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In this paper, we develop a scheme to enrich the 3-node triangular MITC shell finite element by interpo-
lation cover functions. The MITC method is used for the standard and enriched displacement interpola-
tions. The enriched 3-node shell finite element not only captures higher gradients but also decreases
inter-elemental stress jumps. In particular, the enrichment scheme increases the solution accuracy with-
out any traditional local mesh refinement. Convergence studies considering a fully clamped square plate
problem, cylindrical shell problems, and hyperboloid shell problems demonstrate the good predictive
capability of the enriched MITC3 shell finite element, even when distorted meshes are used. We evaluate
the effectiveness of the method, and also illustrate the use of the enrichment scheme applied only locally
through the solution of two additional shell problems: a shaft-shaft interaction problem and a monster
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1. Introduction

The finite element method is a popular and effective procedure
for the analysis of solid, fluid, and multi-physics problems. The
key for its success is mainly due to the fact that meshes can be
used to span over complicated domain geometries. However,
the solution accuracy highly depends on how the geometries
are meshed. To obtain reliable solutions with desired accuracy,
special mesh refinements are frequently required, in particular,
in areas where non-smooth and near-singular solutions are
sought [1].

To obtain more accurate solutions, a promising approach is to
incorporate special enrichment functions within traditional finite
element formulations. For example, Bathe and Chaudhary [2]| and
Yoon et al. [3] successfully used enriched displacements to analyze
warping effects in beam problems. Benzley [4] and Dvorkin et al.
[5], Belytschko and Black [6], Moes et al. [7] and Daux et al. [8]
employed enrichment functions to account for various
singularities in solid mechanics problems. BabuSka and Melenk
[9] showed in general, mathematically, how to include Ansatz
spaces containing the local properties of solutions.

Recently, Kim and Bathe [10] developed and studied a finite ele-
ment method in which interpolation covers are used. The scheme
increases the solution accuracy of the traditional low-order finite
element discretization of solids without any changes in the mesh.
The major advantage of the method is that the higher order enrich-
ment is available without introducing additional nodes. That is,
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traditional nodal point movements or mesh refinements are not
used to improve the solution accuracy. The enrichment scheme
not only captures higher gradients but also decreases inter-ele-
ment stress jumps.

Due to discontinuities in geometries (curvature or thickness),
incompatibilities of boundary conditions, and irregularities in the
loading, shell structures frequently experience stress layers. With-
in stress layers, the displacements vary rapidly and induce
concentrations of strain energies [11,12]. To achieve a desired solu-
tion accuracy in such stress layers, a sufficiently fine mesh and/or
higher order interpolation functions are required [1]. But the use of
traditional mesh refinement procedures can be computationally
demanding and tedious for complex shell geometries [13]. In sev-
eral studies, enrichment functions have been employed for plates
and shells, but these studies have focused on special local
enrichments near cracks [14-17] rather than on a general enrich-
ment scheme that may be used for various areas of the shell
structure.

Displacement-based shell finite elements become too stiff in
bending situations when the thickness is relatively small [1]. The
phenomenon is called locking. For a long time, there have been
numerous attempts to alleviate the locking of plate and shell
finite elements [1]. As well established, using the pure displace-
ment-based method in general shell analyses, locking cannot
be eliminated [18]. A major advancement has been accomplished
by the MITC (Mixed Interpolation of Tensorial Components)
method for quadrilateral and triangular plate and shell elements
[18-28]. However, a particularly difficult task is to obtain a general
3-node shell element that is effective for the analysis of all shell
structures.
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The aim of this paper is to develop a 3-node triangular shell fi-
nite element enriched by linear interpolation covers within the
MITC framework. The key idea is to use and treat the assumed
covariant transverse shear strain fields separately for the standard
linear and the additional quadratic displacement interpolations.
The MITC3 shell finite element enriched by interpolation covers
passes the patch tests and shows in example solutions good con-
vergence behavior even when distorted meshes are used. Highly
varying stresses in shells can be captured by only locally using
interpolation covers.

In the following sections, the finite element procedure to enrich
by interpolation covers is briefly reviewed and then the formula-
tion of the enriched MITC3 shell finite element is presented. We
discuss the key theoretical and numerical aspects of the scheme
regarding the computational expense and the convergence of the
method. The results of convergence studies considering a fully
clamped square plate problem, cylindrical shell problems, and
hyperboloid shell problems are given. Two illustrative example
solutions, a shaft-shaft interaction problem and a ‘highly-sensitive’
shell problem, show the effectiveness of using the enriched MITC3
shell finite element also only locally, that is, only in areas of high
stress gradients.

2. The finite element method enriched by interpolation covers

Enriching the finite element procedure is in principle, and the-
oretically, straightforward but difficulties are encountered in
obtaining effective schemes [6-10,29-33]. To introduce the basic
procedure for the enrichment scheme considered here, let us
briefly consider in this section a two-dimensional analysis
problem.

Let Q" = {x;}[., be a set of n nodal point position vectors
xi =[x y]" €Q, and let {#,} = {y™}_, be a family of g triangles
generated by Q". The triangles correspond to the domain Q in
which we seek the solution variable u

Y =Q, (1)

C-

m=1

The triangles do not overlap, that is, ¥/ ny* =g for j#k
Fig. 1(a) shows the piecewise interpolation function hyx,y)
used in the solution. Let C; be the support domain of h; i.e.
Ci =supp(h;), Vi=1,...,N, which we call the cover region. Hence
the cover region C; corresponds to the union of elements attached to
the node i, see Fig. 1(b). For each /™, let i(m) be the set of cover
indices defined by

ic(m) = {i: G Ny "=} (2)

In Fig 1, the 3-node triangular element m coincides with the
overlapped region of the three cover regions G, G and C, and
hence i(m) = {i, j, k}. To enrich the standard finite element interpo-
lation for the solution variable u, we use interpolation cover
functions

Fig. 1. Description of sub-domain for enriched over interpolations; (a) usual
interpolation function, (b) cover region or elements affected by the interpolation
cover, and (c) an element.

_ L X—X; —y;
Pl =+ & n, & &, oo )i with &= 7 ) '71-=<yy_y’)= 3)
where 1; is the standard nodal point variable, 1w =
[u, ﬂ:? e “f" ﬂlflz ﬂ:,?" ]T lists the additional degrees of

1

freedom for the cover region, p is the order of the complete polyno-
mial used, and y; is the diameter of the largest finite element
sharing the node i. The use of y; can improve the conditioning of
the coefficient matrix.

The enriched approximation for the solution variable is then
given by

:zq: Zh,-Pf[u]—Z(Zhu,Jr ZHu,)

m=1 ieic(m) m=1 \ieic(m icic(m

with Hi=h[g n & &m 2 - 0Pl (4)

Considering Eq. (4), the enriched cover approximation consists
of the standard finite element interpolation plus additional
higher order terms. To obtain a well-conditioned stiffness
matrix, we use the local coordinate systems (¢;,#;) instead of
the global coordinates (x,y) and always (although not
mentioned in the example solutions) enforce not only #; =0
but also @; =0 when imposing the essential boundary condi-
tions at the node i.

The basic properties of the finite element method enriched by
interpolation covers were studied for general 2D and 3D finite ele-
ment analyses in Ref. [10]. These basic properties pertain also to
the finite element analysis of shells.

3. The enriched MITC3 shell finite element

In this section, we present the displacement interpolation of the
MITC3 shell finite element enriched by the linear interpolation
cover. Therefore, the resulting enriched displacement interpolation
can give quadratic convergence. We also present the assumed
covariant strain fields used for the enriched MITC3 shell finite
element.

3.1. Enriched displacement interpolation

The geometry of the 3-node continuum mechanics based trian-
gular shell finite element is interpolated using [23,24,28]

shell midsurface

X, u

Fig. 2. A 3-node triangular continuum mechanics based shell finite element.
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Fig. 3. Tying points for the covariant transverse shear strains of the enriched MITC3
shell finite element: (a) for the standard linear displacement interpolation;
rp=s; =14 and (b) for the additional quadratic displacement interpolation;
r=s=1- ﬁ andr; =5, =1+ ﬁ Note that the scheme referred to as MITC6b
in Ref. [23] is used.

3 t 3 :
X(r,s,t) = ;hi(r, S)X; + j;aihi(r, SV
with hy=r, hy=s, h3=1-1—5, (5)

(a) (b)

3-node element

6-node element

Table 1
Detailed information on the stiffness matrices of the 3-, 6-, and enriched 3-node shell
finite elements for the meshes shown in Fig. 4.

Linear shell element Quadratic shell elements

Standard 3-node Standard Enriched
6-node 3-node
Elements 512 (2N=16) 128 (N=38) 128 (N=8)
Nodes 289 289 81
DOFs 803 803 633
Non-zero entries 15,313 24,581 32,797
Half-bandwidth 51 100 83

where r, s, and t are natural coordinates, h; is the 2D interpolation
function corresponding to node i, X; is the position vector of node
i in the global Cartesian coordinate system, and a; V| denote the
shell thickness and the director vector at node i, respectively, see
Fig. 2.

The standard displacement interpolation of the shell element is
given by

_ &, St i
u= ;hiui + ;iaihi<_v2ai + v]ﬁi>7 (6)

in whichw; = [1; 7 v‘vif is the nodal displacement vector in the
global Cartesian coordinate system, Vi =[Vi, Vi, Vi, " and
V, =[Vy, V, V3] areunit vectors orthogonal to V;, and to each
other, and &; and p; are the rotations of the director vector V; about
V{ and V5 at node i.

To enrich the displacement interpolation in Eq. (6), we use the
linear interpolation cover, that is, the first order degree of polyno-
mial bases. The enriched displacement interpolation for the 3-node
triangular shell finite element is given by

(0

Enriched 3-node element

16x16
(d)

8x8 &x Y

®

803

A 4

633

# of non-zero entries : 15,313
Half-bandwidth : 51

# of non-zero entries : 24,581
Half-bandwidth : 100

# of non-zero entries : 32,797
Half-bandwidth : 83

Fig. 4. Meshes used and stiffness matrix structures: (a) and (d) for the 3-node shell element, (b) and (e) for the 6-node shell element, and (c) and (f) for the enriched 3-node

shell elements. Non-zero entries are colored in black.
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Fig. 5. The total number of degrees of freedom (DOFs) when increasing the number
of element layers, N, along an edge p denotes the number of degrees of freedom per
node, hence p = 3 for the simply supported plate problem.

u=u+u (7)

with

R 3 R 3 t o

@ =Y Hid+ o aH(-Dy, + D), (8)
i=1 i=1

in which &= [ ! | # & | w W', &=[& & and

1 1 1
Bi = [ ﬁ?]T are unknown coefficient vectors for the displace-
ments and rotations, and the H; are the linear cover interpolation

matrices for the displacements and rotations

Vi o Vi 0

oV oV

&1, 0000 . .

o Vly O i VZ.V O

Hi=h|0 0 ¢ n 0 0|, D= .|, and D)= )

0000 ¢, 0 Vi 0 ¥y

Vi, 0 vy, 0

0 Vi, 0 Vi,

Note that the enriched displacement interpolation for u in Eq. (7)
consists of two parts: the standard linear term u and the additional
quadratic term .

3.2. Assumed covariant transverse shear strain fields

The covariant strain components are directly obtained as

1

where g; = u; = _ 2wy

o o =g Withri=r,r=513=t

Therefore, the enriched covariant strain components are also di-
vided into two parts

_ P | _ _
e;j =e;+¢e; with e,-jzi(g,.-u,j+gj-u,i) and

o1 « .
ej =5 (g u;+g- W, an

in which e; and &; correspond to the standard linear and additional
quadratic displacement interpolations, respectively.

To alleviate the locking phenomenon, we use the MITC meth-
od for the covariant transverse shear strains. However, different
assumed covariant transverse shear strain fields are employed
for the standard and additional quadratic displacement interpo-
lations. The assumed covariant transverse shear strain fields of
the MITC3 and MITC6 shell elements are used for the strains
e; and é;, respectively [23]. Note that, in the MITC6 shell ele-
ment, the covariant membrane strains are also assumed to re-
duce membrane locking, but this treatment is not necessary
and not used for the enriched MITC3 shell element due to its flat
geometry.

The assumed covariant transverse shear strain field used for the
standard displacement interpolation is [23]

e —ell +cs, =2l —cr, (12)

where c =22 —ell) —g® + e and, at the tying points, &

are calculated from Eq. (11), see Fig. 3(a).
For the additional quadratic displacement interpolation, we use
the assumed covariant transverse shear strain field

and e

e =a; +bir+cs,

13
e =ay + byr + o8 (13)
and we have the coefficients
a—m -1, b2l g -m 12, -2,
3 3 3 3
G=(L+06-aq)- (mﬁt) +1 —m - lﬁt)), (14)
by = (a1 + b1 — @) + (mg) - l? -my + 15?)
with
N . 5 V3
@ _ 5(0) (i) (i) 5(0)
M =5 (eljt + ert)’ I = 5 (ez;r - em)
with j=rs for i=123, (15)

where &, and &) are calculated at the tying points in Fig. 3(b).
We finally obtain the assumed covariant transverse shear strain
fields for the enriched MITC3 shell element as

eﬁs _ éjf\s eAS

in which B}-AtS is the covariant transverse shear strain-displacement
matrix and U is the vector that contains the degrees of freedom

BU with j=rs, (16)

Table 2
Solution times (in second) for solving the linear equations. We use 2N x 2N and N x N meshes for linear and quadratic shell elements, respectively (DOFs: degrees of freedom, HB:
half-bandwidth).
N Linear shell element Quadratic shell elements
Standard 3-node Standard 6-node Enriched 3-node
DOFs HB Time DOFs HB Time DOFs HB Time
4 211 27 0.001 211 52 0.001 177 47 0.001
8 803 51 0.016 803 100 0.016 633 83 0.016
16 3,139 99 0.062 3,139 196 0.125 2,409 155 0.062
32 12,419 195 0.733 12,419 388 1.591 9417 199 1.045
64 49,411 387 10.70 49,411 772 23.88 37,257 587 15.49
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Fig. 6. Fully clamped square plate under uniform pressure (L = 1.0, E = 1.7472 x 107, ¢ = 1.0 and v= 0.3) with three different 4 x 4 mesh patterns: (a) and (b) triangular mesh
for the MITC3, MITC6 and enriched MITC6 shell elements, and (c) quadrilateral mesh for the MITC4 shell element.

©;, %;, B and the additional degrees of freedom w;, &;, f;. Note that
we do not use assumed covariant strain fields for other covariant
strain components and hence the scheme will not give spurious
modes in membrane strains [25,34].

Then, using the appropriate stress-strain matrix for shells,
the element stiffness is constructed in the same manner as for
the displacement-based shell element [1]. The 7-point Gauss
integration is adopted to evaluate the stiffness matrix because
the order of the enriched displacement interpolation is
quadratic.

Since the cover interpolation is based on the existing nodes, the
enriched displacement interpolation can be locally used assigning
or not assigning interpolation covers in different regions. Without
enrichment, the element is identical to the original MITC3 shell
element.

The enriched MITC3 shell element passes the membrane,
bending, and transverse shearing patch tests for arbitrary local
enrichments, see Refs. [1,18,23,28] for the patch tests per-
formed. Of course, in the tests, the nodal forces corresponding
to not only the standard degrees of freedom (w;, & and p;)
but also the additional degrees of freedom (i;, &; and §;) must
be applied [10].

4. Computational efficiency

In this section, we study some important aspects of the compu-
tational efficiency when using the enriched element. The standard
3- and 6-node shell elements (the MITC3 and MITC6 shell ele-
ments) and the enriched 3-node shell element (the enriched MITC3
shell element) are considered.

We first study the size and sparseness of the stiffness matrices
when using the enriched 3-node shell finite element and the stan-
dard 3- and 6-node shell elements for the meshes shown in Fig. 4.
A simply supported square plate problem is considered. The
meshes used are given in Fig. 4(a)-(c) when N = 8. Since the stan-

L, L, L, L,

v

(a) (b)

Fig. 7. Distorted meshes used for the fully clamped square plate problem,
cylindrical shell problems, and hyperboloid shell problems when (a) N=4 and (b)
N = 8. The number of triangular elements for an N x N mesh is 2N,

dard 3-node shell element is based on the linear displacement
interpolation, and the 6-node and enriched 3-node shell elements
are based on quadratic displacement interpolations, we use a twice
finer mesh for the standard 3-node shell element.

The stiffness matrix entries for the simply supported square
plate problem for some equivalent mesh patterns are plotted in
Fig. 4(d)-(f), where the non-zero entries are colored in black. The
size of the stiffness matrices for the meshes used is 803 x 803
for the 3- and 6-node shell elements and 633 x 633 for the en-
riched 3-node shell element. The standard 3- and 6-node shell ele-
ments and the enriched 3-node shell element give 15,313, 24,581
and 32,797 non-zero entries in the matrices, respectively. Also,
the matrix half-bandwidths are 51, 100 and 83 for the 3- and 6-
node shell elements and the enriched 3-node shell element,
respectively. Table 1 lists the information regarding these cases.
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Fig. 9. Convergence curves for the fully clamped square plate problem with uniform meshes. The solid and dotted lines correspond to the results obtained by the mesh
patterns in Fig. 6(a) and (b), respectively. The bold line represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements.

The number of non-zero entries in the stiffness matrix for the
enriched 3-node shell element is substantially larger than in the
corresponding matrix for the 6-node shell element. This is due
to the fact that the support of the higher order interpolation
functions in the enriched 3-node shell element is larger than for
the 3- and 6-node shell elements. However, using the enriched
3-node shell element, all degrees of freedom are associated with
vertex nodes which are shared by several elements and the
assembled system of equations is in general smaller than when
using the 6-node shell element where edge nodes are only shared
by 2 elements. Therefore, the enriched 3-node shell element gives
less equations and here also a smaller bandwidth than the 6-node
shell element. This fact shows the effectiveness of the enriched
3-node shell element from a computational point of view. Fig. 5
shows how the number of nodal degrees of freedom increases

Enriched MITC3
(DISP)
T 1
0.0 —
-0.5+
5 Y -1.0+
1= S
Sl S
) v 1.5
) )
2 2
< < 2.0
z E
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40— 1 1 -4.0—1
-1.8 -1.0 -0.3 -1.8 -1.0 -0.3
log(2h) log(1.2h)

—-=—& t/L=1/100

Fig. 8. Convergence curves for the fully clamped square plate problem with uniform meshes. For triangular shell elements

as a function of the number of elements used in the meshing of
Fig. 4.

It is valuable to compare solution times required for the three
shell finite elements considered. In all the cases, of course,
symmetric stiffness matrices are generated. To obtain more insight
into the computational efforts needed in the respective solutions,
we focus on the solution of the linear equations using direct Gauss
elimination, in which the factorization of the stiffness matrices
represents the major expense. To check computational times, we
use a quad-core machine (Intel(R) Core i7-3770 CPU @ 3.40 GHz,
8 GB RAM, Windows 7 64bit) for all solution cases. Table 2 shows
the solution times for the simply supported square plate problem.
As expected, the factorization time for the enriched 3-node shell
element is much smaller than for the standard 6-node shell
element.

Enriched MITC3 Enriched MITC3
(MITC6a) (MITC6b)
LI LI
0.0 0.0 -
-0.5 -0.5
= 1.0+ = 1.0+
5 5
£ £
v 1.5 v 1.5
I [
2 2
S 22,0 S -2.0
T e
% -2.5- % -2.5-
E 2
-3.0— -3.0—
-3.5 -3.5
-4.0 -4.0
-1.8 -1.0 -0.3 -1.8 -1.0 -0.3
log(1.2h) log(1.2h)

—4—4A- t/L=1/1000 ©—©- t/L=1/10000

, the mesh pattern in Fig. 6(a) is used. The bold line

represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements.
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Fig. 10. Convergence curves for the fully clamped square plate problem with the distorted meshes shown in Fig. 7. The bold line represents the optimal convergence rate,

which is 2.0 for linear elements and 4.0 for quadratic elements.

5. Convergence studies

In this section, we perform convergence studies on well-
established problems for the enriched MITC3 shell element. The
solutions can show at most quadratic convergence in the s-norm
and the results are compared with those of the MITC3, MITC4,
and MITC6 shell elements. We solve various problems: a fully
clamped square plate problem, cylindrical shell problems, and
hyperboloid shell problems using uniform and distorted meshes
[23,24,27,28,35].

The s-norm proposed by Hiller and Bathe [36] is used to mea-
sure the convergence of the finite element solutions. The s-norm
is suitable to check whether the finite element solutions satisfy
consistency and the inf-sup condition [36-40], and is defined as
follows

[u — w2 :/ Ag"ATdQ, (17)
Q

where u is the exact solution, uy, is the solution obtained using the

finite element discretization, £ and t are the strain and stress vec-

tors, and

AE=E—-¢&, AT=T-1 (18)
The theoretical convergence behavior can be estimated to be
g} = ch, (19)

in which c is a constant and h denotes the element size. If a shell
element is uniformly optimal, the constant is independent of the
shell thickness and k represents the optimal order of convergence,
with k =2 for the 3-node shell finite element, and k =4 for the 6-
node and the enriched 3-node shell elements.

Instead of the unknown exact solution, a reference finite ele-
ment solution uy calculated using a very fine mesh and a known
reliable element can be used, hence Eq. (17) becomes

[t — w2 = / AETATAQ, s with Ag = g, — &,
Qref

AT = Tpp — Tp. (20)

To measure the convergence of the finite elements in the shell
problems, we use the relative error Ej

2
[l ey — w5

Ep =
2
Hurest

(21)

1
05 -
p®/p, o
NI
1 | |
0 30 60 90

0

Fig. 11. Cylindrical shell problem (4 x 4 mesh, L=R=1.0, E=2.0 x 10°, v=1/3 and
Po=1.0).

The numerical procedure to calculate the s-norm for shell finite ele-
ment solutions with general types of elements and general meshes
is explained in detail in Ref. [24]. In the use of Eq. (21), it is very
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Fig. 12. Convergence curves for the clamped cylindrical shell problem with uniform meshes. The bold line represents the optimal convergence rate, which is 2.0 for linear

elements and 4.0 for quadratic elements.
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Fig. 13. Convergence curves for the clamped cylindrical shell problem with the distorted meshes shown in Fig. 7. The bold line represents the optimal convergence rate,

which is 2.0 for linear elements and 4.0 for quadratic elements.

important to use accurate reference solutions calculated by a
reliable shell finite element. In this study, we use well-converged
reference solutions calculated using fine meshes of the MITC9 shell
finite element. Of course, the MITC9 shell finite element is known to
satisfy the ellipticity and consistency conditions and to show ade-
quate convergence behavior, see Refs. [22,35,36].

In the following sections, we present the convergence curves of
the MITC3, MITC4, MITC6 shell elements and the fully enriched
MITC3 shell element to identify the performance of the enriched
MITC3 shell element compared to other shell elements. Note that
some convergence curves of the MITC3, MITC4, and MITC6 shell
elements have been published before in Refs. [23,24,27].

5.1. Fully clamped square plate problem

The plate problem shown in Fig. 6 is solved. A square plate of
size 2L x 2L and constant thickness t is subjected to a uniform

pressure load. Due to symmetry, only one quarter of the plate is
modeled, with @i, = 0, = 0 along BC, @i, = 0, = 0 along DC, and
Uiy = Uy = i, = 0y = 0, = 0 along AB and AD [23,24].

We study the convergence behavior not only using uniform
meshes but also distorted meshes, as shown in Fig. 7. When the
N x N distorted mesh is used, each edge is divided by the ratio
Li:Ly:Ly:....,Ly=1:2:3:...N, leading to quite distorted
meshes. The reference solution is obtained with a uniform mesh
of 96 x 96 MITC9 shell finite elements. We use N=38, 16, 32 and
64 for the MITC3 and MITC4 shell elements, and N =4, 8, 16 and
32 for the MITC6 shell element and the enriched MITC3 shell ele-
ment. Note that in these N x N meshes N> MITC4 elements and
2N? triangular elements are used throughout the paper. Also, in
the figures of results we consider the cases t/L=1/100, 1/1000
and 1/10,000 and use as the “element size” h = L/N. To fairly com-
pare convergence behaviors among different shell elements, the
equivalent element sizes 2h, h and 1.2h are used for the MITC3
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Fig. 14. Convergence curves for the free cylindrical shell problem with uniform meshes. The bold line represents the optimal convergence rate, which is 2.0 for linear

elements and 4.0 for quadratic elements.
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Fig. 15. Convergence curves for the free cylindrical shell problem with the distorted meshes shown in Fig. 7. The bold line represents the optimal convergence rate, which is

2.0 for linear elements and 4.0 for quadratic elements.

and MITC4 shell elements, the MITC6 shell element, and the en-
riched MITC3 shell element. When using these equivalent element
sizes, the numbers of degrees of freedom are similar.

To identify the dependency of the convergence behavior on the
MITC scheme chosen for the enriched MITC3 shell element, the fol-
lowing three schemes are considered for the covariant transverse
shear strain field of the additional quadratic displacement
interpolation:

— No MITC scheme is used (denoted by DISP in Fig. 8).

- The MITC6a scheme is used, for this scheme see Ref. [23].

- The MITC6 scheme in Eq. (13) is used (referred to as MITC6Eb in
Fig. 8)

In all these cases, of course, the MITC3 scheme in Eq. (12) is
used for the assumed covariant transverse shear strain field of
the standard linear displacement interpolation.

Fig. 8 shows the convergence curves of the original MITC3 shell
element and the enriched MITC3 shell elements based on the dif-
ferent assumptions for the transverse shear strain fields. The en-
riched MITC3 shell element shows different solution accuracy
highly depending on the assumed covariant transverse shear strain
field used. When the assumed covariant transverse shear strain
field of the MITC6 shell element is employed, an almost ideal con-
vergence behavior is observed in this fully clamped square plate
problem. Note that the other enriched MITC3 shell elements show
an even worse convergence behavior than the original MITC3 shell
element. Therefore, in the following sections, we only use the en-
riched MITC3 shell element based on the MITC6 scheme in Eq. (13).

Figs. 9 and 10 present the convergence curves for the fully
clamped square plate problems using uniform and distorted
meshes, respectively. The performance of the enriched MITC3 shell
element is much better than the performance of the MITC3 and
MITCG shell elements. One reason is probably that the enrichments
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Fig. 16. Hyperboloid shell problem (E=2.0 x 10'!, »=1/3 and p, = 1.0). (a) Shell geometry and boundary conditions, (b) Graded mesh for the clamped case (8 x 8 mesh,

t/L =1/1000), (c) Mesh for the free case (8 x 8 mesh).
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Fig. 17. Convergence curves for the clamped hyperboloid shell problem with uniform meshes. The bold line represents the optimal convergence rate, which is 2.0 for linear

elements and 4.0 for quadratic elements.

span over the cover regions and distortions within the regions are
not as severe (are smoothed out) in comparison to not using cov-
ers. The MITC4 and enriched MITC3 shell finite elements show al-
most optimal convergence behaviors, even though the distorted
meshes are used.

5.2. Cylindrical shell problems

A cylindrical shell with uniform thickness ¢, length 2L, and ra-
dius R is considered, as shown in Fig. 11. The loading is a smoothly
varying periodic pressure p(0) normal to the shell surface

P(0) = po cos(20). (22)

The shell problem gives two different asymptotic behaviors
depending on the boundary conditions at both ends: the bending-
dominated behavior under free boundary conditions and the mem-
brane-dominated behavior under clamped boundary conditions.
Using the symmetry of the problem, the region ABCD in Fig. 11
is modeled. In the membrane-dominated case, the clamped
boundary condition is imposed: &, = =0 along BC, i, =& =0
along DC &, = & = 0 along AB, and iy = &iy = &l, = & = = 0 along
AD. In the bending-dominated case, the free boundary condition
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Fig. 18. Convergence curves for the clamped hyperboloid shell problem with the distorted meshes shown in Fig. 7. The bold line represents the optimal convergence rate,

which is 2.0 for linear elements and 4.0 for quadratic elements.
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Fig. 19. Convergence curves for the free hyperboloid shell problem with uniform meshes. The bold line represents the optimal convergence rate, which is 2.0 for linear

elements and 4.0 for quadratic elements.

is imposed: i, =p=0 along BC, i, =& =0 along DC, and
i, = o = 0 along AB [23].

The reference solution is calculated using a mesh of 96 x 96
MITC9 shell finite elements for both cases. The solutions using
the MITC3, MITC4, MITC6 and enriched MITC3 shell elements are
obtained with N x N meshes (N =38, 16, 32 and 64 for the MITC3
and MITC4 shell elements and N =4, 8, 16, and 32 for the MITC6
and enriched MITC3 shell elements). The element size used in
the figures is h = L/N. The distorted meshes used are generated as
shown in Fig. 7.

Figs. 12 and 13 present the convergence behaviors for the
clamped cylindrical shell problems with uniform and distorted
meshes, respectively. All the shell finite elements considered show
excellent convergence behavior with uniform and distorted
meshes.

Figs. 14 and 15 present the convergence curves for the free
cylindrical shell problems obtained with uniform and distorted

meshes, respectively. When distorted meshes are used, the solu-
tions of the MITC3, MITC4, and MITC6 shell elements deteriorate
as the shell thickness decreases, due to some locking. However,
the enriched MITC3 shell element presents good convergence
behavior even when using the distorted meshes.

5.3. Hyperboloid shell problems

The hyperboloid shell shown in Fig. 16 is considered, where the
midsurface of the shell structure is given by

2

P=1+y%

X +y yel-1,1]. (23)

A smoothly varying periodic pressure is applied normal to the sur-
face, as in Fig. 11,

P(0) = po cos(20), (24)
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Fig. 20. Convergence curves for the free hyperboloid shell problem with the distorted meshes shown in Fig. 7. The bold line represents the optimal convergence rate, which is

2.0 for linear elements and 4.0 for quadratic elements.

When both ends are clamped, a membrane-dominated problem is
obtained, and when the ends are free, a bending-dominated prob-
lem is obtained. The bending-dominated hyperboloid shell problem
is known to be difficult to solve [23,24,41].

Due to symmetry, the analyses are carried out using one-eighth
of the structure, corresponding to the shaded region ABCD in
Fig. 16(a). For the membrane-dominated case, the clamped bound-
ary condition is imposed using: i, = f =0 along BC, i, = =0
along AD, and @i, =a =0 along DC, and iy =iy =i, =0 =$=0
along AB. For the bending- dominated case, the free boundary con-
dition is imposed using: i1, = = 0 along BC, i, = = 0 along AD,
and u, = a = 0 along DC [23,24].

In common with previous problems, we use the reference solu-
tions calculated with a mesh of 96 x 96 MITC9 shell elements. The
solutions using the MITC3, MITC4, MITC6 and enriched MITC3 shell
elements are obtained with N x N meshes (N =8, 16, 32 and 64 for
the MITC3 and MITC4 shell elements and N = 4, 8, 16, and 32 for the
MITC6 and enriched MITC3 shell elements). The element size used
in the convergence curves is h=L/N. In the clamped hyperboloid
shell problem, a boundary layer of width 6/ is used for half of
the mesh, see Fig. 16(b). In the free hyperboloid shell problem,
the thin boundary layer is not specially meshed.

Figs. 17 and 18 show the convergence curves for both uniform
and distorted meshes in the membrane dominated case (that is,
the clamped hyperboloid shell problem). The performance of all
shell elements is good.

For the bending-dominated case (that is, the free hyperboloid
shell problem), the convergence curves are shown in Figs. 19 and
20. The enriched MITC3 shell element shows the best convergence
behavior among the shell elements considered. Even in the use of
distorted meshes, the performance of the enriched MITC3 shell ele-
ment is excellent while the other shell elements show some degree
of locking.

6. Local use of cover interpolations

In the convergence studies given in Section 5, we showed a
good performance when the enriched MITC3 shell element is used
throughout the mesh. In this section, we illustrate the local use of
cover interpolation functions over the solution domains. This
scheme of increasing the solution accuracy is quite different from
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&
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Line load of 1000 N/m

pib it bieyill

1-0.0075 radius

0.08

@

¥vo02 radius fillet

- Clamped

Fig. 21. Shaft-shaft interaction problem with fillets (E = 2.07 x 10!, »=0.29).

using conventional standard shell finite elements with mesh
refinements. We consider two numerical examples: a shaft-shaft
interaction problem and a ‘monster’ shell problem. The maximum
effective stress, the strain energy and the deformed shape will be
evaluated with and without using local enrichments..

6.1. Shaft-shaft interaction problem

Consider the two cylindrical shafts connected with fillets of
radius 0.002 m, in which the horizontal shaft is subjected to a line
load of 1000 N/m, as shown in Fig. 21, and the vertical shaft is fully
clamped at its lower end [42]. Fig. 22 presents the distribution of
the effective stress (von Mises stress) obtained using the MITC4
and MITC3 shell elements, and using the enriched MITC3 shell
element throughout the mesh or only locally. The reference solu-
tion is given by a fine mesh of the MITC4 shell element, in which
2,150 elements and 10,805 DOFs are used, see Fig. 22(a).
Fig. 22(b) presents a finer mesh of the MITC3 shell element and
Fig. 22(c)-(e) show the same coarse mesh used for the MITC3 shell
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Fig. 22. Distributions of effective stress for the shaft-shaft interaction problem: for (a) the 2,193 node model of the MITC4 shell elements, (b) the 2,582 node model of the
MITC3 shell elements, (c) the 641 node model of the MITC3 shell elements, (d) the 641 node model fully enriched, and (e) the 641 node model locally enriched. The red dot

represents enriched nodes (DOFs: total number of degrees of freedom used, Error = (o‘

the reader is referred to the web version of this article.)

Table 3

- U’,‘,) /6" % 100). (For interpretation of the references to color in this figure legend,

Relative errors in maximum effective stress in the shaft-shaft interaction problem for the five different shell models in Fig. 22. Relative error (%) = (a{f}/ax — a’,}m) /a{f}/ax x 100.

Fine mesh Coarse mesh
MITC4 (reference) MITC3 MITC3 Fully enriched MITC3 Locally enriched MITC3
Elements 2,150 5,078 1,240 1,240 1,240
Nodes 2,193 2,582 641 641 641
Enriched nodes - - - 641 72
Free DOFs 10,805 12,750 3,125 9,375 3,845
Max. effective stress (o max) 1.78E+09 1.68E+09 1.29E+09 1.69E+09 1.66E+09
Relative error (%) - 5.68 27.54 5.28 6.75

element and the fully and locally enriched shell models. The red
dots in Fig. 22(e) represent the selected nodes carrying interpola-
tion covers around the fillet area where stress concentration is
expected.

Table 3 gives the numbers of elements, nodes, degrees of free-
dom used, and the relative errors in the maximum effective stress
obtained when using the shell models in Fig. 22. In the shaft-shaft
interaction problem, the maximum effective stress is obtained
around the fillet area. Using the local enrichments, the maximum
effective stress is well predicted with a much smaller number of
degrees of freedom.

6.2. A “highly-sensitive” shell problem

Fig. 23 shows the problem considered (referred to also as “the
monster shell problem”) [12]. The shell geometry corresponds to
a half-sphere with the top sliced off. The shell is clamped around
its entire lower boundary. A smoothly distributed pressure is
applied over a small part of the interior of the shell. Since there

is no exact solution to the problem, we use the reference solution
given by a fine mesh of 48 (axial) x 192 (circumferential) MITC4
shell elements; see Fig. 24(a). This is a sufficiently fine mesh to
identify and reasonably resolve the boundary layer on the free
edge. Fig. 24(b) presents a finer mesh of MITC3 shell elements,
and Fig. 24(c)-(e) show a coarser mesh for the MITC3 shell element
and the fully and locally enriched cases.

Fig. 24 shows the calculated deformed shapes of the shell when
the shell thickness is 0.001 (t/L =1/10,000). For visualization, the
displacements are normalized so that the maximum outward total
displacement value is equal to 2.0. We note that the displacements
are dominant in the immediate vicinity of the free boundary,
namely within the boundary layer. Fig. 24(b) and (c) show that
the MITC3 shell element meshes are not effective in predicting the
displacement oscillations' in the circumferential direction ithin the

" In the monster shell problem, the number of displacement oscillations in the
boundary layer increases as the shell thickness decreases. The number is given by
log (L[t).
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Fig. 23. A “highly-sensitive” shell problem. (L=R =10, E = 6.285 x 107, »=0.3, and
p(r) = e ).
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boundary layer. However, when the coarse MITC3 shell element mesh
is fully enriched, the displacements in the boundary layer are
calculated accurately as shown in Fig. 24(d). Also, the local use of
the cover interpolations within the boundary layer results in excellent
overall accuracy with a significantly reduced number of degrees of
freedom, see Fig. 24(e). Table 4 shows the number of elements, nodes
and degrees of freedom used, the number of displacement oscilla-
tions, and the relative errors in the strain energies.

7. Conclusions

In this paper, we have proposed a 3-node shell finite element
enriched by interpolation covers based on the MITC method. The
enriched MITC3 shell finite element is obtained by applying linear
displacement interpolation covers to the standard 3-node shell ele-
ment, and using the MITC procedure. Good convergence behavior
in the analysis of various shell problems has been seen, even when
distorted meshes are used. The fact that, in the solutions consid-
ered, the enriched 3-node element performs sometimes signifi-
cantly better than the MITC4 and MITC6 shell elements when
distorted meshes are used is particularly noteworthy. The effec-
tiveness of using the enrichment scheme only locally was also
illustrated by using the cover interpolation functions only in criti-
cal areas of an analysis domain.

(DOFs =46,080, Error =45.66%)

Locally enriched MITC3
(DOFs =9,120, Error = 6.49%)

Fig. 24. Deformed shapes for the monster shell (¢/L = 1/10, 000): for (a) the 48 (axial) x 192 (circumferential) mesh of the MITC4 shell elements, (b) the 48 x 192 mesh of the
MITC3 shell elements, (c) the 16 x 64 mesh of the MITC3 shell elements, (d) the 16 x 64 mesh model fully enriched, and (e) the 16 x 64 mesh model locally enriched. In the
figure (e), the red dot represents enriched nodes (DOFs: the total number of degrees of freedom used, Error = (Eef — Ep)/Erer x 100). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

Table 4

Relative errors in strain energy in the monster shell problem for the five different shell models in Fig. 24. Relative error (%) = (Eres — Ep)/Erer x 100.

Fine mesh 48 (axial) x 192 (circumferential)

Coarse mesh 16 (axial) x 64 (circumferential)

MITC4 (reference) MITC3 MITC3 Fully enriched MITC3 Locally enriched MITC3
Elements 9,216 18,432 2,048 2,048 2,048
Nodes 9,408 9408 1,088 1,088 1,088
Enriched nodes - - - 1,088 409
Free DOFs 46,080 46,080 5,120 15,360 9,120
Oscillations 4 3 2 4 4
Strain energy (E) 5.21E-04 2.83E-04 1.26E-04 5.37E-04 4.87E-04
Relative error (%) - 45.66 75.81 3.11 6.49




142 H.M. Jeon et al./ Computers and Structures 134 (2014) 128-142

We can conclude that cover interpolations and the MITC meth-
od are promising schemes for enriching shell element behaviors.
Based on the observed good behavior of the enriched MITC3 shell
finite element, we expect that an enriched MITC4 shell element
will likely also be effective when distorted meshes must be used
in areas of shell bending. In future studies, it would be valuable
to mathematically analyze the method, to further test the scheme,
and to develop the method for nonlinear analysis [1,18,43] and for
solving problems containing very high stress gradients, like shell
problems containing cracks [32,33,44]|. In all of these develop-
ments, the ultimate aim should probably be to establish automatic
procedures for improving stress solutions [45].
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