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In this paper, we present the MITC3+ shell finite element for geometric nonlinear analysis and demon-
strate its performance. The MITC3+ shell element, recently proposed for linear analysis [1], represents
a further development of the MITC3 shell element. The total Lagrangian formulation is employed allow-

ing for large displacements and large rotations. Considering several analysis problems, the nonlinear
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solutions using the MITC3+ shell element are compared with those obtained using the MITC3 and MITC4
shell elements. We conclude that the MITC3+ shell element shows, in the problems considered, the same
excellent performance in geometric nonlinear analysis as already observed in linear analysis.
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1. Introduction

Due to significant efforts over the past decades, the finite ele-
ment method has become a powerful tool for the linear and non-
linear analyses of shell structures [2]. The available capabilities
have been continuously improved in reliability and effectiveness
but there are still important research and development tasks to
be accomplished. One such task is the development of an optimal
3-node shell element.

When modeling complex shell structures, an effective mesh of
triangular shell elements is relatively easy to generate provided
general element shapes are allowed, that is, the element employed
must be effective even when used in general triangular shapes. Lee
et al. proposed recently the 3-node MITC3+ shell element for linear
analysis that was shown to perform even well when highly dis-
torted elements are used [1]. Hence this element is a good candi-
date for use in general meshes. Of course, a shell surface can also
be meshed rather easily using 4-node quadrilateral elements, but
then in general practical analysis quite distorted elements might
be present that show low predictive capabilities. Namely, quadri-
lateral elements generally do not perform well when highly
distorted.

It is difficult to develop effective shell finite elements that give
reliable and efficient solutions for general shell problems, when
considering the various shell geometries, boundary and loading
conditions, and mesh patterns used [2-4]. The difficulty is basically
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due to the highly sensitive and complex behavior of shell struc-
tures (categorized as bending dominated, membrane dominated
and mixed behaviors), in particular, when the shell thickness is
small [3,4]. Then a shell finite element discretization frequently
gives too stiff solutions. This phenomenon is called “locking”,
which must be alleviated for reliable shell finite element analysis.
Among various schemes to alleviate the locking, the MITC (Mixed
Interpolation of Tensorial Components) scheme has been used very
successfully in the development of general shell elements [1-7].

The MITC3+ shell element is based on the concepts of the MITC3
shell element developed by Lee and Bathe [6] with an enrichment
by a cubic bubble function for the rotations. The cubic bubble func-
tion provides a higher-order interpolation inside the element to
enrich the element behavior while maintaining the linear interpo-
lation along the element edges. The degrees of freedom corre-
sponding to the bubble function can be statically condensed out
on the element level. To alleviate shear locking, a newly developed
assumed transverse shear strain field is used. The shell element
passes the basic numerical tests - the isotropy, zero energy mode
and patch tests — and shows an excellent convergence behavior in
linear analysis.

A particular strength of the MITC approach is that a formulation
achieved for linear analysis can be directly extended to nonlinear
analysis by “simply” using the appropriate stress and strain mea-
sures [2], although the performance in nonlinear solutions must
then of course still be studied.

Our objective in this paper is to present the formulation of the
MITC3+ shell element in geometric nonlinear analysis. The stan-
dard total Lagrangian formulation is employed allowing for large
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(a)

(b)

Fig. 1. The MITC3+ shell finite element with the bubble node: (a) Geometry of the MITC3+ shell finite element. (b) Definition of rotational degrees of freedom oy and f. In

linear analysis the superscript t is not used.

displacements and large rotations [2]. Solving various shell prob-
lems, the performance of the MITC3+ shell element is evaluated
by comparison of the solution accuracies obtained with the
MITC3+, MITC3 and MITC4 shell elements. Of course, the MITC4
quadrilateral shell element has been, and is, widely employed in

T Barycenter T

: Tying points
ying pe
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Fig. 2. Transverse shear strains e;;, e;: and es;, and the tying positions (A), (B), (C),
(D), (E) and (F) for the assumed transverse shear strain field.

Table 1
Tying positions for the assumed transverse shear strain for the MITC3+ shell
elements. The distance d is defined in Fig. 2(c), and d = 1/10,000 is used [1].

Tying position r s

Fig. 2(b) (A) 1/6 2/3
(B) 2/3 1/6
(o] 1/6 1/6

Fig. 2(c) (D) 1/3+d 1/3-2d
(E) 1/3-2d 1/3+d
(F) 1/3+d 1/3+d

engineering practice due to its superior performance in both linear
and nonlinear analyses. Our study reveals that the performance of
the MITC3+ shell element in nonlinear analysis is as good as the
performance of the MITC4 shell element, even when highly dis-
torted meshes are used.

Next, in Section 2, the linear formulation of the MITC3+ shell
element is reviewed and, in Section 3, we present the geometric
nonlinear formulation. In Section 4, we examine the performance
of the MITC3+ shell element in geometric nonlinear analysis
through the solutions of various shell problems.

2. The MITC3+ shell element for linear analysis

In this section, we briefly review the formulation of the
MITC3+ shell element for linear analysis [1]. The two key aspects
of the MITC3+ shell element are the geometry and displacement
interpolations and the assumed covariant transverse shear strain
fields.

2.1. Geometry and displacement interpolations

The geometry interpolation of the MITC3+ shell element, shown
in Fig. 1, is given by

z V/ B (| f/;
h
| : :
(2)

' (b)

Fig. 3. Cantilever plate subjected to end shear force. (a) Problem description. (b)
Meshes used for the MITC4 (top), MITC3 and MITC3+ (bottom) shell elements.
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Fig. 4. Load-displacement curves for the cantilever plate subjected to end shear force. For the triangular element meshes, essentially the same response is measured at the

two corners.
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Fig. 6. Cantilever plate subjected to end moment.

3

X(r,5,8) = hi(r,s)x; +§

i=1

afi(r,s)V,

M-

Il
-

with hy=1-r—-s hy,=r,h;=s,

1
aVy = 3 (V) + @V, + V), (1)

in which hy(r, s) is the two-dimensional interpolation function of the
standard isoparametric procedure corresponding to node i, x; is the

position vector of node i in the global Cartesian coordinate system,
a; and V; denote the shell thickness and the director vector at node
i, respectively, and f{r,s) are the two-dimensional interpolation
functions that include the cubic bubble function f; corresponding
to the internal node 4

1 1 1
fi=hi—3fs fr=ha—3fs fy=hi—3f,,

fa=27rs(1 =1 —5). (2)

Unlike the standard 3-node shell elements, the MITC3+ shell
element has an internal node and the corresponding cubic bubble
function in the geometry interpolation.

From Eq. (1), the displacement interpolation of the MITC3+ shell
element for linear analysis is obtained by [1]

. 4
u(r,s, &) = Zhi(r, Su; + %Zaifi(r, s) (— Lot + Vi ﬁi>, (3)

in which u; is the nodal displacement vector in the global Cartesian
coordinate system, V! and V), are the unit vectors orthogonal to V',
and to each other, and «; and p; are the rotations of the director vec-
tor Vi about V) and V), respectively, at node i.

The interior node, with rotation degrees of freedom only, is
positioned on the flat surface defined by the three corner nodes
of the element. Only the bending and transverse shear strain fields
are enriched by the bubble function, and the geometry of the ele-
ment remains flat, as for the MITC3 element, in a large deformation
analysis. Of course, static condensation can be carried out on the
element level for the rotations o4 and B4, and hence in practice
the element is really a 3-node element.

2.2. Assumed covariant transverse shear strain fields

For linear analysis, the linear part of the Green-Lagrange strain
tensor is used and its covariant strain components are

1
ejj :i(gi'u\i""gj'u.i)v (4)
in which

104 ou .
gi:a_r,-’ u’i:6_r,~ withr; =r,r, =5s,13 =¢. (5)

Since the MITC3+ shell element is flat, the covariant in-plane
strain components are directly calculated using Egs. (1)-(5). How-
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Fig. 7. Load-displacement curves for the cantilever plate subjected to end moment. For the triangular element meshes, essentially the same response is measured at the two

corners.

Fig. 8. Deformed configurations of the cantilever plate under end moment.

ever, the covariant transverse shear strain fields are established
using the MITC scheme to alleviate shear locking. The assumed
transverse shear strain fields of the MITC3+ shell element are given
by

2 1 1 1.
er =3 (ei? - —e(‘”) +x (eﬁ? - eﬁ?) +5E63s-1),

2 )73 3
2 1 1 1.
e -3 (eg@ - jeﬁ?) +3 (e + ) +5e(1 -3, (6)
where ¢ = el —e” — e + e and the tying positions (A), (B), (C),

(D), (E), and (F) are presented in Fig. 2 and Table 1. We use d =1/
10,000 as suggested [1]. If d =0 is used, there is one spurious zero
eigenvalue for a single element, which however disappears as soon
as two elements are used in the mesh.

The MITC3+ shell element is based on the ‘basic mathematical
shell model’ [4,8,9] and the MITC scheme. The element passes
the basic numerical tests, namely, the isotropy, zero energy mode,
and patch tests. Furthermore, the MITC3+ shell element shows an

excellent convergence behavior in both membrane and bending
dominated shell problems, even when distorted meshes are used

[1].

3. The MITC3+ shell element for geometric nonlinear analysis

In this section, we present the geometric nonlinear formulation
of the MITC3+ shell element. The total Lagrangian formulation is
employed allowing for large displacements and large rotations. In
the formulation, a superscript (and subscript) t is used to denote
“time” for general analysis, with in static solutions “time” simply
denoting the load step and configuration [2].

We discuss below the large displacement kinematics and the
interpolation of the Green-Lagrange strain components. With the
given expressions, the now classical incremental equations used
in the total Lagrangian formulation can directly be established [2].

3.1. Large displacement kinematics

The geometry of the MITC3+ shell finite element in the config-
uration at time t shown in Fig. 1 is interpolated with

3 . 4
X(r,s,6) =D hi(r,5)'x; +%Zaifi(r, s)'V (7)
p i1

in which ?x; is the position vector of node i in the configuration at
time ¢, and ‘V', denotes the director vector at node i in the configu-
ration at time t.

The incremental displacements from the configuration at time t
to the configuration at time t + At are

u(r,s, &) = "Ax(r,s, &) - X(r,5,8), (8)
and hence

3 4
1,5, 8) = S+ §;aiff(r, (v - v, (©)

where u; is the vector of incremental nodal displacements at node i
from time t to time t+ At. Note that u(r, s, ¢) is the displacement
vector in the linear formulation, see Eq. (3), but here it is the vector
of incremental displacements.
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Fig. 9. Slit annular plate under end shear force. (a) Problem description. (b) Meshes used.

The director vector at time t + At at node i is obtained from the
director vector at time t

. P
H—Atv:1 — t+A§Q t‘,ln7 (-10)
in which ‘+A§Qi is the rotation matrix which rotates the director
vector at node i from the configuration at time t to the configuration
at time t + At. Additionally, the two unit vectors 'V} and 'V, are
obtained by (see Fig. 1(b)),

tyi
ez><Vn

Vi = Wy =1V x V. (11)
‘ertV'n’

For the vector-like parameterization of finite rotations [2,10],
we employ the well-known formula
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Fig. 10. Load-displacement curves for the slit annular plate under end shear force.
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GALY' — otV 4 BV, (14) Using a Taylor series expansion, the finite rotation tensor “4(Q’
in which I is the 3 x 3 identity matrix, ”A§®i is the skew-symmet- can be represented by

. . . LT . . N2 3
ric  matrix  operator, t+A£9' _ [HAgg’] t+A§9'2 t+A§6'3] . and t+A€Ql . t+A€®l + % (HAE@') _;,_% (”AfQI) T . (15)

: T2 i 2 i 2
t+AE9' — \/(t+A59'1) + (t+A§9'2) + (t+A£9'3) .

P=05P,,

irzin’,,
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Fig. 11. Deformed configurations of the slit annular plate under end shear force.
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Fig. 12. Hemispherical shell subjected to alternating radial forces. (a) Problem solved. (b) Meshes used (8 x 32).
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Fig. 13. Load-displacement curves for the hemispherical shell subjected to alternating radial forces when (a) 8 x 32 and (b) 12 x 48 element meshes are used.
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Fig. 14. Deformed configurations of the hemispherical shell subjected to alternating radial forces.
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Fig. 15. Clamped semi-cylindrical shell under point load. (a) Problem description (b) Meshes used (20 x 20).

Using only the terms up to quadratic order in Eq. (15), the fol-
lowing equation is obtained

t+AtV;1 _ t‘,;1 _ t+A£0’ x tV;7 +§HA€01 x (t+Agol x tv;), (16)

and using Eq. (14) in Eq. (16), we obtain for a ‘consistent lineariza-
tion’ of the element displacements [2]

. : ) 1 )
CAVL 'V = 0tV + BV — 5 (i + )V (17)

Substituting Eq. (17) into Eq. (9), the vector of incremental dis-
placements including second-order rotation effects is

3

u(r,s, &) =y hir,s)u

i=1

. 4
#3300 Va BV, g (a2 ) 19

in which o; and g; are the incremental rotations of the director vec-
tor ‘V! about 'V} and V%, respectively, at node i.

Note that the incremental displacement in Eq. (18) consists
of two parts, the linear part w; and the quadratic part ug,
hence

u(r,s, &) =w(r,s, &) +uy(r,s, &), (19)
with
3 el . .
w(r,s, &) =Y hir,s)u +Z'Zaifi(r,s) (—oci‘V‘z + /},«tv‘]), (20)
i=1

i=1

and

4 :
u(.5.6) = — 5 > afr,9)[ (0 + BV 1)
i=1

3.2. Green-Lagrange strain and its interpolation

The covariant components of the Green-Lagrange strain tensor
in the configuration at time t, referred to the configuration at time
0, are defined by [2]

1 0 SED S

085 =5 (& -'8 "8 °g) with g === fg =" =g+ u,,
1 1
(22)
H ; t du t 0 ¢
in which U= M= = =5 T = (23)
i
Hence the incremental covariant strains are
0&ij = f+AggU — 08
1 . ou

:E(u,i-‘gj+[g,v-u_j+u,,--uj) with u,,-:a—ri. (24)
Using Eq. (19) in Eq. (24), these strains are approximated as
0&jj = 0€jj + ol (25)

where ge;; and o;; are the linear and nonlinear parts, respectively,

1 f)lll 8“1
08j =5 (871 g +'s air,) =B;U, (26)

_1 /0w ou\ 1/0ug . . oug\ 1 40
o'/lijfj(afri 87rj>+§<87r, g+ 8 871’, 7jUN,JU, (27)

in which By and Nj; are the strain-displacement matrices and U is
the vector of incremental nodal displacements and rotations u;, o;
and B; for all element nodes. In addition, the strain variations are

doej = ByoU,  don; = SU'N;U. (28)

Note that Egs. (25)-(28) contain all the strain terms to have a
consistent linearization in the establishment of the tangent stiff-
ness matrix.
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Fig. 16. Load-displacement curves for the clamped semi-cylindrical shell under point load when (a) 20 x 20 and (b) 32 x 32 element meshes are used.

To alleviate shear locking, the MITC scheme used in the linear
formulation of the MITC3+ shell element is also employed for the
incremental covariant transverse shear strains in the nonlinear for-

mulation. Therefore, the covariant transverse shear strains in Egs.
(25)-(28) are substituted by

2 1 1 1.
ot =3 (085? i 08;?) +3 (08 +06d) 430635 - 1), (29)

2 1 1 1.
09?5 =3 (0322) - 5035?)) +§ (oﬁﬁ? + OSE?) + §0C(1 —3r), (30)

08 = oeff +on, e =BPU, o = %UTNJ@SU with j=r,s

31)
in which o¢ = o8 — 0&!?’ — 0l + &, BY and N are the strain-
displacement matrices for the assumed covariant transverse shear
strains. Of course, the tying positions defined in Fig. 2 and Table 1
are used.

For the evaluation of the element stiffness matrix and internal
nodal force vector, we use 7-point Gauss integration in the r-s
plane (as for the MITC6 shell element) due to the cubic bubble
function. Hence, since also 6 tying points and the fourth node are
used, compared to the MITC3 shell element (using 3 tying points
and 3-point Gauss integration), the MITC3+ shell element requires

for the evaluation of these element quantities clearly more compu-
tational time.

4. Numerical examples

To assess the performance of the MITC3+ shell element in geo-
metric nonlinear analysis, the solutions of several benchmark
problems are given in this section. The problems involve the large
displacement and large rotation response of shells with various

shell geometries. The results calculated using the following MITC
shell elements are given

e MITC3: 3-node triangular shell element

e MITC3+: 3-node triangular shell element enriched by a cubic
bubble function (presented in this paper)

e MITC4: 4-node quadrilateral shell element

In each example, the reference solutions are given by either an
analytical result or a calculated solution using a fine uniform mesh
of the MITC9 shell element (these meshes used twice the number
of elements in each direction as employed in the MITC4 element
solutions) [11]. The MITC9 element is known to satisfy the elliptic-
ity and consistency conditions and to show good convergence
behavior [5,11,12]. For comparison, we also plot the results of
the linear analysis calculated using the MITC9 shell element. The

99
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iterations to solve the nonlinear equations have been performed in
each load step to a convergence tolerance of 0.1 percent on the rel-
ative incremental energy.

Note that in some benchmark problems, point loads are used,
which cause a stress singularity at the point of loading. However,
the use of point loads is acceptable in the studies here given
because the meshes are not very fine (the point loads act as an
equivalent pressure applied over a small area) [2].

4.1. Cantilever plate subjected to end shear force

The cantilever plate shown in Fig. 3(a) is subjected to a shear
force at the free end. This problem has been considered many
times before, see e.g. [13-15]. The material properties, geometry
and applied force are chosen as E=1.2 x 10, »=0, L=10, B=1,
h=0.1 and Pp,.x = 4. Fig. 3(b) shows the 16 x 1 mesh used for the
solution with the MITC4 shell element and the corresponding mesh
used for the MITC3 and MITC3+ shell elements. The reference

solutions are calculated using a 32 x 2 element mesh of the MITC9
shell element.

Fig. 4 shows the calculated load-displacement curves. Fig. 5
depicts the deformed configurations of the cantilever plate
obtained using the MITC3+ shell element at various load levels
(P=0.25Pnax, 0.5Pax, 0.75P 2y, and Ppay). All shell elements con-
sidered show excellent performance in the solution of this
problem.

4.2, Cantilever plate subjected to end moment

Fig. 6 shows the cantilever plate subjected to a moment at the
free end. This is a good problem to test the large rotation capability
of shell elements [16-19]. The cantilever plate has length L=12,
width B =1, thickness h =0.1, Young’s modulus E = 1.2 x 10® and
Poisson’s ratio v=0. We use the end moment M,,x = 21tMy with
My = EI/L, and hence the cantilever rolls up into a complete circle.
The structure is modeled using a 16 x 1 element mesh of the

Fig. 17. Deformed configurations of the clamped semi-cylindrical shell under point load.
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Fig. 18. Distorted mesh patterns of the clamped semi-cylindrical shell (N = 4) (a) for the MITC4 shell element and (b) for the MITC3 and MITC3+ shell elements.
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MITC4 shell element and the corresponding MITC3 and MITC3+
shell element meshes, see Fig. 3(b). The reference solutions are cal-
culated using a 32 x 2 element mesh of the MITC9 shell element.

The cantilever forms a circular arc of radius R given by the clas-
sical formula R = EI/M. Thus, the analytical tip displacements are
derived as

g:%sin(ﬂ)—l,

L= M (32)

w,% 1—cosM
L M Mo/

Fig. 7 depicts the calculated load-displacement curves and
Fig. 8 shows successive deformed configurations calculated using
the MITC3+ shell element at various load stages (M =0.1Mpax,

0.2Mmax, 0.3Mmax, - - -» Mimax). All computed results show good
agreement with the analytical solutions.

4.3. Slit annular plate under end shear force

We examine here a slit annular plate, as shown in Fig. 9(a). This
example was suggested by Basar and Ding [20] and has been
widely considered [16,19,21-25]. The geometry and elastic mate-
rial properties are given by R;=6, R,=10, h=0.03, E=21 x 10°
and v=0. The transverse shear force Pn.x=3.2 is incrementally
applied at one end of the slit while the other end of the slit is fully
clamped. The plate undergoes large displacements and large
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Fig. 19. Load-displacement curves for the clamped semi-cylindrical shell with the distorted mesh patterns shown in Fig. 18.
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Fig. 20. Fully clamped plate under uniform pressure and mesh used (4 x 4).
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rotations. This structure is modeled using a 6 x 30 element mesh
of the MITC4 shell element and the corresponding MITC3 and
MITC3+ shell element meshes, see Fig. 9(b). The reference solutions
are obtained using a 12 x 60 element mesh of the MITC9 shell
element.

The load-displacement curves at two different points, A and B,
are depicted in Fig. 10. The deformed configurations calculated
using the MITC4, MITC3 and MITC3+ shell elements are shown in
Fig. 11. As seen, the MITC3 shell element displays too stiff a behav-
ior. However, the results using the MITC3+ shell element are in
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agreement with those using the MITC4 shell element and reason-
ably close to the reference solutions.

4.4, Hemispherical shell subjected to alternating radial forces

Here we consider a hemispherical shell with an 18° circular cut-
out, as shown in Fig. 12(a). The shell is pinched along one direction
at points B and D and pulled along the perpendicular direction at
points A and C [13,15,23,24,26]. The material and geometric prop-
erties are given by E = 6.825 x 107, v=0.3, R = 10, and the thickness
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Fig. 21. Load-displacement curves for the fully clamped plate under uniform pressure.
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Fig. 22. Distorted meshes of the fully clamped plate (a) for the MITC4 shell element and (b) for the MITC3 and MITC3+ shell elements.
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is 0.04. The point load is incrementally applied to a maximum
value Pp,.x = 400. The shell is modeled using 8 x 32 and 12 x 48
element meshes of the MITC4 shell element and the corresponding
MITC3 and MITC3+ shell element meshes, see Fig. 12(b). A 24 x 96
element mesh of the MITC9 shell element is used to obtain the ref-
erence solutions.

Fig. 13 shows the load-radial displacement curves at the loaded
points A and B. The deformed configurations obtained using a
8 x 32 element mesh of the MITC4 shell element and the corre-
sponding MITC3 and MITC3+ shell element meshes are shown in
Fig. 14. For the meshes used, the MITC4 and MITC3+ shell elements
produce much better solution accuracy than the MITC3 shell ele-
ment in this problem.

4.5. Clamped semi-cylindrical shell under point load

A well-known benchmark problem for geometric nonlinear
analysis of shells is the semi-cylindrical shell under a point load
shown in Fig. 15(a) [16,19,21,27]. The length and radius of the half
cylinder are L =0.3048 and R = 1.016, respectively, and the thick-
ness is h=0.03; the material constants are E = 2.0685 x 107 and
v=0.3. The load applied to the shell increases up to Py = 2000.
The structure is modeled using 20 x 20 and 32 x 32 element
meshes of the MITC4 shell element and the corresponding MITC3
and MITC3+ shell element meshes, see Fig. 15(b). The reference
solutions are obtained using a 64 x 64 element mesh of the MITC9
shell element.

Fig. 16 gives the obtained load-displacement curves, and Fig. 17
shows the deformed shapes calculated using the 20 x 20 element
mesh of the MITC3+ shell finite elements at various load levels,
P = Ppax/3, 2Pmax/3, and Pyax. The three shell elements show good
performance in the solution of this shell problem with the meshes
used.

We then perform the analysis with the distorted mesh patterns
shown in Fig. 18. For an N x N element mesh, each edge is discret-
ized with the following ratio: Ly: Ly:L3:...Ly=1:2:3:...N. The solu-
tions are obtained with a 24 x 24 element mesh of the MITC4,
MITC3 and MITC3+ shell elements. Fig. 19 shows the calculated
load-displacement curves when the distorted mesh patterns in
Fig. 18 are used. The MITC3+ shell element shows a good perfor-
mance regardless of which mesh pattern in Fig. 18(b) is used.

4.6. Fully clamped plate under uniform pressure

Fig. 20 shows the fully clamped plate under uniform pressure
[14,17,22,26,28,29]. A square plate of dimensions 2L x 2L and
uniform thickness h is considered and all edges are fully clamped
with the hard boundary condition [2]. Due to symmetry, only
one-quarter of the plate is modeled, with the following boundary
conditions: u, =0, =0 along BC, u,=0,=0 along DC and uy=u, =
0x=0,=0 along AB and AD. The material properties used are
E=1.7472 x 10 and v=0.3. The pressure applied to the plate
increases up to qmax =h* x 10°. The length of the plate is L=1
and four different plate thicknesses (h/L=1/10,1/100, 1/1,000
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Fig. 23. Load-displacement curves for the fully clamped plate with the distorted meshes shown in Fig. 22.
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and 1/10,000) are considered. This problem is modeled using a
10 x 10 element mesh of the MITC4 shell element and the corre-
sponding MITC3 and MITC3+ shell element meshes. The reference
solutions are calculated using a 20 x 20 element mesh of the
MITC9 shell element.

Fig. 21 shows the calculated vertical displacement at point C
versus the uniform pressure. The solutions using the MITC3 shell
element deteriorate as the shell thickness decreases due to shear
locking. However, the MITC3+ and MITC4 shell finite elements
show excellent results compared to the reference solutions.

We also consider the same problem with the distorted 4 x 4 ele-
ment mesh shown in Fig. 22 when h/L = 1/100. In the distorted ele-
ment meshes, each edge 1is divided by the ratio:
Lqi:Ly:L3:Ly = 1:2:3:4. Fig. 23 shows the calculated load-displace-
ment curves. The MITC3+ and MITC4 shell elements show an excel-
lent performance even when the distorted meshes are used. It is also
observed that, compared to the MITC3 shell element, the MITC3+
shell element gives less sensitive solutions to mesh patterns.

5. Conclusions

In this paper, the formulation of the MITC3+ shell element was
extended to geometric nonlinear analysis. The total Lagrangian for-
mulation is employed allowing for large displacements and large
rotations. The nonlinear formulation is based on the same discret-
ization assumptions that are employed in the linear formulation of
the element. The nonlinear performance of the MITC3+ shell ele-
ment was numerically investigated by solving several benchmark
problems. In the tests considered, the predictive capability of the
MITC3+ shell element is seen to be much better than of the MITC3
shell element. Indeed, the MITC3+ element gave practically as
accurate results as the MITC4 shell element.

Considering also the excellent behavior of the MITC3+ shell ele-
ment in linear analysis [1], we can conclude that the element is a
very attractive element for general shell analyses. In future studies,
it would be valuable to further develop the formulation for large
strain solutions of shell structures [30], and to possibly enrich
the displacement fields by using interpolation covers [31].
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