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Abstract

The method of finite spheres was introduced as a truly meshless technique with the goal of achieving computational
efficiency in a mesh-free procedure. In this paper we report several new numerical integration rules that result in a
significant reduction in computational cost. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The conceptual development of a truly meshless
scheme, i.e. a computational technique that does not
depend on a mesh for interpolation or integration pur-
poses, is rather straightforward. A technique of genera-
ting interpolation functions having compact support
depending only on a scattered distribution of nodal
points on the domain needs to be adopted. This allows
the interpolation procedure to be independent of a mesh.

A variety of such meshless interpolation techniques is
now available; for example, the moving least squares
interpolation technique [1], the weighted least squares
technique [2] and methods derived using the partition of
unity paradigm [3,4]. A weighted residual scheme is used
to generate the discretized set of equations. The different
meshless techniques found in the literature differ, in es-
sence, in their choice of the interpolation functions,
the particular form of the weighted residual scheme
employed and the procedure of imposing the boundary
conditions.

If a Galerkin formulation is used, an additional
hurdle is the development of an integration scheme that
is also independent of a mesh. Such integration schemes
have been specifically developed in the context of the
method of finite spheres [5]. If, on the other hand, a
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meshless technique adopts the point collocation proce-
dure as the weighted residual scheme (for example, as in
the finite point method [2]), then no such difficulty exists
as the governing differential equations are used only
at the nodal points. But the quality of solution is
rather sensitive to the “proper” choice of the collocation
points.

The Galerkin formulation is robust and given a
reasonably large finite dimensional approximation space
and a sufficiently high order integration rule, conver-
gence is assured. Hence the real challenge is to develop a
truly meshless scheme that is computationally efficient.
The current trend in research in meshless techniques is
towards application of the new techniques to diverse
problem areas in engineering and not on the very im-
portant issue of computational efficiency. However, for
any meshless technique to find eventually wide applica-
tion, it must be reasonably efficient compared to the now
classical finite element/finite volume techniques and it
should, of course, be reliable. With these considerations
in mind, we proposed a truly meshless technique—the
method of finite spheres [5].

In the method of finite spheres the discretization is
performed using functions that are compactly supported
on general n-dimensional spheres and the Galerkin weak
form of the governing partial differential equations is
integrated using specialized numerical integration rules.
The relative orientation and the region of overlap of two
spheres are completely determined by the coordinates
of their centers and their radii and this makes spheri-
cal supports attractive. The interpolation functions are
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generated using the partition of unity paradigm [3]. The
Shepard functions [6] using cubic spline weighting func-
tions provide a low-cost partition of unity.

In the Galerkin formulation, one of the major com-
putational costs is the numerical integration of the terms
in the weak form. In the traditional finite element
methods numerical integration is performed most ef-
ficiently using Gauss—Legendre product rules on inte-
gration domains that are n-dimensional cubes or
tetrahedra. The Gauss-Legendre quadrature rule en-
sures arbitrary polynomial accuracy and therefore the
stiffness terms (for undistorted elements) are exactly
integrated with low cost [7]. In the method of finite
spheres, however, the interpolation functions are ratio-
nal (non-polynomial) functions on domains and effective
numerical integration rules have to be developed.

In Ref. [8] we presented a set of integration rules for
disks, sectors and “lens” shaped overlap regions of disks
and concluded, from actual comparisons of computa-
tional costs and some rough theoretical estimates, that
the method of finite spheres was about an order of
magnitude slower than the traditional finite element
technique for two-dimensional problems in linear elas-
tostatics. In this paper we present a set of improved rules
on the same computational subdomains and report a
significant reduction in computational costs.

The organization of this paper is as follows. In Sec-
tion 2 we review the interpolation scheme used in the
method of finite spheres. In Section 3 we summarize the
displacement-based method of finite spheres as well as
a displacement/pressure mixed formulation that we
developed to overcome volumetric “locking’ [9]. In Sec-
tion 4 we introduce several new integration rules (that,
of course, are applicable to both the displacement based
method and the displacement/pressure mixed formula-
tion) and present an estimate of how the improved in-
tegration rules result in lower computational costs.
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2. Method of finite spheres shape functions

In this section we briefly recapitulate how we gener-
ate low-cost approximation functions using the partition
of unity paradigm [3] based on the Shepard partition of
unity functions [6].

Let Q € R (d = 1,2 or 3) be an open bounded do-
main and let I" be its boundary (see Fig. 1). Let a family
of open spheres {B(x;,7;); I =1,2,...,N} form a cov-
ering for Q, i.e. Q C U?’Zl B(x;,rr), where x; and r; refer
to the center and radius of the sphere 7 respectively. We
associate a “node” with the geometric center x; of each
sphere. By S(x;,7;) we denote the surface of sphere 1.
The spheres may be entirely within the domain (inte-
rior spheres) or may have nonzero intercepts with the
boundary (boundary spheres), see Fig. 1.

We define a radial weighting function W;(x), of the
form W;(x) = W(s;), where s; = ||x — x;||,/7;, compactly
supported on the sphere centered at node 7 such that

1. W(x) € Cy(B(x;,r1)), s=0
2. W(x)=0 VYxeQ.

We have chosen a cubic spline weighting function of the
following form (refer to Ref. [9] for an explanation):

2

§—4sf+4s,37 0<s, <3
=<4 4
W(sr) §—4S1+4S?—§S;7 %gs,gl (1)
07 S1>1.

The weighting functions define the Shepard partition of

unity functions [6]

__wm
A

satisfying

@) (x)

Fig. 1. (a) A schematic of the method of finite spheres and (b) some shape functions in two dimensions.
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LYY, ef(x)=1 VxeQ
2. ¢¥(x) € C5(RY), s=0.

The functions {¢?(x)} satisfy zeroth order consistency,
i.e. they ensure that rigid body modes are exactly rep-
resented.

To generate approximation spaces with higher
order consistency, a local approximation space V' =
span,,. , {p.(x)} is defined at each node I, where p,,(x) is
a polynomial or other function and .# is an index set.
The superscript /4 is a measure of the size of the spheres.

The global approximation space ¥, is generated by
multiplying the partition of unity function at each node 7
with the functions from the local basis

N
V= ol
I=1

Hence, any function v, € ¥, can now be written as

v(x) = Z Z B (X) 0t (2)
where
hin(X) = @7 (X)pn(x) 3)

and £y, is a basis/shape function associated with the mth
degree of freedom a;, of node I.

3. Linear elasticity problems in R?

In this section we apply the method of finite spheres
to solve problems in two-dimensional elasticity. Section
3.1 summarizes the pure displacement-based formula-
tion. In Ref. [9] we reported that the pure displacement-
based formulation suffers from volumetric “locking” in
the case of almost or fully incompressible media. Section
3.2 presents the displacement/pressure mixed formula-
tion [9] to overcome this problem.

3.1. Displacement-based formulation
The system of governing differential equations and

the boundary conditions for a linear elastic continuum
Q € R* with boundary I' can be written as:

t+fP=0 inQ (4)
€e=0du in Q (5)
t=Ce in Q (6)
Nt=f onr, (7)
u=u® onTr, (8)

In Egs. (4)—(8), u, € and 7 are the displacement, strain
and stress vectors, C is the elasticity matrix, S is the
prescribed traction vector on the Neumann boundary
Iy, u® is the vector of prescribed displacements on the
Dirichlet boundary I', (note that the domain boundary
I'=r,ur,), f® is the body force vector (including
inertia terms), 9. is a linear gradient operator and N is
the matrix of direction cosine components of a unit
normal to the domain boundary (positive outwards). In
R? these vectors and matrices are written as:

u = [u(x,y) v(x,y)]T )
€= [axx &y ny}T (10)
T= [T Ty rxy}T (11)

5= [5x,y) £

wd = [1S(x,p) v3(x,)]"

o/ox 0

d.=| 0 0/dy (12)
0/0y 0/ox
n, 0 n

N= [ 0 n, nx} (13)

ci e 0
C= Ci2 C11 0
0 0 C33

where for plane stress conditions

E B E
T—v PTT 2 T4y

Ci1 =

and for plane strain conditions

_ E(1-v) B Ev
MU -2 T Arn-2v)
_E
€33 = 2(1+v)

E and v being Young’s modulus and Poisson’s ratio of
the material, respectively.

3.1.1. Variational formulation
We consider the following variational indicator [7]

I (u) = /sz %ET(U)CE(U) dQ — Nx. (14)

The term R accounts for the externally applied body
forces, surface tractions and applied displacements,
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ER:/quBdQ+/ quSdF+/ fT(u—ud)dr
Jo Jry Ty
(15)

where f* is the traction vector on the Dirichlet boundary
and may be expressed as

f = NCe(u). (16)
Invoking the stationarity of IT* we obtain the following

weak form:
Find u € H'(Q) such that

/ €"(v)Ce(u)dQ — / [€"(V)CN"u+ v'NCe(u)] dI

= / v dQ + / vifsdr — / e (v)CNTusdr
Ja Iy u
vve H(Q) (17)
where H'(Q) is the first order Hilbert space [7].

3.1.2. Nodal interpolations
We have the following approximation for the dis-
placement field

Z ZH/n X y A = H(x7y)U (18)
J=1 nes

where

U= [0510 arp Xpp v gy "]T

is the vector of nodal unknowns, and
oy, = [u./n DJVI}

is the vector of nodal unknowns at node J corresponding
to the nth degree of freedom (" and v’ are the nodal
variables for the x- and y-direction displacements at
node J corresponding to the nth degree of freedom). The
nodal shape function matrix corresponding to the nth
degree of freedom is

_ th (xvy) 0
HJn(x7y) - [ 0 th(Ly) . (19)
Hence, the discretized versions of Egs. (10) and (11) are
N
¥) =Y Bu(x,y)a, =B(x,»)U (20)
J=1 nes
and
N
= Z CB,, (x,y)a;, = CB(x,y)U (21)
J=1 neJs

where the strain—displacement matrix B(x, y) in Eq. (20)
is partitioned as

B(xvy):[Bl()(xvy) Bll(xvy) BJn(x7y) ]

with
Oh In / Ox 0

=0d.H,,(x,y) = 0 Ohy, /0y |- (22)
ah(;,, /ay ah‘/n /ax

BJn(xay)

3.1.3. Discrete equations

Using Egs. (18)—(21) in Eq. (17) we obtain the dis-
cretized system of algebraic equations corresponding to
node I and degree of freedom m

N

Z Z K]mJnaJn = f[m + i‘[m~ (23)

J=1 nes

In this equation the various matrices and vectors are as
follows:

KImJn = / 1,,1CBJn dQ (24)
Q
f, = [ H,f*dQ (25)
o
where Q] =Q ﬂB(X,,rI).

If 7 is a node associated with an “internal sphere”,
then

f]m:O

from compact support.
If the sphere corresponding to node I has nonzero
intercept on the Neumann boundary, then

£, = / H,,f5dr (26)

where I'y = Ure, Iy, A"y being the index set of such
nodes.

On the other hand, if the sphere corresponding to
node [ has nonzero intercept on the Dirichlet boundary,
then

f]m - Z Z KUlmJnaJn flem (27)
J=1 nes
where
KU, = [ H,NCB,,dI' + / B} CN"H,, dI"  (28)
ry, Iy

and

fU,, = / B! CN"u*drI (29)

T,

uy

where I', = Ujes, Iy, A, being the index set of such
nodes. Note that the stiffness matrix KU is symmetric.

A point to note is that we may incorporate the
Dirichlet conditions by the special arrangement of nodes
on the boundary as discussed in Ref. [5].
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3.2. Displacementlpressure mixed formulation

For an almost incompressible medium in plane strain
conditions, we write the constitutive relationship in the
following form (holding, of course, for fully compress-
ible and fully incompressible media as well):

7= —pl + 2GeP (30)
where I is the vector corresponding to the Kronecker
delta, G is the shear modulus

E

=3y

(31)

and E and v are Young’s modulus and Poisson’s ratio of
the material, respectively; €P is the vector of deviatoric
strain components,

eD:e—%VI (32)

where ey is the volumetric strain,
€y = (Sxx + ‘S,V,V)' (33)

Note that in Eq. (30) the out-of-plane stress and strain
components are now included [7]. The pressure in the
body is

P = —Key (34)

where the bulk modulus x is

E

T30 -2

(35)

In addition, we note that the vector of deviatoric stresses
™ =1+ pl (36)
is related to the vector of deviatoric strains by the fol-

lowing constitutive relationship

™ = CPeP. (37)

3.2.1. Variational formulation
We consider the following variational indicator [7]:

1 2
fi%fpev(u)} do - %

(38)

H*(u,p)z/ﬂ[%eDT(u)CDeD(u)

The term R accounts for the externally applied body
forces, surface tractions and applied displacements,

SR:/quBdQ—i—/ quSdI"—i—/ fT(u—u)dr
Q Iy I,
(39)

where f is the traction vector on the Dirichlet boundary
I', and may be expressed as

= e’ (u)—p
f* = NCPeP NI 40

with N now containing a fourth column of zeros.
Invoking the stationarity of IT" we obtain the fol-
lowing weak form:
Find u € H'(Q) and p € L*(Q) such that

/Q [GDT(V)CDED(U) - GV(V)p} 40 _/

Iy

[eDT (v)C°N"u

+vTNCDeD(u)} dr + / VINIpdr

- / v dQ + / v dr — / €' (v)CPNTuSdI
Q Iy u
Vv e H'(Q) (41)

—/q[ev(u)#—’}dsn/ "NTudr
Ja K Jr,

= / gU'N"w®dIr vq e 1*(Q) (42)

Iy

where H'(Q) and L?(Q) are the first order Hilbert space
and Lebesgue space of square integrable functions, re-
spectively.

3.2.2. Nodal interpolations

We use the same approximation for the displacement
field as in Eq. (18), and choose the following approxi-
mation for the pressure field

p(x7y) = Z Zhgn(xvy)pﬁt = Hp(xvy)P (43)

J=1 nes

where P = [plO P P2 P ]T is the vector
of nodal point unknowns corresponding to the pressure
degrees of freedom. The shape function /5, (x,y) at node
J corresponding to the nth degree of freedom is also
generated using the partition of unity paradigm. This
construction of the pressure approximation space results
in a continuous pressure field.

It should be noted, however, that the choice of the
displacement and pressure interpolation spaces is critical
to the success of the mixed formulation scheme. In Ref.
[9] we have identified several combinations of these two
spaces that result in a stable formulation.

The approximations for the strains in Eqgs. (32) and
(33) are

x,y) =>_ > B)(x,y)an =B (x,»)U (44)
and
ev(x,y) = By(x,y)U (45)

where B and By are the corresponding strain interpo-
lation matrices.



2188 S. De, K.J. Bathe | Computers and Structures 79 (2001) 2183-2196

3.2.3. Discrete equations

Using the displacement and pressure approximations
in Egs. (41) and (42) we obtain the following discrete
sets of equations corresponding to node I and degree of
freedom m

ul Kuu min Ku imJn 5% f m ~
ZZ KT“J Kplj { J}:{I }+f1m (46)
J=1 nes UPImJn PPImJn DPin 0
where
K, = [ BICOB 0 @)
Q
K”I’Im/n = _/ Bﬂll;]mhgn dQ (48)
Q
1 P P
KPPImJn = ; hlmh./n dQ (49)
Q
and
fIm = HIme dQ (50)
Q

where Q; = QN B(x;,r;). If Iis a node associated with
an “interior sphere”, then, of course

f[m:0

If the sphere corresponding to node 7 has a nonzero
intercept on the Neumann boundary I';, then

S
i, = [ Ir, Hnf"dl (s1)
0

where I'y = Ui, I'; Ay being the index set of such
nodes.

On the other hand, if the sphere corresponding to
node 7 has a nonzero intercept on the Dirichlet bound-

ary I',, then
fo= ZN: Z KUu,,, KUy, { Jn } fu,,,
Im — T —
J=1 nes KUup/mjn 0 P fUp,m
(52)
where

KU,,,., = / H,,NC°BY dI + / BPTCPN'H,, dI
Iy Iy

(53)

KU =—

UPImJn

H,, NI/, dI (54)

ry

fu,, = / BY)TCPNTwSdr (55)
Ly
and
fu,, =— / i I'NTu® dIr (56)
T,

J Ly

where I'y = Ue s, I'y; A, being the index set of such
nodes.

4. Improved numerical integration schemes

Efficient numerical integration of the terms in the
local weak forms without using a background mesh is
challenging because the shape functions are rational
(nonpolynomial) functions and the integration domains
are spheres or truncated spheres. Moreover, the overlaps
of spheres give rise to general “lens” shaped regions.
Hence, specialized integration rules are needed. In Ref.
[5] we concentrated on two-dimensional domains and
developed Gaussian product rules that have certain de-
grees of polynomial accuracy. We reported that about
144 integration points were required per disk.

In this section we discuss several improved numerical
integration rules for two-dimensional conditions. The
integration domains that we consider are “interior
disks” (disks that have nonzero intercepts with the do-
main boundary), “boundary sectors” (disks intercepted
by the domain boundary) and the “lens” shaped regions
of overlap of two disks.

4.1. Integration on an interior disk

Let us consider the solution of Poisson’s equation on
a square domain as shown in Fig. 2(a) using a regular
arrangement of nine nodes and a linear local basis. A
typical term of the stiffness matrix is

KlmJn = / (% ah"” + ahlm ath ) dQ
Qr Ox Ox

oy Oy
where I,J € {1,...,9} and m,n € {0, 1}. Ay, is the shape
function at node I corresponding to the mth degree of
freedom. In Fig. 2 we show some of the integrands
corresponding to the node at the center of the square
(I =5). We observe that it is quite difficult to obtain
global polynomial fits to these functions. Hence a high
order Gauss integration rule was required in Ref. [5].
It is possible to develop piecewise quadrature for-
mulas by subdividing the disk into subdomains and
developing simple quadrature rules on these subdo-
mains. Such a scheme is expected to perform better than
the Gaussian product rules since the integration is then
performed in a piecewise manner.

(57)
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Fig. 2. (a) A regular arrangement of nine nodes is shown on the domain on which a Poisson problem is defined. Some of the integrands
in Eq. (57), namely (b) Kss0, (¢) Ks0s1 and (d) Ks;s; are shown corresponding to the node 7 = 5.

We have implemented a piecewise midpoint quadra-
ture rule for the interior disk (see Fig. 3(a)) by subdi-
viding the disk using concentric circles and radial lines
and evaluating the integral on each of the subdomains as
the area of the subdomain multiplied by the integrand
evaluated at the centroid of the subdomain. Hence, for
the integral of a function f(x,y) on a disk (@) of radius
Ry we use the following approximation

ny ny
//fxy dxdyNZ ZD,jf ricos;,r;sinf;) (58)
=1 j=1

where ny is the number of sectors in which the disk is
subdivided and n, is the number of subdivisions along
each radius. Here

) .
_j—j+1/3
rjfij_l/2 Ar

0;=(i—1/2)A0

where

R
Ar==2

n,

Ag ="

ng.

The weight
D; = ( >A6(Ar)

is the area of the subdomain and is independent of the
circumferential direction.

In Ref. [5] we used, for this integral, the following
integration rule due to Peirce [10] which provides an
arbitrary polynomial accuracy of degree k = 4m + 3,
m=0,1,2,...,inx=rcosf and y = rsin
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Fig. 3. Integration on an “interior” disk of radius 1.0. In (a) the integration points corresponding to the piecewise midpoint
quadrature rule (Rule 1) are shown. In this rule the integration points are the centroids of the subdomains (hatched) while the areas are
the integration weights. In (b) the integration points corresponding to the integration rule in Eq. (59) are shown (Rule 2). In (c) the
integration stations corresponding to a Gauss—Legendre product rule (Rule 3) are shown. In (d) Rules 1, 2 and 3 are used to evaluate

the area of the disk.

4(m+1) m+1

//f(XJ)dXdy’: Z ZD,‘/f(l’f,‘COS@,-,FjSiIIQi)
Q =1 =
(59)
where
1. 6,‘4,179,‘:](27:17 l:1,2,,4(m+1)
s R% Pm+l(”2) 2 P
2.D fo w2 dr, j=12,00 m+ 1

T amP L ()

3. The ? are the m + 1 zeros of P, (r?), the Legendre
polynomial in 7> of degree m + 1, orthogonalized on
[0, RG]

Since a Gauss—Chebyshev rule automatically arises in
the O-direction, the integration points are on equally

spaced radii and the integration weights are independent
of angular position (see Fig. 3(b)).

Both this rule and the piecewise midpoint quadra-
ture rule (58) are superior to a simple Gauss—Legendre
product rule on the disk used in [11]

| | oy - /

N, N,

~3 X:D,,;f(xi,yf)

=1 j=1

X()

S(x,y)dxdy
x==X()

(60)

where N, and N, are the number of integration points
chosen along the x- and y-directions, respectively, and
D;; = W}W; is the product of the usual Gaussian weights
W and VW for the x- and y-directions (see Fig. 3(c)).
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This integration rule is inefficient which is demonstrated
in Fig. 3(d) where we consider the simple problem of
computing the area of a unit circle (where f(x,y) = 1)
using these three rules.

In Fig. 4 we compare the convergence for the integral
in Eq. (5§7) for the node 7 =5 for m =0 and 1 when
the rules (58) and (59) are used. In rule (58) equal num-
bers of sectors and concentric circles are chosen. It can
be seen that the simple mid point quadrature rule (58)

2191

offers convergence within 49 integration points on the
disk.

4.2. Integration on a boundary sector

“Boundary sectors” are the disks that have nonzero
intercept on the domain boundary. In Ref. [5] we cate-
gorized the boundary sectors into two major groups
depending on the angle ¢, that the radii joining the

7.5
B
6.5 ;
- i
= i
SN
E -
[ |
=} B
L 55}
= B
> i
5. 1 1 - |
0 50 100 150
(a)
2
k)
!
Ksis1
------- y —— e A = — —
E
en
o]
E
[
o
1
= Kso51
o L
- 'l'
[/
d
-1 ! | ! | ! ! | !
0 50 100 150

Number of integration points on the disk

(b)

Fig. 4. Convergence for three integrals in Eq. (57) is shown in (a) and (b), corresponding to / = 5 and m = 0 and 1, using two different
integration schemes. The solid lines correspond to the piecewise midpoint quadrature rule and the chain dotted lines correspond to the
rule in Eq. (59). Notice that in (a) the integration requires over 100 points to converge (we used 144 points) when using the rule in Eq.
(59), whereas 49 points are sufficient when the piecewise midpoint rule is used.
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center of the disk to the two intercepts of the disk on S In Ref. [5] we proposed the following “engineering so-
make interior to the domain: lution”
Type I sector: @, < (see Fig. 5(a)). The piecewise

midpoint quadrature rule (58) applies with the modifi- 4(m+1) mel
cation //f(x,y)dxdy o~ Z D;f (r;cos 0;,r;sin 0;)
Q =1 j=1
Po
AO ==
ny (61)
Ay
Boundary
|

2.4
20 ke
2F
18F
= B
& 1.6F
g8 o
g 14F
e B
=} -
o 121
= =
s E
2
0.8 E\
=
0.6E \ K]Oll
04FR ey e e
02| TS K. *
“E v 1111
0 - 1 1 I 1 I
0 50 100 150
Number of integration points
(c)

Fig. 5. Integration points on a boundary sector. (a) Type I boundary sector with ¢, < . (b) Type Il boundary sector with ¢, > 7. (c)
Convergence for three integrals as in Eq. (57) is shown, corresponding to / =1 and m =0 and 1, using two different integration
schemes. The solid lines correspond to the piecewise midpoint quadrature rule and the chain dotted lines correspond to the “engi-
neering solution” in Eq. (61). Notice the superior convergence properties of the piecewise midpoint rule for these integrals.
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where D;; = 4;B; with 4; being the usual Gaussian
weights on an interval [—0y, 0] and

1 R +1(r)
B = m 2
R WA =

m+1 Jj

j=1,2,...

The integration points #; are the positive square roots of
the zeros of the Legendre polynomial P, (r?) in #* of
degree m+1 (m=0,1,2,...), orthogonalized on [0, R3].
However, the radial coordinates of the integration
points 0; are chosen as the zeros of the Legendre poly-
nomial Py,11)(0) in 0 of degree 4(m + 1), orthogonalized
on [—0(), 90}

In Fig. 5(c) we compare the convergence for several
integrals of the form (57) where the sector corresponding
to node 1 in Fig. 2(a) is considered. Clearly the piecewise
midpoint quadrature rule outperforms the previously
proposed rule (61).

Type II sector: ¢, > 7 (see Fig. 5(b)). We may inte-
grate over this type of boundary sector by first decom-
posing it into a sector for which the rule of the type I

sector can be used and a triangle as shown in Fig. 5(b).
A piecewise midpoint quadrature rule is used for the
triangular region as well.

4.3. Integration on the lens

In Ref. [8] we concluded that a Gauss—Legendre
product rule of the form

i 0 Xo(y)
[ ] renaar=[" [ fxpasay
JQy y== x==X] CV)
Ne Ny
= Z ZDijf(xhyj) (62)
i1 j=1

can be used to numerically evaluate [ [, f(x,y)dxdy,
where Q;; = B(X;,7;) N B(X,,7,) # 01is the “lens” shaped
region of overlap of two disks (see Fig. 6(a)). It was also
noted that such a rule requires a rather large number of
points to integrate f(x,y) = 1 on the domain, as shown
in Fig. 6(c). However, we noted in Ref. [8] that this rule
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Fig. 6. Numerical integration on the lens. Some integration points generated using a Gauss-Legendre product rule, see (a), and
piecewise midpoint quadrature rule, see (b), of Section 4.3 are shown on the intersection of two disks of radii 0.8 and 1.0, respectively,
with center-to-center distance of 0.9. Absolute errors as a function of number of integration points when f'(x,y) = 1 is shown in (c).

Note that the piecewise midpoint quadrature rule is effective.
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is superior to using a mapping of the lens to a unit circle
as proposed in Ref. [11] since the Jacobian required in
that case is a complicated function.

In this section we describe a new integration scheme
to evaluate the integral on the lens (see Fig. 6(b)). We
choose N, integration points along the line AB. These
points can correspond to either a Gauss quadrature
scheme or a piecewise midpoint quadrature scheme. We
subdivide the lens into strips of width equal to the in-
tegration weights ;. This is possible since Z =
length(4B). The area of the jth strip, 4;, may be com-
puted analytically.

Now we draw a straight line, of length /;, parallel to
the x-axis through each integration point along 4B and
choose N, integration points along each of these lines.
Once again, either a piecewise midpoint or a Gaussian
quadrature scheme may be used. Let " be the weight
associated with the ith integration point, such that
[ = vazl W*. We may now write down an integration
rule

Ny

// fx.y) dxdyNZ ZDI,f X, )

(63)

where
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Notice that the integration weight D;; is the fraction of
the area of the jth strip and vazl D=4, 1f f(x,y) =1,
then this integration rule is exact (see Fig. 6(c)). Let us
denote, by scheme 1 the case when a piecewise midpoint
quadrature rule is used along AB as well as along the x-
axis and by scheme 2 the case when piecewise midpoint
rules are used along 4B but a Gauss—Legendre rule is
used along the x-axis.

In Fig. 7 we consider the convergence for three in-
tegrals of the type (57). Three different numerical inte-
gration schemes are compared: scheme 1, scheme 2 and
our previous integration rule in Eq. (62). We observe
that schemes 1 and 2 are comparable and each is better
than the rule in Eq. (62). We choose to use scheme 1 in
our computations.

4.4. Computational costs

The improved integration rules result in a substantial
reduction in computational cost for the pure displace-
ment based as well as the displacement/pressure mixed
formulation schemes presented in Section 3. In Ref. [§]
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Fig. 7. Convergence for three integrals as in Eq. (57) using the integration rules on the lens. Results shown correspond to the integral
on the intersection of disks 5 and 6 using three different integration schemes. The solid lines correspond to a piecewise midpoint
quadrature rule along the x- and y-directions (scheme 1). The chain dotted lines correspond to a piecewise midpoint quadrature rule
along the y-direction and a Gauss quadrature rule along the x-direction (scheme 2) and the dotted lines correspond to a Gauss—

Legendre product rule as in Eq. (62).
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we considered the displacement-based method of finite
spheres and estimated the computational cost in solving
a general elliptic problem in d-dimensions (d = 1,2 or 3).
In addition, we compared this cost with the expense of a
similar meshless scheme using the moving least squares
approximants as well as the finite element technique. We
concluded that the method of finite spheres was com-
putationally much more efficient than the moving least
squares based method but was about an order of
magnitude slower than the traditional finite element
technique for two-dimensional problems in linear elas-
tostatics.

Assuming that the computational cost of a weighting
function or its derivative in the method of finite spheres
and the cost of computation of a finite element shape
function or its derivative are of the same order of mag-
nitude, the ratio of the cost of computation of the global
stiffness matrices in the method of finite spheres (7MFS)
and the finite element technique (TEEM) may be esti-
mated as (see Ref. [8])

TKMFS < nzNgl,\/IFSNMFS (MMFS)2 )

FEM FEM \JFEM |/ FEM
T NFEMNFEM 7

(64)

where the O notation signifies asymptotic upper bound
to within a constant. The number of nodes is N and each
node is assumed to have an average connectivity of M,
i.e. the support of each node is assumed to have nonzero
overlaps with an average of (M — 1) other nodal sup-
ports (superscripts MFS and FEM refer to the method
of finite spheres and the finite element method, respec-
tively). The number of functions used in the local basis
of each node in the method of finite spheres is denoted
by n. NMS is the number of integration points per
sphere and N;"™ is the number of Gaussian integration
points per finite element.

Let us consider the example of the square cantile-
vered plate in plane strain with uniformly distributed
loading on the top surface that we used in Ref. [8]. We
have rerun the problem using the improved numerical
integration schemes that we have described in this paper.
We have observed that a 8 x 8 regular nodal arrange-
ment (with quadratic consistency) provides a solution
(in strain energy) which is comparable in accuracy with
the solution provided by a 25 x 25 mesh of nine-noded
finite elements. We estimate

NFEM = 2601;  NMFS = 64;

FEM __ g. MFS __ 40.
NN =09 NS =49,
MFEM 25, yMFS o 4,
n==~6

and obtain

MFS
Ty N

FEM
Ty

3. (65)

This result is quite close to the comparison of actual
computational times. In Ref. [8] we noticed that this
ratio was 9. The reduction is due to the fact that we now
use 49 integration points per node as opposed to 144
used before.

If we assume that the total computational cost can be
broken down into the cost of computation of the global
stiffness matrix and the solution of the set of algebraic
equations, a consequence of the estimate presented in
the last paragraph is that in terms of total computa-
tional cost the method of finite spheres is now about two
to five times slower than the finite element technique for
linear elastostatic problems in two dimensions.

5. Concluding remarks

Computational efficiency is the key to the eventual
success of a meshless technique. The choice of the com-
putational subdomains, the functions used for interpo-
lation, the techniques applied to impose the Dirichlet
boundary conditions and perform numerical integration
need to be considered in detail in the development of a
computationally efficient scheme.

In the method of finite spheres we have chosen low-
cost approximation functions and effective techniques
for applying the Dirichlet boundary conditions. The
emphasis of our current research is on the development
of computationally efficient integration rules. The cost
of computation of the global stiffness matrix scales lin-
early with the number of integration points used per
sphere. Hence an integration scheme that is three times
more efficient than our previous one implies that we
have reduced the computational cost substantially.

The developments reported in this paper suggest
that it is possible to obtain a meshless technique which
is efficient when compared with classical discretization
methods. Of course, more efficient integration schemes
should still be sought, and the development of efficient
techniques of distributing the nodal points, selecting the
radii of the spheres for acceptable accuracy, and com-
puting the intersections of spheres with general bound-
aries need still to be addressed.
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