use
traditional finite element formulations with special enrichment
functions, specific to the problem solved. This is a natural way to
improve the effectiveness of finite element analysis, and first devel-
opments in that regard, for example, were published by Bathe et al.
[7,8] and Bathe and Chaudhary [9] for the analysis of pipes and
beams to incorporate ovalization and warping effects. Moes et al.
[10], Belytschko and Black [11] and Daux et al. [12] incorporated
ll rights reserved.
enrichment functions to account for the presence of cracks, see also
Ref. [13] and the references therein. Melenk and Babuška [14,15]
presented the partition of unity finite element formulation to in-
clude Ansatz spaces containing the local properties of solutions,
and Strouboulis et al. [16,17] used special handbook functions.
However, these schemes focus on the more effective solution of
specific problems and, mostly, do not apply to the solution of non-
linear problems.

In another approach to increase the effectiveness of the
numerical solution, so-called meshless or meshfree methods have
been developed. In particular, Belytschko et al. [18] proposed the
element-free Galerkin technique, Liu et al. [19] developed the
reproducing kernel particle method, Duarte and Oden [20] and
Liszka et al. [21] presented the h-p cloud meshless method, Atluri
and Zhu [22] proposed the meshless local Petrov–Galerkin method,
and De and Bathe developed the method of finite spheres [23–26].
Additional meshless methods have been proposed, see for example
Ref. [27]. A difficulty with all meshless techniques is the expense of
the numerical integration. To improve upon the efficiency, Oñate
et al. [28] developed a point collocation technique.

In another development, Shi [29–32] proposed the numerical
manifold method, which combines the advantages of the classical
finite element method and discontinuous deformation analysis
techniques [33–35]. The procedure was also developed to enable
the more effective analysis of problems with cracks and crack
propagations [36–38].

The standard finite element method is a very effective
technique for the solution of general physical problems since the
numerical integration can be performed efficiently, the essential
and natural boundary conditions can be easily imposed, and

http://dx.doi.org/10.1016/j.compstruc.2012.10.001
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the global system matrix does not suffer from rank deficiency.
Of course, for special problem solutions, effective special
interpolation functions may be incorporated, see for example Refs.
[7–17,39]. However, considering any proposed scheme, it is
important that the procedure has no rank deficiency and is stable
[1,40].

The objective in this paper is to focus on a scheme to increase
the convergence of the traditional low-order finite element discret-
izations using 3-node triangular and 4-node tetrahedral elements
in two- and three-dimensional analyses, respectively. The proce-
dure uses the underlying finite element mesh enriched with inter-
polation covers over element patches to significantly increase the
convergence rates of solutions, even when using distorted ele-
ments. While we focus on the specific details of the scheme, the
theory of the procedure can be derived from and is closely related
to the finite element methods discussed in Refs. [12,14,15], the
numerical manifold method [41–47], the use of Taylor polynomials
[48–50], and the schemes discussed in Refs. [51–53]. Indeed, the
basic interpolations that we use have already been given in Ref.
[52]. A particular difficulty discussed in these references is the lin-
ear dependency of the equations reached which is handled using
special algorithms [52,53].

The contributions in our work are to show that, for the interpo-
lation covers used on 3-node triangular 2D element and 4-node
tetrahedral 3D element meshes, no rank deficiency is encountered
– which we believe to be an important requirement in practical
analyses – that the boundary conditions are best imposed as in
the standard finite element method, and that, with the scheme
used, a reasonably well-conditioned global coefficient matrix is ob-
tained. We also illustrate how the method can be employed in
adaptive interpolations, with different interpolation orders for dif-
ferent regions of the problem to be solved.

In Section 2, we give the finite element formulation enriched
with interpolation cover functions. Thereafter, in Sections 3 and
4, we discuss the key theoretical and numerical aspects of our
scheme regarding the stability, convergence and computational ex-
pense of the method. In Section 5, we present some illustrative
solutions to demonstrate the proposed procedure, and finally, in
Section 6, we give our concluding remarks.

2. Enriching finite elements by interpolation covers

Consider that a standard finite element mesh has been estab-
lished for the solution of a physical problem. The accuracy in the
solution sought is given by the kind of element and mesh used.
To enrich the finite element procedure, we proceed as, it seems,
earliest done in the numerical manifold method and define small
sub-domains that overlap each other, where the common regions
of the overlapped sub-domains are the finite elements in the given
finite element mesh. Each sub-domain is covered by an interpola-
tion cover, which allows for a higher-order interpolation of the
solution sought and hence better solution accuracy. While in the-
ory the approach has considerable generality, we focus on the en-
riched finite element interpolation for the use of three-node
triangular finite elements in two-dimensional (2D) solutions, from
which the 1D and 3D cases can directly be inferred. We consider
the standard low-order finite elements because these are robust
in linear and nonlinear solutions, but the major shortcoming is
the solution accuracy obtained.

2.1. Functional approximation of a field variable

Let QN :¼ fxigN
i¼1 be a set of N given nodal points xi ¼ ðxi; yiÞ 2 X,

and let fT hg :¼ fEmge
m¼1 be a family of e triangles generated by QN ,

which conforms to the domain X in which we seek the solution
variable u
[e

m¼1

Em ¼ X ð1Þ

without overlap, that is, EjT Ek ¼£ for j–k. Fig. 1(a) shows the
piecewise linear interpolation function hi used in the solution. Let
Ci be the support domain of hi, i.e. Ci ¼ suppðhiÞ; 8i ¼ 1; . . . ;N,
which we call the cover region. Hence the cover region Ci corre-
sponds to the union of elements attached to the node i, see Fig. 1(b).

For each Em, let icðmÞ be the set of cover indices defined by

icðmÞ :¼ i : Ci

\
Em – £

n o
: ð2Þ

For the 3-node triangular element, the overlapped region of the
three cover regions Ci, Cj and Ck constitutes element m and hence
icðmÞ ¼ fi; j; kg, see Fig. 1(c). To now enrich the standard finite ele-
ment interpolation for the solution of the variable u, we use inter-
polation cover functions, that is, over each cover region, we assign
a set of complete polynomial bases. Let ui be the usual nodal variable
for the solution of u, then we use the polynomial bases of degree p
over the cover region Ci given by

Pp
i ½u� ¼ ui þ ½ �xi �yi �x2

i
�xi�yi �y2

i � � � �yp
i �~ai: ð3Þ

Here the coordinate variables ð�xi; �yiÞ are measured from node i
(hence the subscript i does not denote a coordinate value but simply
the node i at which the origin of the coordinate system ð�xi; �yiÞ is lo-
cated, see Fig. 2). The vector ~ai ¼ ½ ai1 ai2 � � � �T lists additional de-
grees of freedom for the cover region Ci. Note that a normalization of
the degrees of freedom can be introduced here, in that we may use
aij/ĥ corresponding to the linear terms and aij/ĥ2 for the quadratic
terms, etc., where ĥ is a characteristic element length scale of the
elements used in the mesh and the ĥ terms are of course taken into
the interpolation matrices. This approach is used in Refs. [52,53]
proposing the same interpolations and in general improves the con-
ditioning of the coefficient matrix (see Sections 3.2.1 and 4.1).

The enriched cover approximation of a field variable u is
represented by

ICp½u� :¼
Xe

m¼1

X
i2icðmÞ

hiPp
i ½u� ¼

Xe

m¼1

X
i2icðmÞ

hiui þ
X

i2icðmÞ

eHi~ai

 !
ð4Þ

whereeHi ¼ hi �xi �yi �x2
i

�xi�yi �y2
i � � � �yp

i

� �
: ð5Þ

Of course, if P0
i ½u� ¼ ui; 8i is adopted, then the scheme reduces

to the standard linear finite element interpolation. Indeed, as seen
in Eq. (4), we can regard the enriched interpolation as the standard
finite element interpolation plus additional higher order terms.
While these terms can be derived in various ways by the
approaches mentioned in Section 1, it is our objective here to focus
on these enriched interpolations and evaluate how they perform in
analyses.

To obtain some insight into the approach used, we can evaluate
the coefficients in Eq. (3) at node i by taking partial derivatives of
the interpolation cover function Pp

i ½u� with respect to the nodal
coordinate variables. Assuming that a complete set of polynomial
bases of degree p is used, letting ui � ai0 and assigning the
subscript k to refer to the set of coefficients used, we can determine
the coefficients by

aikf gk¼ðpþ1Þðpþ2Þ=2�1
k¼0 ¼ 1

n!g!

@ðnþgÞPp
i ½u�

@�xn
i @�yg

i

�����
ð�xi ;�yiÞ¼ð0;0Þ

8<:
9=;

nþg¼p

nþg¼0

ð6Þ

where n and g are integers such that 0 6 n; g 6 p and for n = 0 and
g = 0, respectively, no derivative is taken. Now using �xj ¼ x� xj and
�yj ¼ y� yj, we can interpret the enriched interpolation in the



Fig. 1. Description of sub-domains for enriched cover interpolations: (a) usual linear nodal shape function, (b) cover region or elements affected by the interpolation cover,
and (c) an element.
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Fig. 2. Coordinate systems for a three-node triangular element: (a) global system
(x,y) and nodal local coordinate systems ð�xi; �yiÞ; i ¼ 1;2;3, and (b) isoparametric
coordinate system.
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triangular element as a linear interpolation (or weighting) of three
associated cover functions that are defined by Taylor polynomials
expanded along each cover coordinate variable. This interpolation
spans higher spatial bases than the standard finite element
interpolation.

The use of the local coordinate systems ð�xi; �yiÞ is important com-
pared to the use of global coordinates (x,y) as employed in Refs.
[41–46,51], in that, firstly, the matrix conditioning is improved
and, secondly, the nodal value ui is separated from the additional
degrees of freedom. Note that the essential boundary conditions
can be directly imposed on ui by also enforcing ~ai ¼ 0. This treat-
ment is indeed a necessary condition in order to avoid a rank defi-
cient global matrix, see Section 3.1.

It should be emphasized that the cover interpolations can be dif-
ferent in different cover regions. For example, the cover interpola-
tion for node i in Fig. 1(c) can be of different degree than the
other cover functions for nodes j and k, and vice versa. This fact
can be naturally used in an adaptive interpolation scheme without
remeshing, as we shall illustrate in example solutions, see Section 5.

2.2. On the use of interpolation covers

An arbitrary degree of polynomial bases can be adopted in the
cover interpolations. However, since high-order covers yield more
unknowns (and, as we shall see, larger condition numbers of the
stiffness matrices), we shall use up to quadratic covers in this work,
i.e. we shall use p 6 2.

For field variables u and v in XðR2Þ , the enriched interpolations
over a 3-node triangular element m given by Eq. (4) are

uðmÞh ¼
X

i2icðmÞ
hiui þ eHi~a

u
i

� �
; v ðmÞh ¼

X
i2icðmÞ

hiv i þ eHi~a
v
i

� �
ð7Þ

where ui and vi are the usual nodal values, and the ~au
i and ~av

i are vec-
tors of unknown coefficients.

For linear covers, we haveeHi ¼ hi½ �xi �yi � ð8Þ
and for quadratic covers we haveeHi ¼ hi �xi �yi �x2
i

�xi�yi �y2
i

� �
: ð9Þ

Using properly arranged unknowns in vectors, the enriched interpo-
lations uðmÞh and v ðmÞh in matrix form become

uðmÞh

v ðmÞh

" #
¼ HðmÞ eHðmÞ 0 0

0 0 HðmÞ eHðmÞ
" # u

~au

v
~av

26664
37775 ð10Þ

in which HðmÞ is the classical finite element interpolation matrix andeHðmÞ ¼ ½ eH1
eH2

eH3 �, where the element local subscripts (1,2,3)
correspond to the global covers (i, j,k) in Fig. 1. Applying the usual
differentiation rules, we have

uðmÞh;x

uðmÞh;y

24 35 ¼ HðmÞ;x
eHðmÞ;x

HðmÞ;y
eHðmÞ;y

24 35 u
~au

� �
;

v ðmÞh;x

v ðmÞh;y

24 35 ¼ HðmÞ;x
eHðmÞ;x

HðmÞ;y
eHðmÞ;y

24 35 v
~av

� �
ð11Þ

with

HðmÞ;x
eH ðmÞ;x

HðmÞ;y
eH ðmÞ;y

24 35 ¼ J�1 HðmÞ;r
eHðmÞ;r

HðmÞ;s
eHðmÞ;s

24 35 ð12Þ

where J is the Jacobian of the element [1], evaluated for each ele-
ment without high-order coefficients.

In addition, the scheme can handle interpolations that have dif-
ferent polynomial degrees in different cover regions while keeping
the same mesh structure. To define such mixed (or adaptive) inter-
polation schemes, we modify the interpolation operator used in Eq.
(4) to

ICfadg½u� :¼
Xe

m¼1

X
i2ic ðmÞ

hiPpðiÞ
i ½u� ð13Þ

where {ad} denotes the set of covers used and p(i) denotes that p
now depends on the node i. For example, if only linear and qua-
dratic covers are adopted, then our scheme is given by ICf1;2g½u�.
Note that the cover series {ad} is user-defined but where the differ-
ent cover interpolations shall be used in the mesh may either be
user-defined or automatically established in an iterative scheme.
In Section 5, we present some experiences with mixed order covers.

2.3. Governing equations in linear elastic solid mechanics

The principle of virtual work is of course directly applicable for
our enriched finite element method [1], and is given byZ

X

�eTsdX ¼
Z

X

�uT f BdXþ
Z

Sf

�uSf T f Sf dS ð14Þ
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Fig. 3. One-dimensional (1D) element of length ‘ with the global and nodal local
coordinate systems.
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where, in the form of vectors, uðxÞ is the displacement, e is the
strain, s is the stress, f B is the body force, f Sf is the surface traction
applied on Sf, and the overbar (–) denotes a virtual quantity.

The strain–displacement relation for element m is given by

eðmÞh ¼ BðmÞ
uðmÞ

~aðmÞ

" #
¼ BðmÞ~uðmÞ ð15Þ

with the obvious definition of ~uðmÞ. The stresses in element m are

sðmÞh ¼ CeðmÞh ¼ CBðmÞ~uðmÞ ð16Þ
where C is the stress–strain matrix.

Using these relations as usual for the element assemblage [1],
we obtain

K~u ¼ R ð17Þ
where K is the global stiffness matrix, R ¼ RB þ RS is the load vector,
and ~u is the total solution vector listing all nodal displacements and
cover coefficients. The stiffness matrix and load vectors are

K ¼
Xe

m¼1

KðmÞ ¼
Xe

m¼1

Z
XðmÞ

BðmÞT CBðmÞdX ð18Þ

RB ¼
Xe

m¼1

RðmÞB ¼
Xe

m¼1

Z
XðmÞ

HðmÞ eHðmÞh iT
f BdX ð19Þ

and

RS ¼
Xe

m¼1

RðmÞS ¼
Xe

m¼1

Z
SðmÞ

f

HSðmÞ
f eHSðmÞ

f

h iT
f Sf dS ð20Þ

where the summation signs imply the direct assemblage process
[1].

2.4. Governing equations of heat transfer in solids

The principle of virtual temperatures for heat transfer in a solid
is [1]
(a)

(b)

Fig. 4. Linear cover interpolation functions on a 3-node element: (a) linearly dependent i
prescribed boundary conditions (p = 1).
Z
X

kr�h � rhdXþ
Z

Sc

~h�hShSdS ¼
Z

Sq

�hSqSdSþ
Z

Sc

~h�hShedS ð21Þ

where k is the thermal conductivity, ~h is the heat transfer coefficient
on Sc to the ambient temperature he, and qS is the heat flux applied
onto Sq. Assuming a constant heat transfer coefficient ~h and he = 0,
we obtain

ðKk þ KcÞ~h ¼ Q ð22Þ

where Kk is the conductivity matrix

Kk ¼
Xe

m¼1

Z
XðmÞ

BðmÞT kðmÞBðmÞdX ð23Þ

with the temperature gradient matrix B(m) given as

BðmÞ ¼
HðmÞ;x

eHðmÞ;x

HðmÞ;y
eHðmÞ;y

24 35: ð24Þ

Also, Kc is the convection matrix

Kc ¼ ehXe

m¼1

Z
SðmÞc

HSðmÞ eHSðmÞ
h iT

HSðmÞ eHSðmÞ
h i

dS ð25Þ

with SðmÞc the element convection boundary. Finally, the heat input
vector Q is given by

Q ¼
Xe

m¼1

Z
SðmÞq

HSðmÞ eHSðmÞ
h iT

qSdS ð26Þ

in which qS represents the applied heat flux input on the element
boundary that is part of Sq.

3. Stability and convergence of the scheme

In this section we present a sufficient condition that guarantees
a positive definite global system matrix and show results regarding
the convergence of the scheme. We consider a linear elastic struc-
tural problem, but the conclusions are also directly applicable to
solutions in other problem categories.

3.1. Stability of the scheme

In order to have well-posed discretized equations, the finite
element matrix K in Eq. (17) should be positive definite once
nterpolations with linear covers (p = 1), (b) linearly independent interpolations with



(a) (b) (c)

Fig. 5. Cover interpolation functions for a 4-node tetrahedral element: (a) global and nodal local coordinate systems, (b) all degrees of freedom, and (c) degrees of freedom
after removing rigid body modes.

L

1EA =1

Fig. 6. One-dimensional bar model to investigate condition number, L = 1, 10, 100.
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appropriate boundary conditions have been applied (to prevent ri-
gid body motions).

In the following we consider the 1D, 2D and 3D analysis cases,
using respectively the 2-node, 3-node and 4-node low-order ele-
ments, because we focus on improving the performance of discret-
izations using these elements.

Our goal is to show that the following property holds:

Property I. If a mesh of traditional finite elements is properly
restrained so that no rigid body modes are present (through prescribed
ui, vi and wi, as applicable, degrees of freedom) and if then covers are
introduced but with no cover degrees of freedom ~ai at the nodes with
any prescribed degrees of freedom, then the resulting stiffness matrix K
is positive definite. h

To show that Property I holds, we first consider a single ele-
ment, see Fig. 3. The interpolation functions for a 1D element with
linear covers are

uh ¼ h1u1 þ h1�x1~a1 þ h2u2 þ h2�x2~a2 ð27Þ

where

�x1 ¼ x; �x2 ¼ x� ‘ ð28Þ

so that Eq. (27) becomes

uh ¼ 1� x
‘

� �
u1 þ 1� x

‘

� �
x~a1 þ

x
‘

� �
u2 þ

x
‘

� �
x� ‘ð Þ~a2: ð29Þ

Using quadratic covers we have

uh ¼ h1u1 þ h1 �x1 �x2
1

� �
~a1 þ h2u2 þ h2 �x2 �x2

2

� �
~a2 ð30Þ
Table 1
Condition numbers of the one-dimensional bar model.

Domain size Number of elements 2

For all L 2-node elements 6.8e0
3-node elements 3.8e1

L = 1 IC1 8.2e1

IC2 2.8e3

L = 10 IC1 5.7e1

IC2 4.6e2

L = 100 IC1 5.7e3

IC2 4.5e6

For all L and cover DOFs normalized IC1 2.1e1

IC2 2.9e2
and in terms of x only we obtain

uh ¼ 1� x
‘

� �
u1 þ 1� x

‘

� �
x~a11 þ 1� x

‘

� �
x2~a12 þ

x
‘

� �
u2

þ x
‘

� �
x� ‘ð Þ~a21 þ

x
‘

� �
x� ‘ð Þ2~a22: ð31Þ

We can see that the functions in the interpolations are linearly
dependent due to degrees of freedom in ~a1 and ~a2. In Eqs. (29)
and (31) we have underlined the linearly dependent terms.

However, assume that we impose at node 1 the displacement u1

(as usual, to take out the rigid body mode) and also eliminate the
cover degrees of freedom ~a1 at that node. Then the remaining inter-
polation functions are linearly independent, for the linear cover

uh ¼ 1� x
‘

� �
u1 þ

x
‘

� �
u2 þ

x
‘

� �
x� ‘ð Þ~a2 ð32Þ

where u1 would now be prescribed, and for the quadratic cover

uh ¼ 1� x
‘

� �
u1 þ

x
‘

� �
u2 þ

x
‘

� �
x� ‘ð Þ~a21 þ

x
‘

� �
x� ‘ð Þ2~a22 ð33Þ

where again u1 would be prescribed. Figs. 4 and 5 give the corre-
sponding interpolation functions for a 3-node triangular element
and a 4-node tetrahedral element, respectively. Here too we see
that the interpolation functions are linearly independent provided
the procedure in Property I is used. In 2D, if the displacements
are prescribed at nodes 1 and 3, as in Fig. 4, the cover degrees of
freedom in ~a1 and ~a3 are all not applied, and we have the linearly
independent interpolations

uh ¼ ð1� x� yÞu1 þ xu2 þ xðx� 1Þ~au
21 þ xy~au

22 þ yu3

vh ¼ ð1� x� yÞv1 þ xv2 þ xðx� 1Þ~av
21 þ xy~av

22 þ yv3:
ð34Þ

In addition we also would have u1 = u3 = v3 = 0. In 3D, we similarly
have, with p = 1,

uh ¼ð1�x�y�zÞu1þxu2þyu3þzu4þzx~au
41þ zy~au

42þ zðz�1Þ~au
43

vh ¼ð1�x�y�zÞv1þxv2þyv3þzv4þzx~av
41þzy~av

42þ zðz�1Þ~av
43

wh ¼ð1�x�y�zÞw1þxw2þyw3þzw4þzx~aw
41þ zy~aw

42þzðz�1Þ~aw
43:

ð35Þ
4 8 16 32 64 128

2.9e1 1.1e2 4.4e2 1.7e3 6.7e3 2.7e4
1.5e2 5.8e2 2.3e3 9.0e3 3.6e4 1.4e5
1.4e3 2.2e4 3.4e5 5.2e6 8.3e7 1.3e9

1.8e5 1.1e7 6.9e8 4.3e10 2.7e12 1.7e14

6.1e1 2.2e2 3.4e3 5.2e4 8.3e5 1.3e7
1.4e3 2.2e4 1.3e6 7.7e7 4.8e9 3.0e11

6.1e3 5.9e3 5.7e3 5.6e3 8.3e3 1.3e5

1.0e6 4.3e5 1.6e6 5.9e6 4.6e7 2.9e9

8.8e1 3.4e2 1.3e3 5.1e3 2.0e4 8.0e4

2.9e3 3.5e4 4.8e5 7.2e6 1.1e8 1.8e9
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Fig. 7. Convergence study of 1D bar problem: (a) problem description,
E ¼ 2:0� 1010; A1 ¼ 0:01; A2 ¼ 1; L ¼ 1; R ¼ 1586� 104; f B ¼ 2� 107, (b) dis-
placements obtained with mesh of 10 elements, and (c) convergence curves of
strain energy.

Table 2
1D bar problem: summary of calculated orders of convergence of strain energy.

2-node
elements

3-node
elements

F 1;2
D F 1;3

D IC1 IC2

Numerical results 1.97 3.91 2.79 2.97 3.91 5.69
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In addition, we would also have displacements prescribed to be zero
at nodes 1, 2 and 3, as shown in Fig. 5.
This implies that K is positive definite for the single elements
considered provided the rigid body modes have been removed,
as usual by constraining appropriate degrees of freedom, with all
~ai degrees of freedom also removed at the nodes with any pre-
scribed displacements.

Consider now that additional elements are attached to these sin-
gle elements, with no further ui degrees of freedom prescribed and
all ~ai degrees of freedom free at the additional nodes used in the
mesh. Then, by the above argument, for any nonzero values of the
ui and ~ai degrees of freedom in the mesh, positive strain energy is
stored in the mesh. Therefore, all eigenvalues of K are positive,
which means that the matrix K in Eq. (17) is positive definite [1].

This result was already given in Ref. [54] based on numerical
experiments, where it is also stated that, for example, using the
4-node quadrilateral 2D element the above approach may not be
sufficient to obtain a positive definite matrix K. Our reasoning gi-
ven here can directly be used to show that this is indeed the case.

Of course, the condition number of the K matrix will increase as
we refine the mesh. Fig. 6 shows a 1D case considered and Table 1
gives the condition numbers of K using the traditional 1D 2-node
and 3-node elements, and the 2-node element with linear and qua-
dratic covers, as the mesh is refined. The table shows that, without
the normalization, the condition numbers using the IC1 scheme are
acceptable but the condition numbers with the IC2 scheme are
quite high. These condition numbers are considerably better when
the normalization of the cover degrees of freedom by a character-
istic length of the elements in the mesh is employed, like in Ref.
[52], and here, of course, we naturally use ĥ = h (the element size).

In practice, when solving 2D and 3D problems, many more de-
grees of freedom are usually constrained than only those to remove
the rigid body modes, and the ~ai degrees of freedom at all those
nodes would then also be removed. Therefore, we focused in our
discussion above on the worst case that may arise, and hence Prop-
erty I always holds.

3.2. Convergence of the scheme

Since the coefficient matrix is positive definite, we can solve a
sequence of meshes and estimate the solution errors measured
by [1]

E� Eh 6 cha ð36Þ

where, as usual, E ¼ 1
2 aðu;uÞ, with a(�, �) being the bilinear form of

the elasticity (or heat transfer, etc.) problem considered, h is the ele-
ment size and a is the order of convergence. Using the equality sign,
we obtain

logðE� EhÞ ¼ log c þ a log h: ð37Þ

In practice we use the exact solution – or a very fine mesh of reli-
able finite elements to obtain a very close approximation thereof,
called the reference solution – to evaluate E. We use Eq. (37) to esti-
mate the order of convergence in the following example solutions.
Furthermore, the relative error is given by (E � Eh)/E.

3.2.1. 1D bar analysis
Consider the one-dimensional bar shown in Fig. 7(a). The exact

response solution is easily obtained and also given in Ref. [55].
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Since we want to compare our cover solution results with those
obtained using the proposed schemes in Refs. [51,52], we use the
notation employed in Ref. [50]. Therefore Fm;p

D denotes the h-p
cloud function space constructed with traditional element interpo-
lations of degree m that are enriched with monomials of degree
m + 1 to m + p � 1. We shall use m = 1 in the example below, and
we note that our ICp schemes use a complete set of polynomial
bases of degree p. Using successive uniform mesh refinements with
elements of equal length, six schemes are evaluated. The schemes
used in the mesh are

� the traditional linear 2-node element F 1;0
D ¼ IC0

� the traditional quadratic 3-node element F 2;0
D

� the quadratic h-p element F 1;2
D : {element basis functions}

�f1 x2 g
� the cubic h-p element F 1;3

D : {element basis functions}
�f1 x2 x3 g
Fig. 8. Ad-hoc test problem: (a) problem domain, E ¼ 7:2� 106; m ¼
� the 2-node elements with linear covers IC1: {element basis func-
tions} �f1 �xi g; 8i
� the 2-node elements with quadratic covers IC2: {element basis

functions} �f1 �xi �x2
i g; 8i

For all simulations, no polynomial cover term is introduced at
the boundaries where the essential boundary conditions are im-
posed. Note that the x basis is missing in the Fm;p

D schemes and that
with these schemes the global coordinates are used, whereas in the
ICp schemes local coordinate systems are employed.

Fig. 7(b) shows the displacement fields calculated using meshes
of 10 elements, and Fig. 7(c) shows the convergence in the energy
norm when systematically refined meshes are used. Among all
schemes implemented, using quadratic interpolation covers pro-
vides the best accuracy in both displacements and strain energies.
One interesting but expected fact is that there is little difference
between the solutions using linear covers on the 2-node elements
0:3, (b) typical non-distorted meshes, (c) induced distortions.



Fig. 9. Ad-hoc test problem: convergence curves for strain energy.

Table 3
Ad-hoc problem: summary of calculated orders of convergence of strain energy.

Non-distorted
Mesh

Distorted Meshes

Mesh I Mesh II Mesh III

Linear 3-node elements 1.95 1.92 1.86 1.76
Quadratic 6-node elements 3.93 3.91 3.89 3.86

Linear covers IC1 3.95 3.94 3.93 3.92

Quadratic covers IC2 5.84 5.83 5.80 5.76

L

Element (1)

L/2 L/2

Element (2)

x

Fig. 10. Model of two elements to evaluate matrix conditioning, E ¼ 1:0; A ¼ 1.

Table 4
1D two-element problem: comparison of condition numbers using global and local
coordinate systems.

Scheme used Length IC1 IC2 F 1;2
D F 1;3

D

Global coordinate system
without normalization

L = 1 2.3e2 1.3e4 1.7e2 3.2e4
L = 10 4.3e3 3.5e6 2.5e5 8.6e7
L = 100 4.2e5 3.2e10 2.5e9 8.5e13

Local coordinate system without
normalization

L = 1 8.2e1 2.8e3 3.3e2 2.7e4
L = 10 5.7e1 4.6e2 4.5e2 7.1e3
L = 100 5.7e3 4.5e6 4.5e6 7.1e9

Local coordinate system with
normalization

For all
L

2.1e1 2.9e2 2.1e1 6.0e2
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(the IC1 scheme) and the solutions using the standard 3-node qua-
dratic finite element.

We summarize in Table 2 the numerically calculated conver-
gence orders of each scheme. The standard and our enriched finite
element methods reproduce the expected values, while the Fm;p

D
schemes do not perform well, see also Fig. 7(c). We also observed
that the coefficient matrices using the Fm;p

D scheme of Ref. [51] be-
come quite rapidly ill-conditioned as the mesh is refined, which is
partly due to the terms used in the displacement interpolations
and partly due to the use of global coordinates, see Section 4.1.

3.2.2. Ad hoc in-plane analysis
In Section 3.2.1, we have seen that the choice of a complete set

of polynomial bases provides stable and accurate results in a 1D
analysis. Here we investigate the convergence behavior and the
sensitivity to mesh distortions in a 2D analysis.

Consider the ad hoc plane stress test problem shown in Fig. 8(a),
see Ref. [1]. For the given in-plane displacements
u ¼ ð1� x2Þ2ð1� y2Þ2eky cos kx

v ¼ ð1� x2Þ2ð1� y2Þ2eky sin kx
ð38Þ

we can establish the corresponding body forces

f B
x ¼ �

@sxx

@x
þ @sxy

@y

	 

; f B

y ¼ �
@syy

@y
þ @syx

@x

	 

ð39Þ

to satisfy equilibrium. Then Eq. (38) gives the exact solution to the
problem. We use these body forces to construct the load vector, and
compare the numerical results of Eh with the analytical value E (see
Eq. (37)) obtained using Eq. (38). For the solution, we use k = 5 and
the displacement boundary conditions are applied along the line
y = �1, where all cover degrees of freedom are removed.

Fig. 8(b) shows the first two meshes used, in undistorted form.
The meshes are constructed by starting with triangular elements of
diagonal length

ffiffiffi
2
p

, then subdividing each element into four equal
triangular elements to obtain the second mesh (see dashed lines)
where the element size is exactly half of the first one, and contin-
uing the process. Fig. 8(c) gives the systematic element distortion
process used. We consider three different degrees of distortion cat-
egorized by Meshes I, II and III in the figure. The lines A–A and B–B
are drawn, and the sides AC, BC, OB, OA are subdivided into equal
lengths to form the elements in the domain ACBO. We proceed
similarly for the other domains.

Since the Fm;p
D ðp P 1Þ discretizations studied in Section 3.2.1

are not robust, we only give comparisons of the performance of
the standard finite elements and our cover schemes enriching
the linear element. The convergence behaviors are summarized



Fig. 11. Meshes for ad hoc test problem; 3-node triangular and 4-node tetrahedral elements are used.
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in Fig. 9 and Table 3. When non-distorted meshes are used, the
calculated orders compare well with the theoretical estimates. As
seen in Fig. 9, using the quadratic covers IC2 gives the highest con-
vergence rate, and the linear cover scheme IC1 and quadratic finite
elements F 2;0

D perform almost equally. As the degree of distortion
increases from Mesh I to Mesh III, the convergence curves shift up-
wards in all schemes. However, if the loss in solution accuracy is
deemed significant, a higher order cover interpolation can be used
to obtain more accurate results. This approach can be valuable
since different covers can be employed in different regions of the
mesh.

4. Numerical aspects

Two numerical aspects of importance are the conditioning of
the stiffness matrix of the complete finite element system and
the expense of using the solution procedure.
4.1. Matrix conditioning

As mentioned already, the use of local nodal coordinates is
important. Consider the simple one-dimensional 2-element model
shown in Fig. 10; we shall study the cases L = 1, 10, 100.

Table 4 gives the condition numbers of the stiffness matrices for
the schemes introduced in Section 3.2.1 when global and local
coordinates are used. As shown in the table, when the global
coordinate is used, the condition numbers are not only more
sensitive to the domain size but are also in general larger. Hence
the solution robustness is increased by using local coordinates
for, both, the Fm;p

D and ICp schemes. However, the table also shows
that the conditioning of the coefficient matrix is even further
increased by using the normalization of the cover degrees of free-
dom by an element characteristic length as mentioned in Section
2.1, and proposed in Ref. [52]. In this example we naturally use
ĥ = h.
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Fig. 12. Analysis of cantilever beam with large fillet radius: (a) problem description, E ¼ 7:2� 109; m ¼ 0:3, (b) von Mises stress field obtained with 392 elements and linear
covers, (c) mixed scheme ICf0;1;2g is used, (d) mixed scheme ICf1;2g is used (the covers at the fixed boundary are not used in the solution).
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4.2. Numerical expense

It is of value to compare the numerical operations required
when using the cover interpolations versus using higher-order tra-
ditional finite elements. In both cases, of course, symmetric stiff-
ness or coefficient matrices are generated. To obtain some insight
into the computational efforts needed in the respective solutions,
we focus on the solution of the governing equations obtained using
direct Gauss elimination, in which the factorization of the stiffness
matrices represents the major expense.

The numerical operations for the factorizations of the banded
stiffness matrices are then approximately ð1=2Þnm2

K where n is the
number of equations and mK is the (effective) half-bandwidth [1].
For an evaluation, consider the solution of the problem in Fig. 8 using
the IC1 scheme and the use of 6-node triangular elements, with the
same meshes. As we have seen, about the same solution accuracy is
obtained using these two discretizations in this 2D problem (but this
may not hold in the solution of a true 3D problem).

Let the number of elements along the sides be q, and let us
ignore in all cases the zero entries within the band, then we have
for this 2D problem, see Fig. 11,

� for the IC1 solution, n ’ q� q� 2� 3; mK ’ q� 2� 3;
� for the solution using the 6-node element, n ’ 2q� 2q�

2; mK ’ 2q� 2� 2.

The ratio of numerical operations referred to above is 27/64,
and while this ratio pertains to a very specific problem solution
and is approximate, solutions with covers in general can be ex-
pected to be reasonably effective.
Table 5
Analysis of cantilever beam: comparison of total numbers of degrees of freedom
(DOFs) and errors in calculated strain energies.

Reference Linear
elements

IC1 IC2 ICf0;1;2g ICf1;2g

DOFs 20,342 498 1494 2988 1194 1932
Eref � Eh 0 7.01e�7 2.92e�8 2.54e�8 1.13e�7 2.82e�8
Percentage

(%)
0 17.7 0.7 0.6 2.9 0.7

Fig. 13. Two-dimensional heat transfer problem: (a) problem description,
k1 ¼ 50; k2 ¼ 100; ~h ¼ 1, (b) calculated temperature distribution.
In a three-dimensional analysis of this problem, we also con-
sider q divisions into the third direction, see Fig. 11 (where we
use 6 tetrahedral elements per hexahedral domain). Comparing
the use of 4-node tetrahedral elements with linear covers and
the use of the same mesh with 10-node tetrahedral elements, we
have
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� for the IC1 solution, n ’ q� q� q� 3� 4; mK ’ q� q� 3� 4;
� for the solution using the 10-node element, n ’ 2q� 2q� 2q�

3; mK ’ 2q� 2q� 2� 3.

The ratio is now 1/8 and hence here, for this problem solution,
an even smaller effort is needed when using covers.

But in particular, a major benefit of using the cover interpola-
tions is that covers need not be used throughout the complete
Fig. 14. Heat transfer analysis using standard and enriched schemes: (a) adaptive in
prescribed temperatures are not used in the solution), (b) and (c) temperature plots alo
analysis domain but can be added in a mixed manner in those re-
gions where they provide good benefit for solution accuracy, as we
shall demonstrate next in the example solutions.

5. Illustrative example solutions

In this section, we present some two and three-dimensional
simulation results to compare the performance of the standard
terpolations used for coarse and fine meshes (the covers at the boundaries with
ng the evaluation line ð0; yÞ.



Table 6
Analysis of heat transfer problem: comparison of total number of degrees of freedom
(DOFs) and relative errors.

Linear
elements

IC1 IC2 ICf0;1;2g ICf1;2g

Coarse mesh DOFs 72 216 432 135 237
Errors (%) 8.90 3.19 2.41 3.44 2.86

Fine mesh DOFs 242 726 1452 295 750
Errors (%) 2.71 0.48 0.27 1.75 0.45

Fig. 15. Three-dimensional machine tool jig, material properties E ¼ 7:2� 1010 and
m ¼ 0:3.
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and enriched finite elements, and also to illustrate the use of
different orders of covers over the solution domains. The computed
Fig. 16. von Mises stress results for the machine tool jig pro
results are identical whether the mentioned normalization of the
cover degrees of freedom is used or not.

In order to determine a proper mixed cover series {ad}, see Eq.
(13), and the regions where covers might be used, we establish a
first numerical solution, with or without covers (depending on
the simulation purpose). We evaluate the element stress or temper-
ature gradients and then establish whether covers, and of which or-
der and in which regions, should be applied. Of course, there are
different ways to proceed in the choice of covers, and in the exam-
ple solutions below we simply illustrate how different covers can be
used and what effects these have on the solution accuracy.
5.1. Cantilever beam with fillets

Consider the two-dimensional cantilever beam in plane stress
conditions subjected to a tip load shown in Fig. 12(a). An example
von Mises stress plot obtained using the IC1 scheme is given in
Fig. 12(b), where the high stress gradients in the fillets can be seen.
For an effective analysis, different covers might be applied over the
solution domain. Figs. 12(c) and (d) show two possible applications
of covers. Fig. 12(c) refers to a scheme ICf0;1;2g that applies con-
stant, linear and quadratic covers and Fig. 12(d) refers to a scheme
ICf1;2g, with which we expect a more accurate solution.

Since there is no exact solution to the problem, we measure the
error on the reference solution obtained with a fine mesh of 2460
9-node quadrilateral elements. For the evaluations of the various
schemes we always use a rather coarse mesh of 392 elements.
Table 5 gives the relative errors in strain energies and the total
number of degrees of freedom used.
blem (DOFs = total number of degrees of freedom used).



Fig. 17. Analysis of 3D tool jig, comparisons of results along the evaluation lines: (a) z-displacement along the line A, and (b)–(d) longitudinal normal stresses along the lines
A, B and C, respectively.
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As expected, the accuracy increases as the order of the interpo-
lation covers increases, and the errors obtained using the interpo-
lations ICf0;1;2g and ICf1;2g are in-between the errors measured
using the traditional 3-node element and the IC2 interpolation.
In particular, using the IC1 and ICf1;2g schemes results in excellent
accuracy compared to using the IC2 interpolation with a smaller
number of degrees of freedom. These results illustrate that a prop-
er choice of cover interpolations can be important.

5.2. Two-dimensional heat transfer

Fig. 13(a) shows the heat transfer problem solved. We obtained
the reference solution using a very fine mesh of 12,288 9-node ele-
ments and show this solution in Fig. 13(b). For the evaluation of
the various discretizations we use the calculated temperature
along the line AB (x = 0 in Fig. 13(a)).

Fig. 14(a) shows two types of interpolations used with coarse
and fine meshes. Again we use ICf0;1;2g and ICf1;2g schemes, in
which the higher order covers are applied where temperature gra-
dients are steep. As seen in Fig. 14(b), the enriched scheme solu-
tions can provide good accuracy even using the coarse mesh.
Note that the ICf0;1;2g scheme solution given in Fig. 14(c) with the
fine mesh is not accurate enough because a small number of inter-
polation covers are used.

Table 6 shows the relative errors obtained in the analyses using
the standard, fully enriched and mixed schemes. We see that the
use of the interpolation covers results into excellent overall accu-
racy, even with the coarse mesh, and the use of different covers
in different parts of the problem domain can be beneficial.

5.3. Three-dimensional machine tool jig

Finally, we present a 3D analysis example, like considered in
Refs. [55,56], see Fig. 15. The geometry of the machine tool jig is
taken from Ref. [56]. The enriched interpolations for the 4-node
tetrahedral elements used in the 3D solutions can directly be
developed from the 2D interpolations derived in Section 2. Since,
as discussed in Section 4.2, the IC1 scheme is more efficient than
the use of quadratic finite elements, we only adopt the linear cov-
ers in this simulation and compare the results with the traditional
4-node element solutions.

We consider the structure subjected to a constant pressure load
on its top surface, see Fig. 15. The maximum von Mises stress oc-
curs at the round inner surface as marked in the figure. The error
is measured with respect to the solution obtained with a very fine
mesh of 16,000 27-node brick elements, leading to 423,360 de-
grees of freedom. To compare the displacement and stress results,
we use the solutions along the dashed evaluation lines A, B, and C.

As seen in Figs. 16 and 17, the solution accuracy is significantly
improved with the cover scheme. Using the enrichment scheme
provides good agreement with the reference value of maximum
von Mises stress, while the standard linear finite element solution
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gives a 23-percent error in the von Mises stress with the finest
mesh. We also give the total number of degrees of freedom used
in the solutions in Fig. 16. Note that the use of the covers increases
by 4 times the number of degrees of freedom that are employed
(see Sections 2.2 and 4.2). It is interesting that the standard finite
element fine mesh solution provides a significantly worse maxi-
mum von Mises stress prediction than the use of linear covers in
the coarse mesh with only about one quarter of the number of de-
grees of freedom.

Fig. 17 shows the calculated z-displacement and longitudinal
normal stress syy (averaged at the nodes) along the evaluation
lines. These plots confirm once more that the IC1 solution using
the coarse mesh is more accurate than the standard finite element
solution using the fine mesh. We also see that the IC1 solution
using the medium mesh gives good displacement and stress
predictions.

6. Concluding remarks

In this paper we focused on a general procedure to improve
the displacement and stress predictions obtained using classical
finite element methods by applying interpolation covers. As
pointed out, the proposed scheme can be derived by various ap-
proaches and, in fact, the theory was presented earlier. Hence
our objective in this paper was to investigate the effective use
of the procedure for the low-order triangular 2D and tetrahedral
3D elements.

Covers as used in the numerical manifold method lead to a di-
rect enrichment of the traditional finite element method. The cover
scheme provides smoother solutions and higher order conver-
gence, and can be used efficiently with relatively coarse meshes.
An important aspect is that the interpolation space is enriched
by the cover functions without changing the mesh topology. Rea-
sonably coarse meshes might be used, and if the results obtained
with the traditional finite elements are not acceptable, covers are
applied to obtain improved solution results; hence, the adaptivity
inherent in the approach has considerable potential.

The scheme we focused on employs local coordinate systems
for the interpolation covers, possible normalization, and the cover
terms are removed at boundaries with Dirichlet boundary condi-
tions. This approach yields a nonsingular global stiffness matrix
and reasonable matrix conditioning.

The estimation of the numerical expense indicates that using
the cover scheme can be efficient. Also, the adaptive choice of cov-
er functions provides good potential to minimize the need of mesh
refinements. We illustrated the use of mixed cover schemes based
on some gradients of the calculated solutions but of course other
criteria can be employed. The cover functions can also be used to
increase the solution accuracy when elements are quite distorted.

We should note that the cover scheme improves the displace-
ment and stress predictions, as shown in the paper when using
the 3-node triangular and 4-node tetrahedral elements, and not
only the stress predictions as does, for example, the scheme of Pay-
en–Bathe given in Ref. [57]. Of course, the added cost of solution
using the cover scheme is quite significant whereas the cost to im-
prove only the stresses is very small [57].

Considering future research, we only considered in this paper
the linear time-independent analysis of solids and heat transfer.
It would be valuable to develop the enrichment scheme for the
solution of dynamic and general nonlinear problems, using the
low-order solid elements, and for the analysis of shell structures
using mixed interpolations [1,58,59]. Finally, the scheme should
be tested thoroughly in all cases, in particular in 3D solutions, with
respect to the accuracy obtained and the computational effort re-
quired, and would ideally be developed for use in a fully automatic
adaptive procedure for linear and nonlinear analyses and the calcu-
lation of error measures.
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