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In this paper, we present an effective new 3-node triangular shell finite element, called the MITC3+ ele-
ment. The new shell element is based on the concepts earlier published for the MITC3 shell element (Lee
and Bathe, 2004) [1] but is enriched by a cubic bubble function for the rotations. A new assumed trans-

verse shear strain field is developed for the element. The shell element passes the three basic tests (the
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isotropy, patch and zero energy mode tests) and shows excellent convergence behavior in basic and
encompassing convergence tests.
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1. Introduction

During the last decades, the finite element method has been
widely used for the analysis of shell structures. However, although
a great effort has been expended to develop an effective 3-node
shell finite element, no element is currently available that has been
shown to be reliable and effective in the analysis of general shell
structures [1-11]. Such element should show isotropic behavior
and pass the consistency, ellipticity and inf-sup conditions and
hence be optimal in convergence regardless of the shell geometry,
thickness of the shell, boundary conditions and applied loading
[2,3]. The highly sensitive and complex behavior of shell structures
has made it extremely difficult to establish such an element [3,12-
16].

Shell structures can exhibit membrane dominated, bending
dominated and mixed behaviors, with high strain gradients in
internal and boundary layers. An effective finite element formula-
tion should be able to represent these behaviors and converge at
optimal rate in an appropriate norm for any shell thickness. If a fi-
nite element discretization cannot accurately approximate the
pure bending displacement fields of shells, the solution accuracy
deteriorates in bending dominated and mixed shell behaviors. This
phenomenon is called “locking” and can be severe when the shell
thickness decreases [2,3,12]. To alleviate the locking behavior,
while preserving the properties of consistency and ellipticity, the
MITC method has been successfully used to establish quadrilateral
and triangular shell elements [1,2,17-21]. However, while the
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3-node triangular MITC3 element is useful, the element is not opti-
mal in its convergence behaviors [1,11].

An important point is that to generate meshes for a triangular
shell element is relatively easy, even for complex shell analyses.
In addition, an effective 3-node shell element would be attractive
due to the small bandwidth of the governing global stiffness and
mass matrices. So far, 4-node quadrilateral shell elements, and
notably the 4-node MITC4 element, have been dominantly used
in practice due to their superior performance compared to
triangular shell elements. However, these quadrilateral elements
deteriorate in their convergence behaviors when the elements
are geometrically distorted, see e.g. Ref. [22].

In general, 3-node triangular elements for the two-dimensional
analysis of solids and the analysis of shells suffer from a lack of dis-
placement modes [2,9,10]. To overcome this inherent limitation in
some elements, a scheme to enrich the displacement field can be
effective [22-25]. In particular, bubble functions have been used
to improve the predictive capability of finite elements for two-
and three-dimensional solid and fluid flow analyses, and for plate
and shell solutions [2,20,24,26-29]. A cubic bubble function for a
3-node triangular element is attractive [24,26] because it provides
a higher-order interpolation inside the element while maintaining
the linear interpolation along the element edges, thus providing
compatibility between elements.

In the development of the new triangular 3-node shell element,
which we call the MITC3+ shell element, we use a cubic bubble
function for the interpolation of the rotations to enrich the bending
displacements. That is, only 2 internal rotation degrees of freedom
are added to the standard 3-node shell element. Hence, the bubble
function does not affect the mid-surface displacement of the shell
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element, and the corresponding degrees of freedom can be stati-
cally condensed out on the element level.

To reduce shear locking in the shell element, a new assumed
transverse shear strain field is designed. The MITC3+ shell element
passes all basic tests, that is, the isotropy, zero energy mode and
patch tests, and shows an excellent convergence behavior in the
solution of plate and shell benchmark problems, even when
severely distorted meshes are used.

In the following sections, the formulation of the MITC3+ shell
element is given and the performance of the element is presented.

2. Formulations of the triangular shell finite elements

In this section, we briefly recall the formulation of the MITC3
shell element and then present the formulation of the new MITC3+
shell element.

2.1. The MITC3 shell finite element

The geometry of a standard 3-node continuum mechanics based
triangular shell finite element is interpolated using [1,2]

Zh (r, )X

hlzl—r—s,

Z hi(r, S)Vf1 with
1:1

hs =s, (1)
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hzzr7

where hy(r, s) is the two-dimensional interpolation function of the
standard isoparametric procedure corresponding to node i, X; is
the position vector of node i in the global Cartesian coordinate sys-
tem, and g; and V', denote the shell thickness and the director vec-
tor at the node, see Fig. 1.

The corresponding displacement interpolation of the element is

3 3
U(r,s,t)=> hi(r,s) Ui+ %Za,—h,—(r, s) (__’;a,- +Vi [)’i>, 2)
i=1 i-1

in which U is the nodal dlsplacement vector in the global Carte51an
coordinate system, V and V' are unit vectors orthogonal to V’
and to each other and 0% and g; are the rotations of the director vec-
tor V’ about V’ and V‘Z, respectively, at node i.

The linear terms of the displacement-based covariant strain
components are given by

1 — — =
ey =5 (T T+ T), 3)
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Fig. 1. A standard 3-node triangular continuum mechanics based shell finite
element.

in which
§i=%fi7 ﬁ.i=% with r=r,r,=s13="¢ (4)

Since the 3-node triangular shell finite element is flat, the
covariant in-plane strain components are calculated using Egs.
(1)-(3). However, the covariant transverse shear strain field is
established using the MITC scheme. The transverse shear strain
field of the MITC3 shell element is based on assuming constant
covariant transverse shear strain conditions along the edges

SMITC3 _

MITC3 __ ,(2)
€t = €

ely) +cs, e —cr, (5)

where ¢ = (eﬁ? - eﬁ})) - (eﬁﬁ — el ) and the tying points are shown
in Fig. 2 [1].

2.2. The MITC3+ shell finite element

The geometry interpolation of the MITC3+ shell element, shown
in Fig. 3, is given by

3
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in which the fj(r,s) are two-dimensional interpolation functions
that include the cubic bubble function f, corresponding to the inter-
nal node 4

fimhy—3fi fa=hy—3fi. fo=hy—gfi fa=2Trs1—1—5). (7

From Eq. (6), we obtain the displacement interpolation [1]

3
U(r,s,t) =" h(r
i=1

in which o4 and g, are the rotation degrees of freedom at the bubble
node.

The bubble node, with rotation degrees of freedom only, is posi-
tioned on the flat surface defined by the three corner nodes of the
element. Only the bending and transverse shear strain fields are
enriched by the bubble function, and the geometry of the element
would remain flat, as for the MITC3 element, if a large deformation
analysis were pursued. Also, static condensation can be carried out
on the element level for the rotations o4 and Bs.

4
%Z aifi(r,s) (- Vie + Vig), ®)
i=1

e, = const.

e,, = const.

Fig. 2. Tying positions for the assumed transverse shear strain field of the MITC3
shell element. The constant transverse shear strain conditions are imposed along its
edges.
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Fig. 3. Geometry of the MITC3+ shell element with an additional bubble node.

As for the MITC3 shell element, we only use the mixed interpo-
lation for the transverse shear strain components, but we must de-
sign a new assumed transverse shear strain field because the effect
of the bubble function should be included.

To design the new assumed transverse shear strain field, we fo-
cus on two considerations. Firstly, the tying points for the covariant
transverse shear strain components should be inside the element,
that is, not on the element edges as for the MITC3 element, because
the bubble function is zero along the element edges. Secondly, the
stiffness of the in-plane twisting mode, see Fig. 4, must be reduced
[10].

Considering a 3-node triangular shell element (that is, without
the node for the bubble), the transverse shear strains occur in two
transverse shearing modes and in an in-plane twisting mode. The
in-plane twisting mode corresponds to twisting of the element
about the axis normal to the mid-surface at the barycenter,
r=s=1/3, as shown in Fig. 4, with zero transverse shear strains
at that point.

The transverse shear strain field of the MITC3 shell element can
be separated into the constant part corresponding to the transverse
shearing modes and the linear part corresponding to the in-plane
twisting mode
élr\/[IITCl’v — éﬁ?”“ 4 élritnear’ ééV[IITC?v — égfmst 4 égi[near. (9)

We can easily obtain the constant part by evaluating the trans-
verse shear strains at the barycenter
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Subtracting, for the MITC3 shell element, the constant part from the
transverse shear strain field in Eq. (5), we obtain the linearly vary-
ing part

i . - 1
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If this scheme were used for the new element, the constant part
in Eq. (10) would not include the effect of the bubble function since
the bubble function is zero along the element edges, that is, at the

‘Barycenter

Fig. 4. In-plane twisting mode of a single shell finite element. (a) Undeformed
geometry. (b) In-plane twisting mode.

tying positions (1)-(3). To include the effect of the bubble function
in the constant part, we design a new tying scheme using element
internal points. First, the three covariant transverse shear strains
e1» ez and es; are defined in the directions of the internal lines
from the barycenter to the corners as shown in Fig. 5(a). The fol-
lowing relations are obtained for the covariant transverse shear
strain components, for0 <r, s< 1,

1 1 1
et =——=(2es —€y), €y =——=(2er—ey), e3x=——=(x+esy),
1t \/g( st rt), 2t \/g( rt st), 3t \/i( rt st)

(12a)

and

V5 V2 V5 V2
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eq = 7 (est —en) = 5 (e1r — ex). (12b)

Using Eq. (12a), the transverse shear strain components are sam-
pled at three internal tying points (A), (B) and (C) on the three inter-
nal lines, see Fig. 5(b) and Table 1

1 1 1
el = (el ), el = (2l ), e = (e )
(13)

It is important to note that the tying points have been selected
to obtain a spatially isotropic element.

Table 1
Tying positions for the new assumed transverse shear strain fields for the MITC3i and
MITC3+ shell elements. The distance d is defined in Fig. 5(c).

Tying positions r S

Fig. 5(b) (A) 1/6 2/3
(B) 23 1/6
© 1/6 1/6

Fig. 5(c) (D) 1/3+d 1/3-2d
(E) 1/3-2d 1/3+d
(F) 1/3+d 1/3+d
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Fig. 5. Transverse shear strains eq,, e;; and es;, and the tying positions (A)-(F) for the new assumed transverse shear strain field.

Using next the relations in Eq. (12b), the constant covariant
transverse shear strains along the element edge directions are as-
sumed to be

o V3. V20 o VB V2,0
t 3 2t 3 3t st 3 1t 3 3t
s V10w _®

(14)

5 (¢ ):

and, using Eq. (13), a new constant transverse shear strain field is
obtained

€qt = 1 — €

~ . 2 1 1
=5 (el - 3l 43 (e +el9).
2 1 1 (15)
g = =2 (el - L) + (e +e).

In order to render the in-plane twisting stiffness more flexible,
the linear part is modified by using three new tying points (D), (E)
and (F) instead of the tying points (1)-(3) when we evaluate c in

Eq. (11)
1,

el — 2e(3s 1), e — %6(] ~3r) with
¢ (el —e) - (e ). (16)

The tying positions (D), (E) and (F) are positioned on the three
internal lines from the barycenter to the centers of the edges with
d defined in Fig. 5(c) and Table 1. As d varies from 1/6 to 0, the
three tying positions move from the centers of the edges to the
barycenter, resulting in a smaller in-plane twisting stiffness. An
effective value for d is determined below.

The new assumed transverse shear strain field is thus given by

" . SJi 2 1 1 1,
b =g et =3 (e~ 3ell ) 4 3 (e +elf) 3235 1),
. . A 2 1 1 1,
e =g el =3 (et — g eld ) 5 (6 + ) + g1 - 30

(17)

At this point, it is interesting to consider a 3-node shell finite
element in which the geometry and displacement interpolations
in Eqgs. (1) and (2) and the new assumed transverse shear strain
field in Eq. (17) are employed. We label the element as MITC3i
and study its performance also in the following sections.

3. Basic numerical tests

In this section, we consider the three basic tests: the isotropy,
patch and zero energy mode tests.

The spatially isotropic behavior is an important requirement for
triangular shell elements. The element behavior should not depend
on the sequence of node numbering, i.e. the element orientation
[1]. The numerical procedure for the isotropy element test is given
in Refs. [1,10]. The MITC3i and MITC3+ shell elements pass this
test.

We perform three patch tests: the membrane, bending and
shearing patch tests, see Refs. [1,2] for the patch tests performed.
The constant stress fields should be calculated to pass the patch
tests. The MITC3i and MITC3+ shell elements pass the three patch
tests.

In the zero energy mode test, the number of zero eigenvalues of
the stiffness matrix of a single unsupported element are counted
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[1,2]. For the MITC3i and MITC3+ shell elements, only the six zero
eigenvalues corresponding to the six rigid body modes are
obtained when the distance d defined for the tying positions (D),
(E) and (F) in Fig. 5(c) is non-zero. As d approaches O, the
eigenvalue corresponding to the in-plane twisting mode in Fig. 4
decreases and is zero when d = 0.

A similar phenomenon was investigated for the MITC3-HR shell
element in Ref. [10], where it was shown that by decreasing the
stiffness for the in-plane twisting mode, it is possible to improve
the performance of 3-node shell elements. Therefore, we perform
the in-plane twisting mode test given in Ref. [10] and investigate
the effect of the distance d.

-2 | |

1/10000 1/100 1/10 1/6

d

Fig. 6. Strain energy stored in the MITC3i and MITC3+ shell elements depending on
the distance d in the in-plane twisting mode. Since the strain energy is proportional
to t- L? in the in-plane twisting mode, E, is the strain energy normalized by t - L2.

Table 2

Y. Lee et al./Computers and Structures 138 (2014) 12-23

We calculate the strain energies (E,) of the MITC3i and MITC3+
shell elements when the elements are subjected to the in-plane
twisting mode in Fig. 4. We use L=1.0, E=1.7472 x 107 and
v=0.3. The in-plane twisting mode is given by prescribing the
rotations at the nodes to be 6! =63 = 0, =0; =1/v12 and

02 = 0, = —2//12. Fig. 6 gives the strain energies of the MITC3i
and MITC3+ shell elements as a function of the distance d. When
the distance d approaches zero, both shell elements become rap-
idly more flexible in the in-plane twisting mode.

Tables 2 and 3 present the eigenvalues of the stiffness matrices
of the MITC3i and MITC3+ shell elements for the element geometry
shown in Fig. 4(a). We consider t/L=1/10, 000, E=1.7472 x 107
and v = 0.3. The eigenvalue corresponding to the in-plane twisting
mode decreases as the distance d decreases but is larger than the
smallest eigenvalue of a bending mode. Based on this study we
choose and always use the distance d = 1/10,000. As a consequence,
the element formulation contains no spurious zero energy mode,
and the ellipticity condition is satisfied. Note that, due to the bub-
ble function enrichment, the MITC3+ shell element contains two
additional bending modes compared to the MITC3i shell element.

4. Convergence studies

In this section, we perform convergence studies using appropri-
ate benchmark problems to study the behavior of shell elements: a
clamped square plate problem, a sixty-degree skew plate problem,
cylindrical shell problems, and hyperboloid shell problems
[1-3,30]. These problem solutions pertain to measuring the errors
in an appropriate norm considering membrane and bending
dominated problems with various shell curvatures, shell thickness
values, and boundary conditions.

To measure the error in the finite element solution, we use the
s-norm proposed by Hiller and Bathe [31]

Eigenvalues of the stiffness matrix of the single MITC3i shell element for the element geometry shown in Fig. 4(a) when t/L = 1/10,000. Note that modes 1 to 6 produce zero

eigenvalues corresponding to rigid body modes.

Mode d=1/6 d=1/10 d=1/100 d=1/10,000

7 6.6764E—07 B 6.6764E—07 B 6.6764E—07 B 6.6764E—07 B

8 8.1455E—07 B 8.1455E—07 B 8.1454E-07 B 7.9792E-07 B

9 2.4924E—06 B 2.4924E-06 B 2.4924E—06 B 2.4924E—06 B

10 3.6928E+01 T 1.3302E+01 T 1.3306E—-01 T 1.3583E—-05 T

11 4.6707E+02 S 4.6681E+02 S 4.6667E+02 S 4.6667E+02 S

12 8.3813E+02 M 8.3813E+02 M 8.3813E+02 M 8.3813E+02 M
13 1.1760E+03 S 1.1760E+03 S 1.1760E+03 s 1.1760E+03 s

14 1.3440E+03 M 1.3440E+03 M 1.3440E+03 M 1.3440E+03 M
15 3.0019E+03 M 3.0019E+03 M 3.0019E+03 M 3.0019E+03 M

B: bending modes, T: in-plane twisting mode, S: transverse shearing modes, M: membrane modes.

Table 3

Eigenvalues of the stiffness matrix of the single MITC3+ shell element for the element geometry shown in Fig. 4(a)

eigenvalues corresponding to rigid body modes.

when t/L = 1/10,000. Note that modes 1 to 6 produce zero

Mode d=1/6 d=1/10 d=1/100 d=1/10,000

7 6.6685E—07 B 6.6685E—07 B 6.6685E—07 B 6.6685E—07 B
8 8.1273E-07 B 8.1273E-07 B 8.1272E-07 B 7.9621E-07 B
9 2.4921E-06 B 2.4921E-06 B 2.4921E-06 B 2.4921E-06 B
10 8.3211E-06 B+ 8.3211E-06 B+ 8.3211E-06 B+ 8.3107E-06 B+
11 1.4128E-05 B+ 1.4128E-05 B+ 1.4128E-05 B+ 1.3599E-05 T
12 3.6928E+01 T 1.3302E+01 T 1.3306E-01 T 1.4128E-05 B+
13 4.6707E+02 S 4.6681E+02 S 4.6667E+02 s 4.6667E+02 s
14 8.3813E+02 M 8.3813E+02 M 8.3813E+02 M 8.3813E+02 M
15 1.1760E+03 S 1.1760E+03 S 1.1760E+03 S 1.1760E+03 s
16 1.3440E+03 M 1.3440E+03 M 1.3440E+03 M 1.3440E+03 M
17 3.0019E+03 M 3.0019E+03 M 3.0019E+03 M 3.0019E+03 M

B: bending modes, T: in-plane twisting mode, S: transverse shearing modes, M: membrane modes, B+: bending modes due to the bubble function enrichment.
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Fig. 7. Fully clamped square plate problem (L = 1.0, E = 1.7472 x 107, g = 1.0 and v = 0.3) with 2 different 4 x 4 mesh patterns in (a) and (b).
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Fig. 8. Convergence curves for the fully clamped square plate problem. The bold line represents the optimal convergence rate. The solid and dotted lines correspond to the
results obtained by the mesh patterns in Fig. 7(a) and (b), respectively.
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Fig. 9. Simply supported sixty-degree skew plate problem (L= 1.0, E = 1.7472 x 107 and v = 0.3). (a) Problem description. (b) Mesh pattern used for N = 4.



18 Y. Lee et al./Computers and Structures 138 (2014) 12-23
MITC3 MITC3i MITC3+
0 0 T T 0 T T T 7T
-0.6 - -0.6 - -0.6 -
1.2 g 1.2F E -1.21 g
log E, -1.8| e log E, -1.8| e log E,-1.8F .
2.4 - 241 - -2.41- B
B8 tiL=1/100 B t/L=1/100 =5 tL=1100
A—A- t/L=1/1000 A—A t/L=1/1000 A—A- t/L=1/1000
3k -©—6- t/L=1/10000 3k ©-©- t/iL=1/10000 Y. ©—6- t/iL=1/10000
36 [ N T | 36 [ N T | 3.6 T N B |
-2.1 -1.5 -0.9 -0.3 -21 -1.5 -0.9 -0.3 -2.1 -1.5 -0.9 -0.3
log h log h log h

Fig. 10. Convergence curves for the simply supported sixty-degree skew plate problem. The bold line represents the optimal convergence rate.

—
= &

—
= — &,

1T — W2 = / ATTATAQ with AT
Q

AT =TTy, (18)

where T is the exact solution, U, is the solution of the finite ele-
ment discretization, and & and T are the strain and stress vectors.
The s-norm is suitable to identify whether the finite element formu-
lation satisfies the consistency and inf-sup conditions [3,31-33].

Instead of the exact solution U, an accurate finite element solu-
tion using a very fine mesh /', can be employed. Then the s-norm
in Eq. (18) becomes

| W rer — WnlZ = / AETATdQ,s with
Qref
-

AE =Erf— €n AT=Tws— Th. (19)

To measure the performance of finite elements in shell analyses,
it is important to consider decreasing shell thickness values. We
then use the relative error E,

— — 2
_ [ Urer — Whlls

En
=2
Hurest

(20)

The optimal convergence behavior of the elements, for the shell
problems considered, is given by

Ey =~ CH", (21)

in which h is the element size. For a 3-node shell element to be uni-
formly optimal, the value of C must be constant, that is, indepen-
dent of the shell thickness, and k = 2.

In this study, well-converged reference solutions calculated
using fine meshes of the MITC9 shell elements are used. The MITC9
shell element satisfies the ellipticity and consistency conditions
and shows a good convergence behavior [20,30-34].

4.1. Fully clamped square plate problem

We solve the plate bending problem shown in Fig. 7. A square
plate of dimensions 2L x 2L and uniform thickness t is subjected
to a uniform pressure. All edges are fully clamped (in hard
conditions [2]). Due to symmetry, only a one-quarter model is
considered, with the following boundary conditions: u,=0,=0
along BC, u, = 0,=0 along DC and uy =u, = u, = 0x= 0, = 0 along AB
and AD.

0.5 |-

p(0)/p, ©

-05 |-

| |
60

90
0

Fig. 11. Cylindrical shell problem (4 x 4 mesh, L=R=1.0, E=2.0 x 10°, v=1/3 and
po =1.0).

Fig. 8 gives the convergence curves of the MITC3, MITC3i and
MITC3+ elements. A 96 x 96 element mesh of the MITC9 shell ele-
ment is used to obtain the reference solution. We use N x N ele-
ment meshes (N=4, 8, 16, 32, and 64) to calculate the solutions
using the triangular shell elements. The element size in the conver-
gence curves is h=L/N. The performance of the MITC3+ shell ele-
ment is best among them and, practically, uniformly optimal. The
improved predictive capability of the MITC3i element is observed
when compared with the performance of the MITC3 element.
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Fig. 12. Convergence curves for the clamped cylindrical shell problem. The bold line represents the optimal convergence rate.
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Fig. 13. Convergence curves for the free cylindrical shell problem. The bold line represents the optimal convergence rate.

4.2. Simply supported sixty-degree skew plate problem

Here we solve the sixty-degree skew plate bending problem
shown in Fig. 9. The simply supported skew plate with its edges
of length 2L and uniform thickness t is subjected to a uniform
pressure. The boundary condition u, = 0 is imposed along all edges
[30].

The convergence behavior of the MITC3, MITC3i and MITC3+
shell elements is shown in Fig. 10. The reference solutions are ob-
tained using a 128 x 128 element mesh of MITC9 shell elements.
The solutions of the triangular shell elements are calculated using
N x N element meshes (N =8, 16, 32, 64 and 128). The element size
is h = 2L/N. The performance of the MITC3+ shell element is much
better than those of the other elements.

4.3. Cylindrical shell problems

We consider the cylindrical shell of length 2L, radius R and uni-
form thickness t as shown in Fig. 11. The loading is a smoothly
varying pressure p(0)

P(0) = po cos(20). (22)

This shell structure shows different asymptotic behaviors
depending on the boundary conditions at its ends. When both ends
are free, a bending dominated problem is solved, whereas when both
ends are clamped, a membrane dominated problem is considered.

(@) (b)

Fig. 14. Distorted mesh patterns (a) for N=4 and (b) for N=8.
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Using symmetry, only the region ABCD in Fig. 11 is modeled. To
have the membrane dominated problem, the clamped boundary
condition is imposed: u,=p$=0 along BC, u,=a=0 along DC,
u,=o=0 along AB, and uy=u,=u,=0= =0 along AD. To have
the bending dominated problem, the free boundary condition is
imposed: u,=p=0 along BC, u,=0=0 along DC, and u,=0=0
along AB.

Figs. 12 and 13 give the convergence curves of the MITC3, MIT-
C3i and MITC3+ shell elements for the clamped and free cylindrical
shell problems. The reference solutions are calculated using a
96 x 96 element mesh of MITC9 shell elements. The solutions
using the MITC3, MITC3i and MITC3+ shell elements are obtained
with N x N element meshes (N =4, 8, 16, 32, and 64). The element
size is h = L/N. In these problem solutions, the MITC3, MITC3i and
MITC3+ shell elements present similarly good convergence
behaviors.

We then perform the convergence studies with the distorted
meshes shown in Fig. 14. When an N x N element mesh is used,
each edge is discretized in the following ratio: Ly:L:Ls:
...Ly=1:2:3:...N. Figs. 15 and 16 show the convergence curves
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for the clamped and free cylindrical shell problems, respectively.
The MITC3+ shell element shows an excellent performance.

4.4. Hyperboloid shell problems

Finally, we consider the hyperboloid shell shown in Fig. 17. The
mid-surface of the shell structure is given by

X2 =1+

ye [717

1].

(23)

As for the cylindrical shell problems, a smoothly varying pres-
sure is applied, see Fig. 11,

P(0) = po cos(20).

A bending dominated behavior is obtained with free ends and a
membrane dominated behavior is given with clamped ends. The
bending dominated problem is known to be difficult to solve accu-

rately [3].

(24)

Due to symmetry, the analyses are performed using one-eighth
of the structure corresponding to the shaded region ABCD in
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Fig. 15. Convergence curves for the clamped cylindrical shell problem with the distorted meshes shown in Fig. 14. The bold line represents the optimal convergence rate.
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Fig. 16. Convergence curves for the free cylindrical shell problem with the distorted meshes shown in Fig. 14. The bold line represents the optimal convergence rate.
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<
o
T

Fig. 17. Hyperboloid shell problem (E =2.0 x 10'!, v=1/3 and po = 1.0). (a) Problem description. (b) Graded mesh for the clamped case (8 x 8 mesh, t/L = 1/1000).
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Fig. 18. Convergence curves for the clamped hyperboloid shell problem. The bold line represents the optimal convergence rate.

Fig. 17(a). For the membrane dominated case, the clamped
boundary condition is imposed: u, = = 0 along BC, u, = =0 along
AD, and u,=a=0 along DC, and uy=u,=u,=0=p$=0 along AB.
For the bending dominated case, the free boundary condition is
imposed: u,=p$=0 along BC, u,=p=0 along AD, and u,=o=0
along DC.

In both cases, a 96 x 96 element mesh of MITC9 shell elements
is used to obtain the reference solutions. The solutions of the
MITC3, MITC3i and MITC3+ shell elements are calculated using
N x N element meshes (N =4, 8, 16, 32 and 64). The element size
is h =L/N. In the clamped hyperboloid shell case, a boundary layer
of width 6/t is considered for half of the mesh, see Fig. 17(b). In
the free hyperboloid shell case, the thin boundary layer is not
specially considered [3].

Figs. 18 and 19 show the convergence curves for the clamped
and free hyperboloid shell problems. In the clamped hyperboloid
shell case, the performance of all three shell elements is similarly
good. However, in the free hyperboloid shell case, the MITC3+ shell
element shows a much better convergence behavior compared to
the others.

Figs. 20 and 21 give the convergence curves of the MITC3, MIT-
C3i and MITC3+ shell elements when the distorted meshes in
Fig. 14 are used. The MITC3+ shell element displays even here an
excellent convergence behavior.

We finally note that, in all the numerical studies in Sections 3
and 4, the standard 7-point Gauss integration is employed to calcu-
late the stiffness matrix of the MITC3+ shell element [2]. If the
standard 3-point Gauss integration is used for the MITC3+ shell
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Fig. 19. Convergence curves for the free hyperboloid shell problem. The bold line represents the optimal convergence rate.
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Fig. 20. Convergence curves for the clamped hyperboloid shell problem with the distorted meshes shown in Fig. 14. The bold line represents the optimal convergence rate.
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Fig. 21. Convergence curves for the free hyperboloid shell problem with the distorted meshes shown in Fig. 14. The bold line represents the optimal convergence rate.
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element, all the basic numerical tests are also passed and similar
convergence behaviors are observed.

5. Concluding remarks

In this study, we developed a new triangular shell element that
shows considerable promise for general use. The MITC3+ element
is based on the ‘basic mathematical shell model’ [3,35] and the
MITC approach used for the development of triangular elements
[1] but using a cubic bubble function for the rotations and a new
assumed transverse shear strain field. For comparison, we also
considered a shell element, in which the standard displacement
interpolation of the 3-node shell element and the new assumed
transverse shear strain field are used.

All shell elements considered pass the basic numerical tests, the
isotropy, zero energy mode, and patch tests, and the MITC3+ shell
element shows an excellent convergence behavior, even when
using distorted element meshes. While only linear analysis condi-
tions have been considered, the element formulation can directly
be extended for large deformation analyses since only the usual
MITC procedure has been used. In this paper, the effectiveness of
the MITC3+ shell element was demonstrated only numerically,
and a mathematical analysis would be very valuable to obtain fur-
ther insight into the element behavior.
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