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We present the large displacement and rotation formulation of the new MITC4+ shell finite element
recently proposed by Ko, Lee and Bathe for linear analysis (Ko et al., 2017) and demonstrate the perfor-
mance in geometric nonlinear analysis. The element shows in linear analysis an almost ideal convergence
behavior since shear and membrane locking is alleviated using the MITC approach. We show now that
using the total Lagrangian formulation for large displacements and large rotations, the element is also
robust and efficient in nonlinear analysis. We demonstrate the element performance through the solu-
tions of various benchmark problems and reach the important conclusion that the MITC4+ shell element
performs reliably and well even when the mesh undergoes large displacements and significant distor-
tions during the response.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

For the analysis of shell structures, developing ‘‘ideal” shell
finite elements that satisfy the ellipticity, consistency and inf-sup
conditions has been of great interest [1–10]. Such shell elements
should pass the basic tests (the isotropy, zero energy mode and
patch tests), show uniformly optimal convergence behavior in
any shell problem irrespective of the shell geometry, loading and
boundary conditions, and do so when regular and even distorted
meshes are used [7–10]. Also, the shell elements need to perform
equally well in geometric nonlinear analysis where an effective
behavior in the nonlinear response predictions is important [4].

In geometric nonlinear analysis of shell structures, significant
mesh distortions can occur as the geometry of the elements
changes during the response [11–15]. These element geometric
changes can lead to locking in bending-dominated shell problems
[4,8], that is, an overly stiff behavior of the shell discretization is
seen, which can be particularly severe when 4-node shell elements
are used to model thin shell structures [1,2,4,8]. Hence, in geomet-
ric nonlinear analysis, locking due to the discretization undergoing
large displacements can lead to erroneous predictions of load-
displacement trajectories and critical loads.

The MITC (Mixed Interpolation of Tensorial Components)
method [1–4,16–25] has been used effectively to remedy shear
and membrane locking. The classical 4-node MITC shell element
(labeled as MITC4 element) has been widely used in practice for
both linear and nonlinear analyses. However, in the original formu-
lation of the MITC4 shell element, membrane locking was not trea-
ted, and thus solution accuracy can deteriorate when curved
geometries are modeled with distorted meshes [1,2]. Following
various attempts to alleviate membrane locking of 4-node shell
elements [26–28], we recently presented the new MITC4+ shell
element for general linear analysis [1]. This element satisfies all
the basic element tests, contains no parameter to adjust, and
shows an almost optimal convergence behavior in the solutions
of a ‘behavior-encompassing’ set of benchmark problems using
regular and distorted meshes. The fact that the element perfor-
mance is also very good in highly distorted meshes is particularly
noteworthy and makes this element an excellent candidate for
general large displacement and rotation nonlinear analysis.

This expectation is reasonable because our experience is that if
a well-formulated MITC element has been established for linear
analysis, then this element formulation can directly be extended
to geometric nonlinear analysis without introducing instabilities
in the element, like seen in formulations based on incompatible
modes and enhanced assumed strains [4,29,30]. In addition, the
incompatible modes and enhanced assumed strain elements are
computationally more expensive.

In this paper, we present the geometric nonlinear formulation
of the newMITC4+ shell. We develop the assumed shear and mem-
brane fields of the element for the total Lagrangian formulation
using the Green-Lagrange strains and incremental Green-
Lagrange strains to obtain the tangent stiffness matrix and internal
force vector [4]. We demonstrate the performance of the element
in geometric nonlinear solutions by solving various shell problems
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with uniform and distorted meshes. To assess the accuracy of the
solutions, we compare the predicted response with analytical data
and finite element solutions obtained using the MITC4 and MITC9
shell elements. An important conclusion is that the new MITC4+
shell element performs well even when a mesh undergoes signifi-
cant displacements that could induce some locking, like might be
seen in solutions using the classical MITC4 shell element.

2. Geometric nonlinear formulation

In this section, we present the geometric nonlinear formulation
of the MITC4+ shell element. In the total Lagrangian formulation,
the left superscript t denotes ‘‘time” for a general analysis (in static
solutions ‘‘time” simply denotes the load step and configuration)
and the left subscript 0 is used to denote the initial (reference) con-
figuration [4].

2.1. Geometry and displacement interpolations

The geometry of the MITC4+ shell element in the configuration
at time t shown in Fig. 1 is interpolated using [1,2]

txðr; s; fÞ ¼ txm þ ftxb with txm ¼
X4
i¼1

hiðr; sÞtxi and

txb ¼ 1
2

X4
i¼1

aihiðr; sÞtVi
n; ð1Þ

where hiðr; sÞ is the two-dimensional interpolation function of the
standard isoparametric procedure corresponding to node i, txi is

the position vector of node i, and ai and tVi
n denote the shell thick-

ness and the director vector at the node, see Fig. 1.
The following representation of interpolation function hiðr; sÞ is

useful in the element formulation:

hiðr; sÞ ¼ 1
4
ð1þ nirÞð1þ gisÞ with i ¼ 1;2;3;4;

n1 n2 n3 n4½ � ¼ 1 �1 �1 1½ �;
g1 g2 g3 g4½ � ¼ 1 1 �1 �1½ �; ð2Þ

in which ni and gi are permuted together.
The incremental displacement vector u from the configuration

at time t to the configuration at time t þ Dt is

uðr; s; fÞ ¼ tþDtxðr; s; fÞ � txðr; s; fÞ: ð3Þ
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Fig. 1. A standard 4-node quadrilateral continuum mechanics based shell finite
element in the configuration at time t.
Using Eq. (1) in Eq. (3), we obtain

u ¼
X4
i¼1

hiðr; sÞðtþDtxi � txiÞ þ f
2

X4
i¼1

aihiðr; sÞðtþDtVi
n � tVi

nÞ; ð4aÞ

with

tþDtxi � txi ¼ uiix þ v iiy þwiiz; ð4bÞ
and to quadratic order

tþDtVi
n� tVi

n ¼ hi� tVi
nþ

1
2
hi�ðhi� tVi

nÞ; hi ¼ tVi
1aiþ tVi

2bi; ð4cÞ

in which ix, iy and iz are the base vectors of the global Cartesian
coordinate system, and at node i, ui, v i and wi are the corresponding

displacement components, tVi
1 and tVi

2 are unit vectors orthogonal

to the director vector (tVi
n) and to each other, and ai and bi denote

the rotations of the director vector about tVi
1 and tVi

2, respectively
[4].

Substituting from Eqs. (4b) and (4c) into Eq. (4a), the incremen-
tal displacement is obtained as

uðr; s; fÞ ¼ um þ fðub1 þ ub2Þ; ð5aÞ
where

um ¼
X4
i¼1

hiðr; sÞui; ð5bÞ

ub1 ¼1
2

X4
i¼1

aihiðr;sÞð�lVi
2aiþ lVi

1biÞ;ub2 ¼�1
4

X4
i¼1

aihiðr;sÞða2
i þb2

i ÞlVi
n:

ð5cÞ
We next group the displacement terms in Eq. (5) as

u1 ¼ um þ fub1; u2 ¼ fub2; ð6Þ
where u1 and u2 contain the linear and quadratic terms of unknown
displacements and rotations, respectively.

2.2. Green-Lagrange strains

The covariant Green-Lagrange strain components in the config-
uration at time t with respect to the reference configuration at time
0 are defined by

t
0e ijðr; s; fÞ ¼

1
2
ðtgi � tgj � 0gi � 0gjÞ; ð7Þ

in which tgi ¼ @tx
@ri

are covariant base vectors with r1 ¼ r, r2 ¼ s,

r3 ¼ f.
Using Eq. (3) in Eq. (7) applied at time t and t þ Dt, the incre-

mental covariant strain components are

0eijðr;s;fÞ¼ tþDt
0 eijðr;s;fÞ� t

0e ijðr;s;fÞ¼
1
2

tgi �u;jþu;i � tgjþu;i �u;j
� �

;

ð8Þ
with u;i ¼ @u

@ri
.

Substituting from Eq. (6) into Eq. (8) and retaining only the
strain terms up to second order of unknowns, the incremental
strain components can be written as

0eijðr; s; fÞ ¼ 0eijðr; s; fÞ þ 0gijðr; s; fÞ; ð9Þ
with

0eijðr; s; fÞ ¼ 1
2

tgi � u1;j þ u1;i � tgj

� �
;
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0gijðr; s; fÞ ¼
1
2

u1;i � u1;j þ tgi � u2;j þ u2;i � tgj

� �
with

u1;i ¼ @u1

@ri
; u2;i ¼ @u2

@ri
;

where 0eij and 0gij are the linear and nonlinear parts, respectively
[4,31].

2.3. Assumed Green-Lagrange strains

To alleviate shear locking, the assumed transverse shear strains
of the classical MITC4 shell element are used [2]

t
0
~erf ¼

1
2
ð1þ sÞt0e

ðAÞ
rf þ 1

2
ð1� sÞt0e

ðBÞ
rf ;

t
0
~esf ¼

1
2
ð1þ rÞt0e

ðCÞ
sf þ 1

2
ð1� rÞt0e

ðDÞ
sf ; ð10Þ

where the tying positions ðAÞ, ðBÞ, ðCÞ and ðDÞ are shown in Fig. 2
[1,2,8].

In order to alleviate membrane locking, we separate the corre-
sponding membrane strains from the in-plane strains. The covari-
ant in-plane strains in Eq. (7) are expressed as

t
0e ij ¼ t

0e
m
ij þ f t

0e
b1
ij þ f2t0e

b2
ij with i; j ¼ 1;2; ð11aÞ
3
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Fig. 3. Characteristic vectors for the element geometry at time t. (a) Two in-plane vec
in which

t
0e

m
ij ¼ 1

2
txm;i � txm;j þ txm;j � txm;i
� �� 1

2
0xm;i � 0xm;j þ 0xm;j � 0xm;i
� �

;

ð11bÞ

t
0e

b1
ij ¼ txm;i � txb;j þ txm;j � txb;i

� �� 0xm;i � 0xb;j þ 0xm;j � 0xb;i

� �
; ð11cÞ

t
0e

b2
ij ¼ 1

2
txb;i � txb;j þ txb;j � txb;i

� �� 1
2

0xb;i � 0xb;j þ 0xb;j � 0xb;i

� �
;

ð11dÞ
with

txm;i ¼ @txm

@ri
; txb;i ¼ @txb

@ri
:

In Eq. (11a), the term t
0e

m
ij is the covariant in-plane strain at the

shell mid-surface (f ¼ 0), which in general can induce membrane
locking.

In the geometric nonlinear formulation of the MITC4+ shell ele-
ment, the assumed membrane strain fields are applied based on
the current configuration. Hence the covariant membrane strain
in Eq. (11b) is considered

t
0e

m
ij ¼ 1

2
tgm

ij �
1
2

0gm
ij with i; j ¼ 1;2; ð12aÞ

with
tgm

ij ¼ txm;i � txm;j þ txm;j � txm;i; ð12bÞ
3
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t x2

tors txr and txs , and the plane P with normal vector tn. (b) Distortion vector txd .

Fig. 4. Tying positions (A), (B), (C), (D) and (E) for the assumed membrane strain
field.
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0gm
ij ¼ 0xm;i � 0xm;j þ 0xm;j � 0xm;i: ð12cÞ
We next define the three characteristic vectors in the configura-

tion at time t [1]

txr ¼ 1
4

X4
i¼1

ni
txi;

txs ¼ 1
4

X4
i¼1

gi
txi;

txd ¼ 1
4

X4
i¼1

nigi
txi; ð13Þ

in which ni and gi are given in Eq. (2). The geometric representa-
tions of the three vectors at time t are shown in Fig. 3.

As shown in Fig. 3(a), the two vectors txr and txs form the plane
P with the normal vector tn

tn ¼
txr � txs

ktxr � txsk ; ð14Þ

and the dual base vectors tmr and tms on the plane

tmri � txrj ¼ dij;
tmri � tn ¼ 0 with i; j ¼ 1;2:

For the MITC4+ shell element, the following assumed field is
used for the covariant membrane strain [1]

t
0
~emij ¼ 1

2
t~gm

ij �
1
2

0~gm
ij with i; j ¼ 1;2 ð15aÞ

where

t~gm
rr ¼

1
2

1� 2taA þ sþ 2taA � s2
� �

tgmðAÞ
rr

þ 1
2

1� 2taB � sþ 2taB � s2
� �

tgmðBÞ
rr

þ taC �1þ s2
� �

tgmðCÞ
ss þ taD �1þ s2

� �
tgmðDÞ

ss

þ taE �1þ s2
� �

tgmðEÞ
rs ; ð15bÞ

t~gm
ss ¼ taA �1þ r2

� �
tgmðAÞ

rr þ taB �1þ r2
� �

tgmðBÞ
rr

þ 1
2

1� 2taC þ r þ 2taC � r2
� �

tgmðCÞ
ss

þ 1
2

1� 2taD � r þ 2taD � r2� �
tgmðDÞ

ss

þ taE �1þ r2
� �

tgmðEÞ
rs ; ð15cÞ

t~gm
rs ¼

1
4

r þ 4taA � rs
� �

tgmðAÞ
rr þ 1

4
�r þ 4taB � rs
� �

tgmðBÞ
rr

þ 1
4

sþ 4taC � rs
� �

tgmðCÞ
ss þ 1

4
�sþ 4taD � rs� �

tgmðDÞ
ss

þ 1þ taE � rs
� �

tgmðEÞ
rs ; ð15dÞ

in which the tying positions ðAÞ, ðBÞ, ðCÞ, ðDÞ and ðEÞ for the corre-
sponding strain components are shown in Fig. 4, and the geometric
coefficients are
z

M
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L

x y

P (b)(a)

Fig. 5. Cantilever problems (16 � 1 mesh, width b ¼ 1:0, thickness a ¼ 0:1,
E ¼ 1:2� 106 and m ¼ 0:0). (a) Case of the tip shearing force (L ¼ 10:0). (b) Case of
the tip moment (L ¼ 12:0).
taA ¼
tcr tcr � 1ð Þ

2td
; taB ¼

tcrðtcr þ 1Þ
2td

;

taC ¼
tcsðtcs � 1Þ

2td
; taD ¼

tcsðtcs þ 1Þ
2td

;

taE ¼ 2tcrtcs
td

; td¼ tc2r þ tc2s � 1; tcr ¼ tmr � txd;
tcs ¼ tms � txd:

ð15eÞ
Using the assumed membrane strain fields, the in-plane strain

components are constructed

t
0
~e ij ¼ t

0
~emij þ f t

0e
b1
ij þ f2t0e

b2
ij with i; j ¼ 1;2: ð16Þ

The shell-aligned local Cartesian coordinate system in the con-
figuration at time 0 is defined using the unit vectors 0Li, i ¼ 1;2;3,

0L3 ¼
0g3

k0g3k
; 0L1 ¼

0g2 � 0L3

k0g2 � 0L3k ;
0L2 ¼ 0L3 � 0L1; ð17Þ

and the corresponding local strain components are

t
0
�e ij ¼ t

0
~eklð0Li � 0gkÞð0Lj � 0glÞ with 0gi � 0g j ¼ d j

i : ð18Þ
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force. (b) Case of the tip moment.
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2.4. Assumed incremental Green-Lagrange strains

From the assumed Green-Lagrange strains in Section 2.3, we
proceed to obtain the corresponding assumed incremental
Green-Lagrange strains in a consistent manner.

For the transverse shear we use the following assumed incre-
mental shear strains

0~erf¼1
2
ð1þsÞ0eðAÞrf þ1

2
ð1�sÞ0eðBÞrf ; 0~esf¼1

2
ð1þrÞ0eðCÞsf þ1

2
ð1�rÞ0eðDÞsf ;

0~grf¼1
2
ð1þsÞ0gðAÞ

rf þ1
2
ð1�sÞ0gðBÞ

rf ; 0~gsf¼1
2
ð1þrÞ0gðCÞ

sf þ1
2
ð1�rÞ0gðDÞ

sf ;

ð19Þ
where the tying positions ðAÞ, ðBÞ, ðCÞ and ðDÞ are shown in Fig. 2
[1,2,4,8].

The linear and nonlinear parts of the incremental covariant in-
plane strains in Eq. (9) are expressed as
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0eij ¼ 0emij þ f 0eb1ij þ f20eb2ij ;

0gij ¼ 0gm
ij þ f0gb1

ij þ f20gb2
ij with i; j ¼ 1;2; ð20aÞ

in which

0emij ¼ 1
2
ðtxm;i � um;j þ txm;j � um;iÞ; ð20bÞ

0eb1ij ¼ 1
2
ðtxm;i � ub1;j þ txm;j � ub1;i þ txb;i � um;j þ txb;j � um;iÞ; ð20cÞ

0eb2ij ¼ 1
2
ðtxb;i � ub1;j þ txb;j � ub1;iÞ; ð20dÞ

0gm
ij ¼ 1

2
um;i � um;j; ð20eÞ

0gb1
ij ¼ 1

2
ðum;i � ub1;j þ um;j � ub1;i þ txm;i � ub2;j þ txm;j � ub2;iÞ; ð20fÞ

0gb2
ij ¼ 1

2
ðub1;i � ub1;j þ txb;i � ub2;j þ txb;j � ub2;iÞ; ð20gÞ
with

txm;i ¼ @txm

@ri
; txb;i ¼ @txb

@ri
; um;i ¼ @um

@ri
;

ub1;i ¼ @ub1

@ri
; ub2;i ¼ @ub2

@ri
:
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In Eq. (20a), the 0emij and 0gm
ij terms are the linear and nonlinear

incremental covariant in-plane strains at the shell mid-surface
(f ¼ 0); these in-plane membrane strains can in general induce
membrane locking.

From the assumed Green-Lagrange membrane strains in Eq.
(15), we derive the assumed incremental linear membrane strain
0emij in Eq. (20b)

0~emrr ¼
1
2
ð1� 2taA þ sþ 2taA � s2Þ0emðAÞ

rr

þ 1
2
ð1� 2taB � sþ 2taB � s2Þ0emðBÞ

rr

þ taCð�1þ s2Þ0emðCÞ
ss þ taDð�1þ s2Þ0emðDÞ

ss

þ taEð�1þ s2Þ0emðEÞ
rs ; ð21aÞ

0~emss ¼ taAð�1þ r2Þ0emðAÞ
rr þ taBð�1þ r2Þ0emðBÞ

rr

þ 1
2
ð1� 2taC þ r þ 2taC � r2Þ0emðCÞ

ss

þ 1
2
ð1� 2taD � r þ 2taD � r2Þ0emðDÞ

ss þ taEð�1þ r2Þ0emðEÞ
rs ; ð21bÞ

0~emrs ¼
1
4
ðr þ 4taA � rsÞ0emðAÞ

rr þ 1
4
ð�r þ 4taB � rsÞ0emðBÞ

rr

þ 1
4
ðsþ 4taC � rsÞ0emðCÞ

ss þ 1
4
ð�sþ 4taD � rsÞ0emðDÞ

ss

þ ð1þ taE � rsÞ0emðEÞ
rs ; ð21cÞ

with the same geometric coefficients as in Eq. (15e) and the tying
positions ðAÞ, ðBÞ, ðCÞ, ðDÞ and ðEÞ in Fig. 4.

We employ the same assumed strain field for the incremental
nonlinear membrane strain 0gm

ij , and hence the incremental in-
plane strain components are

0~eij ¼ 0~emij þ f 0eb1ij þ f20eb2ij and

0~gij ¼ 0~gm
ij þ f0gb1

ij þ f20gb2
ij with i; j ¼ 1;2: ð22Þ
x104

0

0.5

1

1.5

2

2.5

3

3.5

4

Displacements

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
Load
(    ) AwDw

Bu

Bu Cu

Cu

reference
12x12 MITC4
12x12 MITC4+

Fig. 12. Load-displacement curves for the pull-out of the free cylindrical shell
structure.
Using the shell-aligned local Cartesian coordinate system
defined in Eq. (17), the linear and nonlinear parts of the incremen-
tal local strains are calculated using the following transformations

0�eij ¼ 0~eklð0Li � 0gkÞð0Lj � 0glÞ;
0�gij ¼ 0~gklð0Li � 0gkÞð0Lj � 0glÞ with 0gi � 0g j ¼ d j

i : ð23Þ
2.5. Stiffness matrix and internal force vector

Using the standard total Lagrangian formulation [4,18,31], the
tangent stiffness matrix (tKe) and internal force vector (t0Fe) of
the MITC4+ shell element are obtained

tKe ¼
Z

0V
BT
ij
�CijklBkld

0V þ
Z

0V

t
0
�SijNijd

0V ; ð24aÞ

t
0Fe ¼

Z
0V

BT
ij
t
0
�Sijd

0V ; ð24bÞ

in which 0V is the volume of the shell element at time 0, and �Cijkl

and t
0
�Sij denote, respectively, the material law tensor and the second

Piola-Kirchhoff stress measured in the local Cartesian coordinate
system.

In Eq. (24), the strain-displacement matrices, Bij and Nij, are
defined by

0�eij ¼ BijUe; d0�gij ¼ dUT
eNijUe; ð25Þ

where Ue is the incremental nodal displacement vector

Ue ¼ UT
1 UT

2 UT
3 UT

4

� �T with Ui ¼ ui v i wi ai bi½ �T :
x y

maxPP

z

Fig. 13. Deformed shape for the pull-out of the free cylindrical shell structure.
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In the nonlinear solution procedure, the nodal geometry is

updated using Eq. (4b), and the vectors tVi
1,

tVi
2 and tVi

n at node i
are updated using the following equations:

tþDtVi
n ¼ Q tVi

n;
tþDtVi

1 ¼ Q tVi
1;

tþDtVi
2 ¼ Q tVi

2; ð26Þ
with

Q ¼ 2

q2
0 þ q2

1 � 1
2 q1q2 � q0q3 q3q1 þ q0q2

q1q2 þ q0q3 q2
0 þ q2

2 � 1
2 q2q3 � q0q1

q3q1 � q0q2 q2q3 þ q0q1 q2
0 þ q2

3 � 1
2

0
BBB@

1
CCCA;

q0 ¼ cos
hi
2

� �
; q1 q2 q3½ �T ¼ hi

hi
sin

hi
2

� �
; hi ¼ khik;

in which a quaternion representation of large rotations is utilized
[32].

In the finite element solutions, we use 2� 2� 2 Gauss integra-
tion over the element volume for the 4-node shell elements
considered. The computational cost of the MITC4+ shell element
is only slightly higher than the cost of the classical MITC4 shell
element due to the use of the assumed covariant membrane
strains.
3. Numerical examples

In this section, several numerical examples are solved to
demonstrate the performance of the MITC4+ shell element in geo-
metric nonlinear analysis. The results are compared with those
obtained using of the classical MITC4 shell element. The reference
solutions are analytical data or are obtained using a fine uniform
mesh of the MITC9 shell element, which is known to satisfy the
ellipticity and consistency conditions and to show good
convergence behavior in both linear and nonlinear analyses
[4–8,17–20].

We show in the example solutions that both the MITC4 and
MITC4+ elements work well when uniform meshes are used and
due to the specific physical problem the large displacements of
the meshes do not induce locking, but in contrast to the MITC4
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shell element, the MITC4+ element also works well when an ini-
tially distorted mesh is used for such problem solutions, see Sec-
tions 3.1–3.4.

We also show the important point that the MITC4+ element is
more effective than the MITC4 element in response solutions when
due to the physical nature of the shell problem an initially uniform
mesh in the large displacement response can induce locking. In this
case, the MITC4 element locks in membrane actions whereas the
MITC4+ element continues to work well, see Sections 3.5–3.7.

3.1. Cantilever problem

We consider the cantilever bending problem in Fig. 5 [11–
13,33]. The cantilever fully clamped at one end is subjected to
either a shearing force P or bending moment M at the free tip.
The cantilever is modeled with a 16 � 1 mesh for the MITC4 and
MITC4 + shell elements.

For the shearing load case, the reference solution is obtained
using a 32 � 1 mesh of MITC9 shell elements. We consider the

maximum load of Pmax ¼ 4P0 with P0 ¼ EI=L and I ¼ ba3
=12 .

For the moment load case, the cantilever develops to form a cir-

cular arc of radius R ¼ EI=M with I ¼ ba3
=12. Using this formula,

the following analytical tip displacements are obtained [12,13]

utip

L
¼ M0

M
sin

M
M0

� 1;
wtip

L
¼ M0

M
1� cos

M
M0

� �
; M0 ¼ EI

L
: ð27Þ
The cantilever beam should bend into a complete circle at the
applied tip moment Mmax ¼ 2pM0.

Fig. 6 shows the load-displacement curves of the MITC4 and
MITC4+ shell elements. The solutions using both elements agree
well with the reference and analytic solutions. Fig. 7 shows the
deformed shapes at successive load levels P=Pmax ¼ 0:25 and 1.0
for the shearing load case and M=Mmax ¼ 0:25, 0.5 and 1.0 for the
moment load case.

3.2. Slit annular plate problem

We next consider the slit annular plate problem shown in Fig. 8
[12,13,15,34]. The shearing force P is applied at one end of the slit
while the other end is fully clamped. We use 3 � 24 and 5 � 40
meshes for the MITC4 and MITC4 + shell elements. The maximum
load per unit length Pmax=ðRo � RiÞ ¼ 0:8 is considered. The refer-
ence solution is obtained using a 10 � 80 mesh of MITC9 shell ele-
ments. Fig. 9 shows the load-displacement curves. The solution
obtained using the MITC4+ shell element is slightly better than
the solution using the MITC4 shell element. The final deformed
shape of the structure calculated using the MITC4+ shell element
is presented in Fig. 10.

3.3. Pull-out of a free cylindrical shell

We consider a pull-out of the free cylindrical shell structure
shown in Fig. 11 [12,13,34]. The shell structure is subjected to a



Fig. 18. Load-displacement curves for the hemispherical shell problem with the
uniform mesh shown in Fig. 8(a). (a) 8 � 8 mesh. (b) 12 � 12 mesh.
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pair of pull-out loads (P) at its center. Due to symmetry, only one-
eighth of the structure corresponding to the shaded region ABCD in
Fig. 11 is modeled using a 12 � 12 mesh of the 4-node shell ele-
ments. We use the following boundary conditions:w ¼ b ¼ 0 along
BC, u ¼ b ¼ 0 along AD, and v ¼ a ¼ 0 along AB. The analysis is per-
formed up to Pmax ¼ 4� 104. The reference solutions are obtained
using a 32 � 32 mesh of MITC9 shell elements. Fig. 12 shows the
resulting load-displacement curves. The MITC4 and MITC4+ shell
elements perform very well. Fig. 13 presents the final deformed
shape of the structure obtained using the MITC4+ shell element.
x y

z maxPP

maxPP

Fig. 20. Deformed shape of the hemispherical shell (12 � 12 uniform mesh used).
3.4. Bending of a cylindrical shell structure

We solve the bending problem of a cylindrical shell structure
shown in Fig. 14(a) [11,16–18]. The structure is subjected to uni-
form bending momentM along BC. Three thickness to radius ratios,
a=R ¼ 1=100, a=R ¼ 1=1000 and a=R ¼ 1=10;000, are considered.
The applied moment varies with the thickness a considered
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according to M ¼ M0a3. A fully clamped boundary condition is
applied, u ¼ v ¼ w ¼ a ¼ b ¼ 0 along DE. For each thickness, we
consider the load level up to ðM0Þmax ¼ 4:0� 104.

In addition to the uniform mesh in Fig. 14(a), we also consider
the distorted mesh pattern shown in Fig. 14(b). For an N � N ele-
ment mesh, a pair of edges are discretized in the following ratio:
L1: L2:L3: . . . LN = 1: 2: 3: . . . N. The distorted mesh is shown in
Fig. 14(c). For the 4-node shell elements a 12 � 12 mesh is used.
A 32 � 32 mesh of MITC9 shell elements is employed to obtain
the reference solution.

Fig. 15 shows the load-displacement curves for the uniform
mesh, where the solutions obtained using the MITC4 and MITC4+
shell elements agree well with the reference solution. Fig. 16
shows the load-displacement curves when the distorted mesh is
used. As the shell thickness decreases, the solutions obtained using
the MITC4 shell element depart from the reference solution. How-
ever, using the MITC4+ shell element good response predictions
are always obtained.

3.5. Hemispherical shell problem

We solve the hemispherical shell problem shown in Fig. 17(a)
[13–15,17,18,34]. The hemispherical shell with an 18� cutout at
its pole is subjected to alternating radial point forces (P) at its
equator. In this bending problem, the shell structure undergoes
almost inextensional deformations and thus we test whether
membrane locking occurs. Due to symmetry, only one quarter of
the structure corresponding to the shaded region ABCD in Fig. 17
(a) is modeled using uniform meshes of 8 � 8 and 12 � 12
4-node shell elements. We use the following boundary conditions:
u ¼ b ¼ 0 along BC, v ¼ b ¼ 0 along AD, and w ¼ 0 at A. The max-
imum load of Pmax ¼ 400 is considered.

In addition to the uniform mesh in Fig. 17(a), we consider the
distorted mesh pattern shown in Fig. 17(b) in which we use an
N � N element mesh, each edge is discretized in the following
ratio: L1: L2: L3: . . . LN = 1: 2: 3: . . . N. The distorted mesh in one
quarter of the hemisphere is shown in Fig. 17(c). To obtain the ref-
erence solution, a 32 � 32 uniformmesh of MITC9 shell elements is
employed.

Figs. 18 and 19 present the load-displacement curves for the
uniform and distorted meshes, respectively. As the mesh is refined,
the solutions obtained using the MITC4+ shell element converge to
the reference solution more rapidly than those obtained with the
MITC4 shell element. For the distorted mesh cases, the MITC4 shell
element gives a response with a large error from the reference
solution. However, the MITC4+ shell element still shows a good
behavior. Fig. 20 gives the final deformed shape of the hemispher-
ical shell calculated using the MITC4+ shell element.
3.6. Twisted cantilever beam problems

We consider the twisted cantilever beam problems shown in
Fig. 21 [26,34,35]. The initially twisted beam is fully clamped at
one end and is loaded by a point load P at the center of the free
tip. Two load cases are considered: an in-plane and an
out-of-plane load as shown in Fig. 21. We use a 4 � 24 mesh of
the 4-node elements while an 8 � 48 mesh of MITC9 shell ele-
ments is used for the reference solutions. The maximum load level
is Pmax ¼ 4� 10�2 for both load cases.

Fig. 22 gives the load-displacement curves for both the in-plane
and out-of-plane loads. No severe locking is present for the in-
plane load case, where both 4-node shell elements perform well.
When the out-of-plane load is applied, the response predicted
using the MITC4 shell element deviates significantly from the ref-
erence solution due to membrane locking. However, the MITC4+



Fig. 23. Deformed shapes of the cantilever beam. (a) Case of the in-plane load. (b)
Case of the out-of-plane load.
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shell element shows a good predictive capability. The final
deformed shapes of the cantilever beam obtained using the
MITC4+ shell element are presented in Fig. 23.
0 10 20 30 40 50 60 70 80
0

0.1

Displacements

Fig. 25. Load-displacement curves for the hook problem.
3.7. Hook problem

Finally, we consider the hook problem shown in Fig. 24, referred
to in linear analysis as the Raasch challenge, see Ref. [36]. The
structure is fully clamped at one end and is loaded by a shear load
P applied as a uniformly distributed traction at the free tip. For the
solution, we use a 4 � 20 mesh with the MITC4 and MITC4+ shell
elements and an 8 � 40 mesh of MITC9 shell elements to obtain
the reference solution. The load is applied up to
Pmax ¼ 1:0� 10�4. Fig. 25 shows the resulting load-displacement
curves. Using the MITC4+ shell element produces a significantly
more accurate solution than using the MITC4 shell element. The
final deformed shape of the hook obtained using the MITC4+ shell
element is shown in Fig. 26.
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4. Concluding remarks

We presented the geometric nonlinear formulation of the
MITC4+ continuum mechanics-based shell element which is for-
mulated using the MITC approach to alleviate shear and membrane
locking. The assumed shear and membrane strain fields used in lin-
ear analysis are developed for geometric nonlinear analysis in a
consistent manner. The nonlinear performance of the MITC4+ shell
element is numerically tested through the solutions of various
examples. The computational cost of the element is only slightly
higher than the cost of the classical MITC4 shell element.

We can conclude that the MITC4+ shell element provides reli-
able and efficient solutions in large displacement problems. Com-
pared to the original MITC4 element, the MITC4+ shell element
shows improved performance when distorted meshes in the initial
configuration are used. Moreover, the MITC4+ element performs
much better than the MITC4 shell element when due to the nature
of the shell problem, the large displacements of the mesh can
induce locking. Hence, we can conclude that the MITC4+ shell ele-
ment shows excellent behavior in both linear and nonlinear
analyses.
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