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Abstract. In this paper we examine briefly the reliability of solution needed for the accurate and effective analysis of

engineering design problems involving contact conditions. A general finite element formulation for treating the frictional

contact problem using constraint functions is first summarized. Then we address general reliability issues and those

related to the selection of appropriate elements that provide optimal performance. These elements of course do not lock

and would provide the best solution an analyst can expect when simulating a design problem. Reliability issues specific to

the contact formulation are also presented. A promising procedure to increase the reliability of an analysis is the method

of finite spheres. The method does not require a mesh and in particular can be used with a finite element discretization as

described in the paper. Finally, the results of several illustrative analysis problems are given.
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1. Introduction

Finite element methods are used extensively in many engineering applications to analyze new and

existing designs. The complexity of many design problems, as well as the scarcity of test data,

require analysis solutions and therefore that the most accurate and reliable numerical methods

for analysis be employed. This includes using the appropriate finite element formulations, using

the appropriate elements, and using an appropriate contact formulation (Bathe, 1996).

The finite element formulation selected must be suitable for the problem to be analyzed. For

example, only implicit analysis should be used for low and medium speed simulations. The

selected elements should be stable and effective. If optimal elements are used, reliable results are

obtained for any geometry and boundary conditions. Of course, reliable elements will not give

unstable solutions, will not lock and are not based on ‘‘numerical factors’’. Finally, the contact

formulation should be reliable. It should satisfy the appropriate physical and mathematical

conditions, should not ill-condition the stiffness matrices, and—like the elements used—should

possess the optimal convergence rate (Bathe 1996, 2001a; El-Abbasi and Bathe, 2001).

In this paper, we briefly present a finite element formulation for contact problems based on

the constraint function method. We then address the different reliability aspects mentioned

above, and finally, we present some state-of-the-art illustrative numerical results that were

obtained using reliable finite element methods.

2. Theory

Consider a system consisting of two bodies in contact (Figure 1). The contact kinematics dictate

that for any admissible displacement v, there is no inter-penetration between the bodies, and the
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contact pressure k can only be zero or positive. These normal contact conditions can be rep-

resented as

g � 0; k � 0; gk ¼ 0 ð1Þ

where g is the gap which can be defined as

g ¼ ½x2 � x1� � n ð2Þ

where x1 and x2 are appropriately selected points on the surfaces of bodies A and B, and N is a

unit normal vector.

For the tangential contact conditions, we assume that once contact is established, a relative

contact tangential motion is possible only if the magnitude of the tangential traction t is suf-

ficiently large to overcome the frictional resistance at the contact surface. We define the non-

dimensional frictional variable s as

s ¼
jtj
f if f > 0

0 otherwise

�
ð3Þ

where the scalar f represents the frictional resistance. In the case of Coulomb friction,

f ¼ lk ð4Þ

The relative tangential velocity between the contacting bodies can be defined as

v ¼ ½v2 � v1� � s ð5Þ

where s is the unit vector in the slipping direction. The stick/slip condition can be expressed as

s � 1; s < 1 ) v ¼ 0; s ¼ 1 ) slip : v 6¼ 0 ð6Þ

The variational formulation of the frictional contact problem involving N contacting bodies can

be expressed as (Bathe, 1996)

XN
I¼1

Z
0VI

S � de d0VI þ
XZ

CC

ðknJ þ tJÞ � DduIJdCC ¼
XN
I¼1

Z
0VI

qðfB � €uÞ � du d0VI

þ
XN
I¼1

Z
o0VI

fS � du do0VI ð7Þ
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Figure 1. Two bodies in contact.
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where

DduIJ ¼ duJ � duI ð8Þ

denotes the virtual displacement of body J relative to body I. The contact terms in Eq. (7) are

evaluated over the yet unknown contact area GC. A detailed formulation, also accounting for

incompressibility (using the u/p formulation) and thermal effects, can be found in Pantuso et al.

(2000).

Using the constraint function method (Bathe, 1996), the normal contact inequality condition

can be replaced by

wnðg; kÞ ¼ 0 ð9Þ

where wn is a continuous and differentiable function of g and k. The pure Lagrangian multiplier

as well as the perturbed Lagrangian methods can be obtained as particular cases of the con-

straint function method as shown in Pantuso et al. (2000).

Similarly, the tangential frictional condition can be replaced by

wsðv; sÞ ¼ 0 ð10Þ

where ws is a continuous and differentiable function of v and s. More details on the form of the

normal and tangential constraint functions can be found in Bathe (1996) and ADINA R&D,

Inc. (2002).

This approach results in the following additional constraint equation for each contact region

Z
CC

½wnðg; kÞ dkþ wsðv; sÞ ds� dCC ¼ 0 ð11Þ

3. Finite element discretization

Employing standard finite element discretization of Eqs. (7) and (11), we obtain

Fu ¼ R� Rc; Fc ¼ 0 ð12Þ

where Fu lists the nodal forces equivalent to the element stresses, R lists the externally applied

loads (including the inertia forces), Rc represents the contact forces, and Fc represents the

contact constraints of Eq. (11). This nonlinear system of equations is solved incrementally using

load (time) incrementation and the Newton–Raphson procedure, in which at each iteration we

solve the following system of equations

oUFu þ oURc oRRc

oUFc oRFc

� �ði�1Þ
DU
DR

� �ðiÞ
¼ R� Fu � Rc

�Fc

� �ði�1Þ
ð13Þ

where U is the assembled displacement vector, and R lists the assembled contact variables at

each contactor node k

Rk ¼ fk; sgk ð14Þ

A detailed evaluation of the different terms in Eq. (13) can be found in Bathe (1996) and

Pantuso et al. (2000).
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4. Reliability

For a finite element solution to be reliable, efficient and accurate for engineering design prob-

lems, it must be based on reliable formulations and use effective elements that – if possible –

have been proven to be optimal. In addition, if the design problems involve contact conditions,

a reliable contact formulation should be used.

4.1. GENERAL RELIABILITY CONCERNS

Using an appropriate finite element formulation is an essential part of overall solution reli-

ability. Steady state or low/medium speed simulations, for example, should always be treated

using implicit analysis. Explicit solutions should only be used in high-speed simulations. For

plasticity, it is more effective to use a total strain formulation such as the updated Lagrangian

Hencky formulation, rather than a strain rate-type formulation such as the Jaumann formu-

lation (Bathe, 1996). Larger solution steps can be used without introducing additional numerical

integration errors.

The ‘best’ elements for engineering analysis are elements that are not based on numerical

factors and satisfy the ellipticity and optimal convergence requirements. This will guarantee that

they do not lock, are free of spurious modes, and are robust and maintain their optimal

predictive capability (Brezzi and Fortin, 1991; Bathe 1996, 2001a; Chapelle and Bathe, 2003).

Elements based on reduced and/or selectively reduced integration, while still used, do not

necessarily pass these robustness and reliability requirements.

The ellipticity condition can be expressed as

aðvh; vhÞ � a vhk k21 8vh 2 Vh ð15Þ

where a(.,.) is the applicable bilinear form, Vh denotes the space of finite element functions in the

mesh of generic element size h, and a is a constant strictly greater than zero (Bathe, 1996). This

condition is satisfied when appropriate finite elements and boundary conditions are used.

Optimal predictive capability of an element formulation is observed if the following relationship

holds

ku� uhk1 ffi chk ð16Þ

where u is the exact solution, uh is the finite element solution, k is the order of the complete

polynomial of the finite elements used and c is a constant that is independent of h, independent

of critical material properties (such as Poisson’s ratio in almost incompressible analysis), and

independent of critical geometric features (such as the thickness of a plate or shell).

4.2. RELIABILITY IN ANALYSIS OF INCOMPRESSIBLE MEDIA

Reliable analysis of incompressible and almost incompressible media (like rubber and elasto-

plastic continua) cannot be performed with displacement-based formulations. Mixed formula-

tions that satisfy ellipticity and the following inf-sup condition are most effective

inf
qh2Qh

sup
vh2Vh

ðqh; div vhÞ
kqhk0kvhk1

¼ bh � b > 0 ð17Þ
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where Qh is the finite element pressure interpolation space, Vh is the displacement interpolation

space, and the constant b is independent of the mesh size h. If an element discretization satisfies

this inf-sup condition as well as the ellipticity condition it will be stable and will show optimal

convergence behavior. The u/p mixed formulation described in (Bathe, 1996) satisfies the above

conditions with several displacement/pressure interpolation choices, such as for the 9/3 and 9/4-

c 2D elements and the 27/4 3D element.

4.3. RELIABILITY IN ANALYSIS OF SHELLS

Pure displacement-based formulations are also not reliable for plate and shell analyses. They are

too stiff (due to locking). Mixed interpolated formulations are much more effective, and are

formulated with the aim to satisfy the ellipticity and relevant inf-sup condition. The MITC shell

elements have been numerically analyzed and shown to be effective (Bathe et al., 2003; Chapelle

and Bathe, 2003; Hiller and Bathe, 2003).

4.4. RELIABILITY IN ANALYSIS OF CONTACT CONDITIONS

Reliable contact formulations (like other constrained mixed formulations) must also satisfy an

appropriate inf-sup condition (Bathe and Brezzi, 2001; Brezzi and Fortin, 1991)

sup
vh2Vh

R
CC

khgðvhÞ dCC

kvhk1
� b sup

v2V

R
CC

khgðvÞ dCC

kvk1
8kh 2 Mh ð18Þ

where Mh is the space of contact tractions and b is a constant, greater than zero. This condition

has been evaluated for different contact formulations (Bathe and Brezzi, 2001; El-Abbasi and

Bathe, 2001). Commonly used formulations that do not satisfy this condition are the double-

pass master slave algorithm, and some master-slave algorithms where the integration is per-

formed at Gaussian points.

Another factor contributing to reliability in contact analysis is the accurate evaluation of the

consistent contact stiffness matrix resulting from the different terms of Eq. (13). One commonly

overlooked term is that resulting from the change of direction of the contact normal force. This

term is proportional to the contact force and the change in the direction of the normal contact

vector. It helps maintain a quadratic convergence rate (in the neighborhood of the solution) as

the magnitude of the contact force increases.

Finally, ideally, a contact algorithm satisfies the contact patch test (Crisfield, 2000; El-Abbasi

and Bathe, 2001; Irons and Razzaque, 1972). In such tests two contacting bodies are loaded in

such a way that constant contact tractions should be predicted (see Figure 2). A contact

algorithm passes this test if its numerical integration of the contact terms of Eq. (7) in fact

results in constant tractions regardless of the meshes/discretizations used for the two contacting

bodies. Various contact algorithms in use do not pass the contact patch test (Wriggers, 2002).

Node-to-segment contact algorithms, for example, do not pass the patch test when the meshes

on both contacting surfaces are different.

A contact algorithm that satisfies the contact inf-sup condition and passes the contact patch

test is detailed in (El-Abbasi and Bathe, 2001). In this algorithm, contact is enforced at the nodes

of the contactor surface but the integration of Eqs. (7) and (11) accounts for the discontinuous

nature of the gap function.
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Figure 2. Contact patch test.

Figure 3. Coupling finite element discretized domain with finite spheres discretized domain: (a) structure and domains

and (b) computational domains.
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5. Finite spheres coupled with finite element discretizations

Frequently in finite element analysis, the meshing of a certain part can be difficult because sliver

elements need to be avoided. Also, in large deformation analysis or fluid structure interaction

(FSI) problems involving contact, sliver elements or highly distorted elements may develop. As

well known, highly distorted or sliver elements can lead to unreliable solutions.

To avoid these difficulties and to complement the finite element method, we developed a

meshless technique, the method of finite spheres (De and Bathe, 2000, 2001a,b; De et al., 2003;

Hong and Bathe, 2003). In meshless techniques including the method of finite spheres,

numerical integration is an expensive task. To improve the efficiency of the method of finite

spheres, we derived more effective integral equations based on the compact support charac-

teristics of the shape functions (Hong and Bathe, 2003).

The new aspect of the procedure is that it can be used in a consistent manner with the classical

finite element method, that is, the coupling of these two procedures satisfies the partition of

unity. Also, the method can be used with displacement-pressure interpolations to satisfy the inf-

sup condition (De and Bathe, 2001a). Figure 3 shows a typical discretization using finite ele-

ments, finite spheres and a coupling region. We call XFE the domain which does not have any

overlapping with finite spheres, XFE�FS the union of finite elements which have non-zero overlap

with spheres, and XFS the region which consists of spheres.

The nodal coefficient vector of values corresponding to the degrees of freedom of the finite

elements and finite spheres are

UT ¼ uT1 u
T
2 � � � uTNfe

jaT10aT11 � � � aTNspheresNpol

h i
ð19Þ

where the coefficients uTI ¼ ½uIvI� are the nodal degrees of freedom for finite element node I, and

Nfe is the number of finite element nodes. Regarding finite spheres, aTIm ¼ ½uImvIm� are the mth

order degrees of freedom at finite sphere node I,Nspheres is the number of finite spheres, andNpol is

the number of terms in the polynomials of the spheres used. For the pure finite element and finite

sphere domains, the governing equations are as given in (Bathe, 1996; De and Bathe, 2001b). In

the coupled domain we can express the displacement and strain fields as (Hong and Bathe, 2004)

uXFE�FS
ðxÞ ¼

X
HFE�FS

I ðxÞuI þ
XNspheres

J¼1

X
n2W

HFE�FS
Jn ðxÞaJn ð20Þ

eXFE�FS
ðxÞ ¼

X
BFE�FS
I ðxÞuI þ

XNspheres

J¼1

X
n2W

BFE�FS
Jn ðxÞaJn ð21Þ

Here HFE�FS
I ðxÞ and BFE�FS

I ðxÞ are the displacement matrices and the strain–displacement

matrices corresponding to the finite element nodes, respectively. Similarly, HFE�FS
Jn ðxÞ and

BFE�FS
Jn ðxÞ correspond to the nodes of the finite spheres. The basic equations for the displace-

ment-based coupled discretization using finite elements and finite spheres areX
J2L

KIJ uJ þ
X
J2K

X
n2W

KIJn aJn ¼ fI þ f̂I ð22Þ

X
J2L

KImJ uJ þ
X
J2K

X
n2W

KImJn aJn ¼ fIm þ f̂Im ð23Þ
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where Eq. (22) is for node I of finite elements and Eq. (23) for node I of finite spheres. The

vectors on the right-hand side incorporate the applied forces, Dirichlet and Neumann boundary

conditions (De and Bathe, 2001a,b; Hong and Bathe, 2004).

6. Numerical examples

In this section we present some demonstrative solutions obtained using reliable finite element

procedures involving contact conditions.

6.1. METAL FORMING: SWAGING SIMULATION

The metal forming industry makes extensive use of nonlinear finite element analysis with

contact. The workpiece to be shaped usually comes in contact with one or more forming dies,

and possibly with itself or with other workpieces. Friction, dynamic and thermal effects should

sometimes be taken into consideration. The simulation is always nonlinear due to the plastic

deformation of the workpiece and usually large deformations are involved. Due to the above

complexities it is essential to use a reliable finite element formulation.

In this example, we simulate a swaging process where a metal tube is reduced in diameter by a

series of rapid blows applied through three rigid dies. Figure 4 shows the geometry of the

workpiece and the dies, and it also shows the plastic strain at an intermediate stage in the

simulation.

6.2. RUBBER SEAL COMPRESSION

This example illustrates the importance of the consistent linearization of the contact constraints.

It involves the compression of a rubber seal by rigid dies as shown in Figure 5. The rubber seal

ACCUM EFF
PLASTIC STRAIN

.2100

.1800

.1500

.1200

.0900

.0600

.0300

.0000

Rigid dies

Metal 
workpiece

Figure 4. Swaging simulation: finite element mesh (top) and effective strain distribution (bottom).
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will eventually fold onto itself and experience self-contact where the direction of the contact

normal changes as the load increases. Figure 5 also shows the deformed geometry and contact

tractions at times t ¼ 3 and 5 s.

Without the contact stiffness terms mentioned above resulting from Eq. (13), the simulation

does not converge at time t ¼ 3 s, that is beyond time t ¼ 2 s (at t ¼ 2 the rubber folds upon

itself). Figure 6 shows the out-of-balance energy norm as a function of the iterations with and

without the above mentioned consistent contact stiffness terms. The results indicate the loss of

quadratic convergence when the extra terms are neglected.

These stiffness terms also affect the natural frequencies calculated based on the deformed

configuration (contact is accounted for in the frequency analysis). Table 1 shows the first five

natural frequencies at time t ¼ 2 s with and without the extra terms. In this case, the effect of the

extra stiffness term is rather small.

Prescribed
displacement

t = 5 sect = 3 sec

Self-contact
surfaces

Rigid contact surfaces

Figure 5. Rubber seal model: schematic (top) and contact pressure distribution at t ¼ 3 and 5 s (bottom).

Figure 6. Energy convergence tolerance during rubber seal compression.
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6.3. TUBE COMPRESSION

In this example, a 10 cm long cylindrical steel tube is fixed at one end and compressed at the

other end through contact with a rigid surface having a prescribed constant velocity, as shown in

Figure 7(a). This example involves self-contact (surfaces contacting themselves) along the inner

and outer walls of the tube and contact with rigid surfaces at both ends of the tube. Figure 7(b)

shows the deformed geometry, while Figure 8 shows the load-deflection curve when the tube is

compressed at speeds of 0.1 and 10 m/s.

Table 1. Effect of extra stiffness terms on the first five natural frequencies of the rubber seal at time t = 2 s

Natural frequencies

Without extra terms 154.4 203.2 440.1 636.3 688.3

With extra terms 154.5 208.7 440.6 645.0 690.8

Prescribed constant velocity

Elastoplastic
metal tube

Rigid surface

Rigid surface

Fixed
end

(a) (b)

Contact 
forces

Figure 7. Tube compression: (a) schematic and (b) deformed geometry and contact forces.

Figure 8. Load deflection curve for tube compression for two different crushing velocities.
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6.4. BRAKE SIMULATION: THERMOMECHANICAL COUPLING

This example involves a thermally coupled disc brake analysis. In Figure 9 we show a schematic

of the disc braking system where the heat generation caused by friction between the rotating disc

and the piston and plate is to be analyzed. In this simulation, the rotating disc is prescribed to

slow down from 300 to 0 rpm in 5 s. The analysis is performed using a simple 2-D axisymmetric

model subjected to an out-of-plane contact slipping which is the main source of heat generation.

Figure 9 also shows the temperature distribution on the brake components at times t ¼ 1, 2 and

6 s.

6.5. BIOMEDICAL APPLICATIONS: AORTIC VALVE SIMULATION

During recent years there has been an increasing interest in the numerical solution of biomedical

problems (Bathe, 2001b, 2003). Contact plays a major role in many of these problems, especially

in the areas of hemodynamics, orthotics, prosthetics and crash dynamics. In many of the

problems analyzed, experimental data are hard to obtain, and the analyst should therefore use

reliable numerical tools. In this example, we simulate blood flow through an aortic valve. This

coupled multiphysics problem involves FSI as well as contact effects.

Figure 10 shows the fluid and solid meshes of a simplified heart valve geometry. The artery

was modeled as a hyperelastic solid and was meshed with nine node u/p elements. The blood

was modeled as a Newtonian fluid and was meshed with four node elements. Note that the solid

 

Figure 9. Disc braking system: schematic (top left) and temperature and contact pressure distribution at t ¼ 1, 2 and 6 s.

Contact problems in engineering 13



and fluid meshes are non-matching at the FSI boundary. Figure 10 also shows the velocity

vector plot in the fluid and the effective stress in the solid as the valve is opening.

6.6. ANALYSIS OF A PLATE WITH A HOLE USING FINITE SPHERES

We consider a square plate with a small circular hole. The plate is subjected to a uniform

pressure as shown in Figure 11. To simulate the stress concentration phenomenon, usually, in

the traditional finite element solution, mesh refinements are used around the hole. In our

analysis, we used rather coarse almost uniform finite element meshes enriched with only two

finite spheres, with Npol=3, placed as shown in Figure 11. Table 2 shows the normal stress in

the horizontal direction, rxx, for different finite element mesh densities. The results show that

Applied traction

Solid 
mesh

Contact 
surfaces

FSI boundaries

Fluid 
mesh

VELOCITY

2.098

EFFECTIVE
STRESS

10.00
8.33
6.67
5.00
3.33
1.67
0.00

Figure 10. Schematic of aortic valve (left) and results during valve opening showing velocity vector plot in the blood and

effective stress in the artery (right).

Figure 11. Geometry of a square plate with a hole in the middle of the plate. Young’s modulus E ¼ 100, Poisson’s

ratio ¼ 0.30, a/b ¼ 0.10, p=1.0.
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the two added finite spheres lead to a significant improvement in stress prediction, especially

when using 4-node finite elements. Since lower-order finite elements are in general attractive for

the solution of contact problems, clearly, the potential of using finite spheres in conjunction with

finite elements is significant.

7. Concluding remarks

In this paper we focused on the reliability of solution needed for the accurate analysis of

engineering design problems involving contact. A solution procedure for frictional contact

problems based on the constraint function method was summarized, and the reliability of

different aspects of finite element solutions was discussed. It can be concluded that reliability is

an important aspect of any finite element analysis in order to avoid erroneous results. Today,

reliable finite element solutions can be obtained for many complex engineering problems, and

we presented several demonstrative applications in Section 6. Also, new discretization tech-

niques, such as the method of finite spheres mentioned in this paper, can be expected to further

increase the reliability and effectiveness of engineering analysis.
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