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THE FINITE ELEMENT METHOD

INTRODUCTION

Finite element methods are now widely used to solve
structural, fluid, and multiphysics problems numerically
(1). The methods are used extensively because engineers
and scientists can mathematically model and numerically
solve very complex problems. The analyses in engineering
are performed to assess designs, and the analyses in the
various scientific fields are carried out largely to obtain
insight into and ideally to predict natural phenomena. The
prediction of how a design will perform and whether and
how a natural phenomenon will occur is of much value:
Designs can be made safer and more cost effective, while
insight into and the prediction of nature can help, for
example, to prevent disasters. Thus, the use of the finite
element method greatly enriches our lives.

As with many other important scientific developments,
it is difficult to give an exact date of the ‘‘invention’’ of the
finite element method. Indeed, we could trace back the
development of the method to the Greek philosophers
and in modern times to physicists, mathematicians, and
engineers (see the discussions in Refs. 2 and 3). However,
the real impetus for the development of what is now
referred to as the finite element method was provided by
the need to analyze complex structures in aeronautical
engineering and the availability of the electronic computer.
Namely, when using the finite element method, large sys-
tems of algebraic equations need to be assembled and
solved, and the computer provides the necessary means
to accomplish this task.

The papers of Argyris and Kelsey (4) and Turner et al. (5)
were seminal contributions in the 1950s. The name ‘‘finite
element method’’ was coined by R.W. Clough in 1960 (6).
The potential of the finite element method for engineering
analysis was clearly foreseen, and henceforth the research
on finite element methods started to accelerate in various
research centers in Europe and in the United States. While
significant papers and books were written in the next
decade (see for example the references in Refs. 2 and 3),
the development and rapidly increasing use of some com-
puter programs clearly contributed in a major way to the
acceptance and advancement of the method. Indeed, with
no computer programs ever developed, the finite element
method would have been a theoretical entity without much
attention given to it.

The three finite element programs that had a major
impact were ASKA, NASTRAN, and SAP (7–9). The
NASTRAN and ASKA programs rapidly became major
analysis tools in the aerospace and automotive industries.
The SAP programs were largely used in civil and mechan-
ical engineering industries and at universities. The avail-
ability and wide use of the source codes of SAP IV and
NONSAP with the description of the techniques used
therein, see Bathe et al. (9–12), had a seminal effect on

the development of new algorithms, many finite element
programs, and also finite element theory (3,13).

Today, finite element methods probably are used for the
analysis of every major engineering design and probably in
every branch of scientific studies. The method is now used
primarily through the application of commercial finite
element programs (see the section titled, ‘‘The Use of
the Finite Element Method in Computer-Aided Engineer-
ing’’). These programs are used on mainframes, worksta-
tions and PCs and are employed to solve very complex
problems. While the finite element methods were used
originally for the analysis of solids and structures, the
procedures arenow employed also for the analysis of multi-
physics problems, including fluid flows with fluid–struc-
ture interactions (1–3).

The objective in the following sections is to briefly
describe the finite element method and give some refer-
ences that can be consulted for additional study. The
description and references, of course, are by no means
exhaustive. For the equations used, the notation of Ref. 3
is employed.

THE FORMULATION OF THE FINITE ELEMENT METHOD

Figures 1 to 3 show typical finite element meshes (or finite
element assemblages) modeling some solid, structural, and
fluid systems. In each case the finite elements are used to
represent the volume of the system. The finite elements are
connected at the nodal points located at the corners and
along the sides and in the faces of the elements. However,
nodal points can also be located within the volume of an
element. An important feature is that the finite elements do
not overlap geometrically but together fill the complete
volume of the solid or fluid.

Considering the analysis of a three-dimensional solid,
like the wheel in Fig. 1, the geometry and the displacements
of each element (within each element including all element
surfaces) are completely described by the geometric posi-
tions and displacements of the element nodal points. The
element nodal coordinates prior to any displacements
are known, of course, and the nodal displacements are
the unknowns to be calculated. The basic step is to inter-
polate the element geometry and the element displace-
ments by using the nodal values. Here the isoparametric
element interpolation, a most important development due
to Irons (14), is largely used. For an element with q nodal
points we use
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where the hi are the given interpolation functions, (xi, yi, zi)
are the known coordinates of nodal point i, and (ui, vi, wi) are
the unknown displacements of nodal point i. The hi are
functions of the element natural coordinates (r, s, t), which
relate uniquely to the global coordinates. In this assump-
tion, the same interpolation is employed for the geometry
and the displacements, and these equations are applicable
to very general curved element configurations. However,
in by far most analyses and certainly in nonlinear analy-
ses, low-order linear, non-curved elements are preferred
(4-node quadrilateral elements in the two-dimensional
(2-D) analyses of solids, and 8-node brick elements in the
three-dimensional (3-D) analyses of solids), but quadratic
elements (9-node elements in 2-D analyses and 27-node
elements in3-D analyses) can bemoreeffective (3).Toobtain
a more accurate solution, mostly the number of elements is
simply increased; that is, the h-method is used. Alterna-
tively, also the number and size of elements can be kept
constant and the order of the geometry and displacement
interpolations is increased; that is, the p-method is used. Of
course, these approaches can also be combined and then an
h/p-method is employed (15).

While some of the first finite elements for structural
analyses were largely formulated based on physical
insight and intuition, the development and use of a
general theory based on the principle of virtual work (or
virtual displacements) established a firm foundation and
a general approach for the formulation of finite elements.

Today, the principle of virtual displacements is the basic
equation used to formulate displacement-based finite ele-
ments. Considering a general solid, this principle can be
written as (3)
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where the unknown (real) stresses are t, the known
applied body forces are fB, the known applied surface
tractions are fSf , the virtual displacements are u, and
the virtual strains that correspond to the virtual displace-
ments are e . Of course, the stresses need to satisfy the
given stress-strain laws, and the strains (the virtual and
real quantities) must satisfy the strain–displacement
relationships. Also, the real displacements must satisfy
the given displacement boundary conditions and the vir-
tual displacements must be zero at the locations of the
prescribed real displacements. The integrations are per-
formed over the volume, V, and traction-loaded surface,
Sf, of the solid considered.

The principle of virtual displacements, with these con-
ditions satisfied, is totally equivalent to the differential
formulation of the boundary value problem. The principle
is referred to also as a variational formulation and a weak
formulation (2,3).

In linear analysis, the displacements are assumed to be
infinitesimally small, the material laws are assumed to
be constant, and the volume and surfaces over which the
integrations are performed are known and constant, that is,
unaffected by the displacements. Substituting from Equa-
tion (1) into Equation (2) and invoking the principle of
virtual displacements as many times as there are nodal
displacement degrees of freedom, we obtain

KU ¼ R ð3Þ

where K is the stiffness matrix, U is the displacement vector
listing all unknown nodal point displacements (the ui, vi, wi,
for all nodes, i = 1, 2, . . ., as applicable), and R is a vector of
externally applied forces at the nodal-point displacement

Figure 1. Finite element model of a wheel using three-
dimensional brick elements, and a typical 8-node brick element
(q=8).

Figure 2. Finite element model of a car body using predomi-
nantly shell elements.

Figure 3. Finite element computational fluid dynamics (CFD)
model of a manifold; FCBI elements, about 10 million equations
solved in less than 1 hour on a single-processor PC.
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degrees of freedom. The solution of Equation (3) yields the
nodal displacements for Equation (1) and hence the strains
and stresses in all elements.

In dynamic analysis, the body forces include inertia and
damping effects, and these can be included directly in the
solution to obtain (3)

MÜþCU
:
þKU ¼ R ð4Þ

where M is the mass matrix (usually a consistent mass
matrix), C is a damping matrix (frequently the Rayleigh
damping matrix is used), and Ü, U

:
denote the nodal

accelerations and velocities, respectively. In structural
vibration analyses, these dynamic equilibrium equations
are solved by using mode superposition or implicit direct
time integration (for example, by using the popular tra-
pezoidal rule).

However, for wave propagation analyses, the dynamic
equilibrium equations solved are generally (3)

MÜ ¼ R � F ð5Þ

where F represents the nodal forces that correspond to the
element stresses. Usually, a lumped (diagonal) mass
matrix is used.

The above equations have been written for a three-
dimensional solid, but also are applicable with appropri-
ate modifications for the analysis of two-dimensional
solids. Furthermore, the equations can be extended and
then also are applicable for the analysis of structures
modeled by beams, plates, and shells. The extension is
reached by introducing midsurfaces, displacements and
rotations, and the applicable kinematic and stress
assumptions. For example, in the analysis of shells, the
Reissner–Mindlin kinematic assumption—that plane sec-
tions originally plane and normal to the midsurface of the
shell remain plane—is introduced, and the assumption
that the stress normal to that midsurface is zero is
imposed. Because the pure displacement-based finite ele-
ments are not effective for thin shells (and plates and
beams), that is, they ‘lock’ in bending actions (see the
section below titled, ‘‘The Analysis of Shells’’), mixed
and hybrid formulations are used to reach more effective
elements. The construction of such elements in essence is
based on an extension of the principle of virtual displace-
ments, namely the use of the Hu–Washizu variational
principle (2,3). Effective structural elements can then
directly be employed in Equations (3–5) together with
the displacement-based solid elements (but of course U
now also includes nodal rotations).

Considering nonlinear analysis, the nonlinear effects can
arise from nonlinear material behavior, like plasticity and
creep; from geometric nonlinear effects, that is, large dis-
placements and large strains; and from contact between
bodies established as a result of the displacements. In these
cases, the basic principle of virtual displacements and the
extensions for structural elements still are directly applic-
able, but the appropriate stress and strain measures need be
used and the equilibrium need be considered in the
deformed geometry of the bodies. For such general non-

linear analyses, the total Lagrangian (TL) and the updated
Lagrangian (UL) formulations provide a fundamental basis
of solution (3,16) and are widely used. In these formulations,
the nonlinear material behavior is introduced to establish
the stresses for ‘‘given’’ deformations, that is, not using a
rate formulation when the constitutive relations are rate-
independent (see also Ref. 17). If required, contact condi-
tions including frictional effects are imposed as constraints
on the nodal displacements and forces over the contacting
surfaces. Because the large deformations and nonlinear
material conditions and the solution for the actual areas
of contact introduce significant nonlinearities in the govern-
ing equations, iteration for solution in general is required
(see below).

Considering a dynamic solution based on implicit direct
time integration, and assuming that contact conditions are
not present, the incremental nonlinear analysis is accom-
plished by solving at discrete times Dt apart

M tþDtÜþ C tþDtU
:
þtþDtF ¼tþDtR ð6Þ

where the equilibrium is considered at time t þ Dt, and the
nodal forces tþDtF and tþDtR correspond to the internal
element stresses and the externally applied loads, respec-
tively. In static analysis, simply the inertia and damping
effects are neglected and the superscript t ¼ time denotes
the load level (but is also an actual physical variable when a
material law is time-dependent).

Because the nodal forces highly depend on the deforma-
tions and all the considered nonlinearities need be included
in calculating these forces, an iteration is necessary for the
solution of Equation (6). A Newton–Raphson iteration, or
variant thereof, is commonly performed, with the govern-
ing equations

tþDt
K̂
ði�1Þ

DUðiÞ ¼ tþDtR̂ ði�1Þ � tþDtFði�1Þ

tþDtUðiÞ ¼ tþDtUði�1Þ þ DUðiÞ
ð7Þ

where tþDtK̂ði�1Þ is the effective tangent stiffness matrix
that corresponds to the linearization of the nodal force
vectors with respect to the incremental displacements

DUðiÞ. The hat in tþDtK̂
ði�1Þ

and tþDtR̂
ði�1Þ

is used to signify
that also mass and damping effects are included (3). In
static analysis these effects of course are neglected. The
iteration is continued until appropriate convergence cri-
teria (based on forces, displacements, or energy) are satis-
fied. To reach fast convergence, and quadratic convergence
when near the solution, it is important to use the linear-
ization ‘‘consistent’’ with the stress integration procedures
and the force updating used to evaluate the right-hand side
of Equation (7) (3,17,18).

If contact conditions are to be included, then for exam-
ple, for normal contact the following conditions need be
satisfied (3):

tþDtl� 0; tþDtg� 0; tþDtl � tþDtg ¼ 0 ð8Þ
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where tþDtg represents the gap and tþDtl represents the
normal contact force. To reach stable and accurate solu-
tions, appropriate interpolations of contact tractions need
be used (19). Of course, with the relations in Equation (8)
imposed as conditions on Equation (6), penetration is pre-
vented at the contacting surfaces. Frictional contact con-
ditions are similarly solved for; see Ref. 3. These conditions
to enforce contact between bodies enter into the iteration
for equilibrium and compatibility; that is, Equation (7)
needs to be amended to enforce the contact relations.

The use of Equation (7) (in general amended for contact
conditions) for dynamic analysis of course implies that a
transient solution with implicit time integration is pur-
sued. If a short time duration or wave propagation analysis
is to be performed (e.g., a crash simulation in the motor car
industry), then an explicit time integration frequently is
more effective. In this case, Equation (5), also amended to
include contact conditions, is used with the nodal vectors
continuously updated for all nonlinearities, which result
from large deformations, contact and nonlinear material
effects in the step-by-step solution. The solution is attrac-
tive because no iteration is performed like in Equation (7);
however, the disadvantage is that the time step size in the
forward integration needs to be very small (because the
time integration is only conditionally stable) (3).

Equations (7) and (5), as discussed above, are applicable
to the nonlinear analysis of solids and structures; however,
for structural elements, a mixed formulation need be used
(see the section titled, ‘‘The Analysis of Shells’’). Also, in
material nonlinear analysis, frequently (almost) incom-
pressible conditions are encountered, as when modeling
a rubber-like material or elasto-plastic conditions. In these
cases, considering a solid, it is effective to use a mixed
formulation in which the unknown displacements and
pressure are interpolated; that is, the u/p formulation is
employed (see the section titled, ‘‘The Reliable and Effective
Analysis of Solids’’).

The same basic approach also can be followed to
establish finite element solutions of heat transfer pro-
blems (considering solids or fluids) and of incompressible
fluid flows. In these cases, the temperature and the
velocities (and pressure) need to be interpolated; in
essence the ‘‘principle of virtual temperatures’’ and the
‘‘principle of virtual velocities’’ are employed. These prin-
ciples in concept are similar to the principle of virtual
displacements and hence of course also correspond to
weak formulations. A major added difficulty arises in
the use of the Eulerian formulation of fluid flows because
of the convective effects. A pure interpolation of velocities
and temperature results in a unstable solution. This
instability can be circumvented, like in finite difference
solutions, by introducing some form of upwinding (see
the section titled, ‘‘Finite Element Discretizations for
Incompressible Fluid Flows’’).

The Lagrangian formulations for the solids and struc-
tures and the Eulerian formulations for fluid flows have
been fully coupled by the use of arbitrary Lagangian–
Eulerian formulations, referred to as ALE formulations
for fluid–structure interactions. Such formulations are
now used to solve reliably very complex multiphysics

problems that involve displacements of solids and struc-
tures, temperature distributions, fluid flows, electromag-
netic effects, and so on (see for example Refs. 1–3, and 20).

EFFECTIVE FINITE ELEMENT PROCEDURES

The first requirement of any analysis is of course the
selection of an appropriate mathematical model to repre-
sent the physical problem (3). The next requirement is to
solve this model with reliable and effective numerical
methods. Because the use of reliable and effective finite
element methods is very important, much research effort
has been expended to reach such procedures.

The Reliable and Effective Analysis of Solids

The analysis of solids is efficiently accomplished by using
the pure displacement-based finite element method
referred to above, unless incompressible or almost incom-
pressible material conditions are considered, as in the
analysis of rubber-like materials or in elasto-plastic
response. In incompressible analysis, the pure displace-
ment-based discretizations ‘‘lock,’’ and a mixed interpola-
tion based on displacements and pressure is much more
effective. However, the appropriate combination of displa-
cement and pressure interpolations must be used.

The phenomenon of locking is of fundamental impor-
tance for the understanding of what we mean by a reliable
finite element formulation. Figure 4 shows schematically
the error in some norm between the finite element solution,
uh, and the exact solution, u, of the mathematical model to
be solved, as the mesh is refined. Of course, the exact
solution is in general not known, but we can think of a
close approximation to the exact solution, obtained by a
finite element analysis using a very fine mesh. If for almost
incompressible analysis, a pure displacement-based finite
element formulation is used, then the convergence curves
in Figs. 4(a) and 4(b) are generally much below and above
the respective curves obtained in the compressible analy-
sis. Hence the error obtained for a given mesh depends on
the bulk modulus and significantly increases as incompres-
sible conditions are approached. Because the displace-
ments become small measured on what they should be,
the phenomenon is referred to as ‘‘locking’’. Finite element
discretizations that lock, like schematically referred to in
Fig. 4, are not reliable because small changes in some data
can cause large changes in the solution error.

Hence a reliable finite element discretization displays
the following convergence behavior in the appropriate
norm:

ku� uhk’chk ð9Þ

where c is a constant (that is, independent of the bulk
modulus), h is the generic element size, and k is the order
of interpolation used. To reach such finite element discre-
tizations in almost, or fully, incompressible analysis, the
use of the displacement–pressure interpolation is effective
where the displacement and pressure interpolations used
should satisfy two conditions (3,21–23). First, the ellipticity
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condition must be satisfied

aðvh; vhÞ�akvhk2 8 vh 2Khð0Þ ð10Þ

where a (., .) is the (deviatoric strain energy) bilinear form of
the problem, Khð0Þ represents all those finite element
interpolations vh over the mesh which satisfy the discre-
tized zero divergence condition, and a is a constant greater
than zero. And second, the inf-sup condition should be
satisfied for any mesh, and in particular as h! 0,

inf
qh 2Qh

sup
vh 2Vh

R
Vol qhdiv vh dVol

kvhkkqhk
�b> 0 ð11Þ

where, for the mesh, Vh is the space of displacement inter-
polations, Qh is the space of pressure interpolation, appro-
priate norms are used, and b is a constant. Effective finite
elements that satisfy these two conditions are given, for

example, in Refs. 3 and 22. It is also possible to develop
finite elements that bypass the inf-sup condition and do not
lock, but these then depend on nonphysical numerical
parameters (22,23).

The Analysis of Shells

The first developments of practical finite element methods
were directed toward the analysis of aeronautical struc-
tures, that is, thin shell structures. Since these first
developments, much further effort has been expended
to reach more general, reliable, and effective shell finite
element schemes. Shells are difficult to analyze because
they exhibit a variety of behaviors and can be very sensi-
tive structures, depending on the curvatures, the thick-
ness t, the span L, the boundary conditions, and the
loading applied (23). A shell may carry the loading largely
by membrane stresses, largely by bending stresses, or by
combined membrane and bending actions. Shells that only
carry loading by membrane stresses can be efficiently
analyzed by using a displacement-based formulation
(referred to above); however, such formulations ‘‘lock’’
(like discussed above when considering incompressible
analysis) when used in the analysis of shells subjected
to bending. To establish generally reliable and effective
shell finite elements (that can be used for any shell ana-
lysis problem), the major difficulty has been to overcome
the ‘‘locking’’ of discretizations, which can be severe when
thin shells are considered.

The principles summarized above for incompressible
analysis apply, in essence, also in the analysis of plate and
shell structures. The critical parameter is now the thick-
ness to span ratio, t/L, and the relevant inf-sup expression
ideally should be independent of this parameter. To obtain
effective elements, the mixed interpolation of displace-
ments and strain components has been proposed and is
widely used in mixed-interpolated tensorial component
(MITC) and related elements (3,23–25). The appropriate
interpolations for the displacements and strains have
been chosen carefully for the shell elements and are
tied at specific element points. The resulting elements
then only have displacements and rotations as nodal
degrees of freedom, just as for the pure displacement-
based elements. The effectiveness of the elements can
be tested numerically to see whether the consistency,
ellipticity, and inf-sup conditions (23) are satisfied. How-
ever, the inf-sup condition for plate and shell elements is
much more complex to evaluate than for incompressible
analysis (26), and the direct testing by solving appropri-
ately chosen test problems is more straightforward
(23,27,28). Some effective mixed-interpolated shell ele-
ments are given in Refs. 3,23 and 25.

For plates and shells, instead of imposing the Reiss-
ner–Mindlin kinematic assumption and the assumption
of ‘‘zero stress normal to the midsurface,’’ also three-
dimensional solid elements without these assumptions
can be used (29–31). Of course, for these elements to be
effective, they also need to be formulated to avoid ‘‘lock-
ing;’’ that is, they also need to satisfy the conditions
mentioned above and more (23).

Figure 4. Locking phenomenon (when using pure displacement
interpolations in almost incompressible analysis).
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Finite Element Discretizations for Incompressible Fluid Flows

Considering all fluid flow problems, in engineering prac-
tice most problems are solved by using finite volume and
finite difference methods. Various CFD computer pro-
grams based on finite volume methods are in wide use
for high-speed compressible and incompressible fluid
flows. However, much research effort has been expended
on the development of finite element methods, in parti-
cular for incompressible flows. Considering such flows and
an Eulerian formulation, stable finite element procedures
need to use velocity and pressure interpolations like those
used in the analysis of incompressible solids (but of course
velocities are interpolated instead of displacements) and
also need to circumvent any instability that arises in the
discretization of the convective terms. This requirement is
usually achieved by using some form of upwinding (see for
example Refs. 3, 32 and the references therein). However,
another difficulty is that the traditional finite element
formulations do not satisfy ‘‘local’’ mass and momentum
conservation. Because numerical solutions of incompres-
sible fluid flows in engineering practice should satisfy
conservation locally, the usual finite element methods
have been extended (see for example Ref. 33).

One simple approach that meets these requirements is
given by the flow-condition-based interpolation (FCBI)
formulation, in which finite element velocity and
pressure interpolations are used to satisfy the inf-sup
condition for incompressible analysis, flow-condition-
dependent interpolations are used to reach stability in
the convective terms, and control volumes are employed
for integrations, like in finite volume methods (34). Hence
stability is reached by the use of appropriate velocity and
pressure interpolations, the conservation laws are satis-
fied locally, and, also, the given interpolations can be used
to establish consistent Jacobian matrices for the Newton–
Raphson type iterations to solve the governing algebraic
equations (which correspond to the nodal conditions to be
satisfied).

An important point is that the FCBI schemes of fluid flow
solution can be used directly to solve ‘‘fully coupled’’ fluid
flows with structural interactions (20,35). The coupling of
arbitrary discretizations of structures and fluids in which
the structures might undergo large deformations is
achieved by satisfying the applicable fluid–structure inter-
face force and displacement conditions (20). The complete
set of interface relations is included in the governing nodal
point equations to be solved. Depending on the problem and
in particular the number of unknown nodal point variables,
it may be most effective to solve the governing equations by
using partitioning (36). However, once the iterations have
converged (to a reasonable tolerance), the solution of the
problem has been obtained irrespective of whether parti-
tioning of the coefficient matrix has been used.

While the solution of fluid–structure interactions is
encountered in many applications, the analysis of even
more general and complex multiphysics problems includ-
ing thermo-mechanical, electromagnetic, and chemical
effects is also being pursued, and the same fundamental
principles apply (1).

Solution of Algebraic Equations

The finite element analysis of complex systems usually
requires the solution of a large number of algebraic equa-
tions; to accomplish this solution effectively is an important
requirement.

Consider that no parallel processing is used. In static
analysis, ‘‘direct sparse solvers’’ based on Gauss elimina-
tion are effective up to about one half of a million equations
for three-dimensional solid models and up to about 3 million
equations for shell models. The essence of these solvers is
that first graph theory is used to identify an optimal
sequence to eliminate variables and then the actual Gauss
elimination (that is, the factorization of the stiffness matrix
and solution of the unknown nodal variables) is performed.

For larger systems, iterative solvers possibly combined
with a direct sparse solver become effective, and here in
particular an algebraic multigrid solver is attractive. Mul-
tigrid solvers can be very efficient in the solution of struc-
tural equations but frequently are embedded in particular
structural idealizations only (like for the analysis of plates).
An ‘‘algebraic’’ multigrid solver in principle can be used for
any structural idealization because it operates directly on
the given coefficient matrix (37). Figure 5 shows a model
solved by using an iterative scheme and gives a typical
solution time.

Considering transient analysis, it is necessary to distin-
guish between vibration analyses and wave propagation
solutions. For the linear analysis of vibration problems,
mode superposition is commonly performed (3,38). In such
cases, frequencies and mode shapes of the finite element
models need be computed, and this is commonly achieved
using the Bathe subspace iteration method or the Lanczos
method (3).

For the nonlinear analysis of vibration problems,
usually a step-by-step direct time integration solution is
performed with an implicit integration technique, and fre-
quently the trapezoidal rule is used (3). However, when
large deformation problems and relatively long time dura-
tions are considered, the scheme in Ref. 39 can be much

Figure 5. Model of a rear axle; about a quarter of a million
elements, including contact solved in about 20 minutes on a
single-processor PC.
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more effective. The solution of a finite element model of one
half of a million equations solved with a few hundred time
steps would be considered a large problem.

Of course, the explicit solution procedures already men-
tioned above are used for short duration transient and wave
propagation analyses (3,40).

In the simulations of fluid flows, the number of nodal
unknowns usually is very large, and iterative methods need
to be used for solution. Here algebraic multigrid solvers are
very effective, but important requirements are that both
the computation time and amount of memory used should
increase about linearly with the number of nodal unknowns
to be solved for. Figure 3 gives a typical solution time for a
Navier–Stokes fluid flow problem. It is seen that with
rather moderate hardware capabilities large systems can
be solved.

Of course, these solution times are given merely to
indicate some current state-of-the-art capabilities, and
have been obtained using ADINA (41). Naturally, the
solution times would be much smaller if parallel processing
were used (and then would depend on the number of
processors used, etc.) and surely will be much reduced
over the years to come.

The given observations hold also of course for the solu-
tion of multiphysics problems.

MESHING

A finite element analysis of any physical problem requires
that a mesh of finite elements be generated. Because the
generation of finite element meshes is a fundamental step
and can require significant human and computational
effort, procedures have been developed and implemented
that automatize the mesh generation without human inter-
vention as much as possible.

Some basic problems in automatic mesh generation are
(1) that the given geometries can be complex with very
small features (small holes, chamfers, etc.) embedded in
otherwise rather large geometric domains, (2) that the use
of certain element types is much preferable over other
element types (for example, brick elements are more effec-
tive than tetrahedral elements), (3) that graded meshes
need be used for effective solutions (that is, the mesh should
be finer in regions of stress concentrations and in boundary
layers in fluid flows or the analysis of shells), and (4) that an
anisotropic mesh may be required. In addition, any valu-
able mesh generation technique in a general purpose ana-
lysis environment (like used in CAE solution packages, see
the section titled, ‘‘The Use of the Finite Element Method in
Computer-Aided Engineering’’) must be able to mesh com-
plex and general domains.

The accuracy of the finite element analysis results,
measured on the exact solution of the mathematical model,
highly depends on the use of an appropriate mesh, and this
holds true in particular when coarse meshes need be used to
reduce the computer time employed for complex analyses.
Hence, effective mesh generation procedures are most
important.

Various mesh generation techniques are in use (42).
Generally, these techniques can be classified into mapped

meshing procedures, in which the user defines and con-
trols the element spacings to obtain a relatively struc-
tured mesh, and free-form meshing procedures, in which
the user defines the minimum and maximum sizes of
elements in certain regions but mostly has little control
as to what mesh is generated, and the user obtains an
unstructured mesh. Of course, in each case the user also
defines for what elements the mesh is to be generated.
Mapped meshing techniques in general can be used only
for rather regular structural and fluid domains and
require some human effort to prepare the input but
usually result in effective meshes, in the sense that the
accuracy of solution is high for the number of elements
used. The free-form meshing techniques in principle can
mesh automatically any 3-D domain provided tetrahedral
elements are used; however, a rather unstructured
mesh that contains many elements may be reached.
The challenge in the development of free-form meshing
procedures has been to reach meshes that in general do
not contain highly distorted elements (long, thin sliver
elements must be avoided unless mesh anisotropy is
needed), that do not contain too many elements, and
that contain brick elements rather than tetrahedral ele-
ments. Two fundamental approaches have been pursued
and refined, namely methods based on advancing front
methodologies that generate elements from the boundary
inwards and methods based on Delaunay triangulariza-
tions that directly mesh from coarse to fine over the
complete domain. Although a large effort has already
been expended on the development of effective mesh
generation schemes, improvements still are much
desired, for example to reach more general and effective
procedures to mesh arbitrary three-dimensional geome-
tries with brick elements.

Figure 1 shows a three-dimensional mapped mesh of
brick elements, a largely structured mesh, for the analysis
of a wheel, and Fig. 6 shows a three-dimensional mesh of
tetrahedral elements, an unstructured mesh, for the ana-
lysis of a helmet. It is important to be able to achieve the
grading in elements shown in Fig. 6 because the potential
area of contact on the helmet requires a fine mesh.

Figure 7 shows another important meshing feature for
finite element analysis, namely the possibility to glue in a
‘‘consistent manner’’ totally different meshes together (19).
This feature provides flexibility in meshing different parts
and allows multiscale analysis. The glueing of course is
applicable in all linear and nonlinear analyses.

Because the effective meshing of complex domains still is
requiring significant human and computational effort,
some new discretization methods that do not require a
mesh in the traditional sense have been developed (43).
These techniques are referred to as meshless or meshfree
methods but of course still require nodal points, with nodal
point variables that are used to interpolate solid displace-
ments, fluid velocities, temperatures, or any other conti-
nuum variable. The major difference from traditional finite
element methods is that in meshfree methods, the discrete
domains, over which the interpolations take place, usually
overlap, whereas in the traditional finite element methods,
the finite element discrete domains abut each other, and
geometric overlapping is not allowed. These meshfree
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methods require appropriate nodal point spacing, and the
numerical integration is more expensive (43,44). However,
the use of these procedures coupled with traditional finite
elements shows promise in regions where either traditional
finite elements are difficult to generate or such elements
become highly distorted in geometric nonlinear analysis
(43).

THE USE OF THE FINITE ELEMENT METHOD IN COMPUTER-
AIDED ENGINEERING

The finite element method would not have become a suc-
cessful tool to solve complex physical problems if the
method had not been implemented in computer programs.
The success of the method is clearly due to the effective
implementation in computer programs and the possible

wide use of these programs in many industries and
research environments. Hence, reliable and effective finite
element methods were needed that could be trusted to
perform well in general analysis conditions as mentioned
above. But also, the computer programs had to be easy to
use. Indeed, the ease of use is very important for a finite
element program to be used in engineering environments.

The ease of use of a finite element program is dependent
on the availability of effective pre- and post-processing
tools based on graphical user interfaces for input and
output of data. The pre-processing embodies the use of
geometries from computer-aided design (CAD) programs
or the construction of geometries with CAD-like tools, and
the automatic generation of elements, nodal data, bound-
ary conditions, material data, and applied loadings. An
important ingredient is the display of the geometry and
constructed finite element model with the elements,
nodes, and so on. The post-processing is used to list and
graphically display the computed results, such as the
displacements, velocities, stresses, forces, and so on. In
the post-processing phase, the computed results usually
are looked at first to see whether the results make sense
(because, for example, by an input error, a different than
intended finite element model may have been solved), and
then the results are studied in depth. In particular, the
results should give the answers to the questions that
provided the stimulus for performing the finite element
analysis in the first instance.

The use of finite element programs in computer-aided
engineering (CAE) frequently requires that geometries from
CAD programs need be employed. Hence, interfaces to
import these geometries into the finite element pre-proces-
sing programs are important. However, frequently the com-
puter-aided design geometry can not be used directly to
generate finite element meshes and needs to be changed
(‘‘cleaned-up’’) to ensure well-connected domains, and by
deleting unnecessary details. The effective importing of
computer-aided design data is a most important step for
thewideuseoffiniteelementanalysis inengineeringdesign.

As mentioned already, the purpose of a finite element
analysis is to solve a mathematical model. Hence, in the
post-processing phase, the user of a finite element program
ideally would be able to ascertain that a sufficiently accu-
rate solution has been obtained. This means that, ideally, a
measure of the error between the computed solution and
the ‘‘exact solution of the mathematical model’’ would be
available. Because the exact solution is unknown, only
estimates can be given. Some procedures for estimating
the error are available (mostly in linear analysis) but need
to be used with care (45,46), and in practice frequently the
analysis is performed simply with a very fine mesh to
ensure that a sufficiently accurate solution has been
obtained. Figure 8 shows an example of error estimation.
Here, the scheme proposed by Sussman and Bathe (47) is
used in a linear, nonlinear, and FSI solution using ADINA.

In the first decades of finite element analysis, many
finite element programs were available and used. However,
the ensuing strive for improved procedures in these pro-
grams, in terms of generality, effectiveness, and ease of use,
required a significant continuous development effort. The
resulting competition in the field to further develop and

Figure 6. Model of a bicycle helmet showing mesh gradation.

Figure 7. Glueing of dissimilar meshes.
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Figure 8. Error estimation example: analysis of a cantilever with a hole. (a) Mesh of 9-node elements used for analysis of cantilever (with
boundary conditions). (b) Cantilever structure — linear analysis, estimated error in region of interest shown. (c) Cantilever structure —
linear analysis, exact error in region of interest shown. (d) Cantilever structure — nonlinear analysis, estimated error in region of interest
shown. (e) Cantilever structure — nonlinear analysis, exact error in region of interest shown. (f) Cantilever structure — FSI analysis,
estimated error in region of interest shown. (g) Cantilever structure — FSI analysis, exact error in region of interest shown.
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continuously support a finite element program reduced the
number of finite element systems now widely used to only a
few: MSC NASTRAN, NX NASTRAN, ANSYS, ABAQUS,
ADINA, and MARC are the primary codes used for static
and implicit dynamic analyses of structures, and LS-
DYNA, RADIOSS, PAMCRASH are the primary codes
used for explicit dynamic analyses. For multiphysics pro-
blems, notably fluid–structure interactions, primarily
ADINA and ANSYS are used.

CONCLUSIONS AND KEY CHALLENGES

Since the first publications on the practical use of the finite
element method, the field of finite element analysis has
exploded in terms of research activities and applications.
Numerous references are given on the World Wide Web.
The method is now applied in practically all areas of
engineering and scientific analyses. Since some time, the
finite element method and related techniques frequently
are simply referred to as ‘‘methods in computational fluid
and solid mechanics.’’

With all these achievements in place and the abundant
applications of computational mechanics today, it is surely

of interest to ask, ‘‘What are the outstanding research and
development tasks? What are the key challenges still in
the field?’’ These questions are addressed in the prefaces of
Ref. 1, see the 2003 and 2005 volumes.

Although much has been accomplished, still, many
exciting research tasks exist in further developing finite
element methods. These developments and the envisa-
ged increased use of finite element methods not only will
have a continuous and very beneficial impact on tradi-
tional engineering endeavors but also will lead to great
benefits in other areas such as in the medical and health
sciences.

Specifically, the additional developments of finite ele-
ment methods should not be directed only to the more
effective analysis of single media but also must focus on
the solution of multiphysics problems that involve fluids,
solids, their interactions, and chemical and electromag-
netic effects from the molecular to the macroscopic scales,
including uncertainties in the given data, and should also
be directed to reach more effective algorithms for the
optimization of designs.

Based on these thoughts, we can identify at least eight
key challenges for research and development in finite ele-
ment methods and numerical methods in general; these

Figure 8. (Continued )
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challenges pertain to the more automatic solution of math-
ematical models, to more effective and predictive numerical
schemes for fluid flows, to mesh-free methods that are
coupled with traditional finite element methods, to finite
element methods for multiphysics problems and multiscale
problems, to the more direct modeling of uncertainties in
analysis data, to the analysis and optimization of complete
lifecycles of designed structures and fluid systems, and
finally, to providing effective education and educational
tools for engineers and scientists to use the given analysis
procedures in finite element programs correctly and to the
full capabilities (1).

Hence, although the finite element method already is
widely used, still, many exciting research and develop-
ment efforts exist and will continue to exist for many
years.
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ABSTRACT

The objective in this article is to give an overview of finite
element methods that currently are used extensively in
academia and industry. The method is described in
general terms, the basic formulation is presented, and
some issues regarding effective finite element procedures
are summarized. Various applications are given briefly to
illustrate the current use of the method. Finally, the
article concludes with key challenges for the additional
development of the method.


