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We consider the Bathe implicit time integration method and focus on the time step splitting ratio and the
spectral radius at large time steps to improve and generalize the scheme. The objective is to be able to
prescribe the amplitude decay (dissipation) and period elongation (dispersion) for the numerical integra-
tion, and to achieve this aim in a direct and optimum manner with the minimum number of parameters.
We show that the use of the time step splitting ratio and spectral radius is effective to prescribe in a
smooth manner no amplitude decay to very large amplitude decays, with correspondingly small period
elongation to very large period elongations while maintaining second-order accuracy. We analyze the
effects of the splitting ratio and spectral radius on the stability and accuracy of the scheme and illustrate
the use of these parameters in comparison with previously published methods. Furthermore, we show
that with a proper setting of these parameters more accurate results may be obtained in some analyses.
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1. Introduction

During the recent decades many direct time integration
schemes for the solution of the time dependent finite element
equations have been proposed and used. These integration
schemes are employed for transient analyses of the dynamic
response of structures and can be classified into explicit and impli-
cit techniques [1]. The explicit schemes are mostly used for wave
propagation solutions and the implicit methods are used for the
analysis of short duration structural vibrations, but also in the
solution of wave propagations. Since the schemes are very widely
applied, it is important to pursue research for more understanding
and more effective methods.

Some explicit schemes are the well-known central difference
method [1,2] and those presented recently in Refs. [3–6]. In this
paper we focus on an implicit time integration method, and in this
category we have the Newmark scheme [7], the Houbolt method
[8], the Wilson method [9,10], the methods proposed by Zhou
and Tamma [11] and the three-parameter or generalized alpha
scheme [12–14]. Since more recently, the Bathe method is increas-
ingly used [15–17].

In the Bathe scheme, the time step is subdivided into two
sub-steps. For the first sub-step the Newmark method of time
integration is used and for the second sub-step the three-point
Euler backward scheme is employed. While the method is thus a
composite time integration scheme, it can also be thought of as a
‘‘single-step solve scheme” with certain computations performed
within the step [18–20]. Other composite time integration
schemes have since then also been proposed, see e.g. [21,22].

An advantage of the Bathe scheme is that while inherently three
parameters are present (the Newmark d;a values, and the time-
step splitting ratio c), these can be set to the default values
d ¼ 0:5; a ¼ 0:25; c ¼ 0:5, so that the trapezoidal rule is used in
the first sub-step integration and the Euler method is employed
with equal size sub-steps in the second sub-step integration. With
this default setting, excellent accuracy is achieved in the solution
of many problems, which is an advantage in engineering practice
since it can be costly to experiment with different values of param-
eters for a time integration. This was an important point made in
proposing this time integration scheme [16].

However, inherently the above parameters can be varied and it
is natural to study the effect on stability and accuracy of using dif-
ferent values from the default values. In particular so, since ana-
lysts of other time integration schemes use parameters that are
changed, see e.g. Ref. [14]. A study of the effects of changing these
parameters in the Bathe method will also give more insight into
the time integration scheme.

For these reasons, we studied the effects of changing the three
parameters in the Bathe method in Refs. [19,20]. For unconditional
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stability and optimal accuracy, the trapezoidal rule is best used for
the first sub-step but, as shown in Ref. [20], the splitting ratio c can
take on values greater than 0, – 1, but even greater than 1. In this
way, we can adjust the amplitude decay (dissipation) and period
elongation (dispersion) by the use of different values of c. How-
ever, the accuracy is not optimal, for example, when c ¼ 0:99 we
have negligible amplitude decay but the period elongation is like
when using the trapezoidal rule with the full time step. Hence
the Bathe scheme is for this setting twice as expensive as the tra-
ditional trapezoidal rule.

Another way to proceed is to use c ¼ 0:5 and introduce new
parameters that can be adjusted. This approach was pursued in
Ref. [23], where the b1=b2-Bathe scheme was proposed. The basic
idea in this approach is to use for the time integration over the sec-
ond sub-step the Newmark approximation over the first and sec-
ond sub-steps with the parameters b1 and b2, where these
parameters act like the d parameter in the Newmark approxima-
tion [1]. Using this scheme, the amplitude decay can be changed
smoothly from zero to very large, and the period elongation
changes correspondingly. In particular, when b1 ¼ b2 ¼ 0:5 the
trapezoidal rule is used for each of the sub-steps, and when
b1 ¼ 1=3 and b2 ¼ 2=3 the standard Bathe scheme (using c ¼ 0:5)
is employed. These are good properties, however, the b1=b2-
Bathe scheme requires the use of the two parameters b1 and b2

with the third parameter c largely set to 0.5 for the analysis of
properties in Ref. [23]. Of course, the effect of c could be analyzed.

Another inherent parameter in the standard Bathe method is
the spectral radius qðAÞ of the amplification matrix A at very large
values of Dt=T , where T is the free vibration period of the system,
referred to as q1ðAÞ: In the standard Bathe scheme q1 ¼ 0:0, and
the fact that the spectral radius is equal to 1 for time steps Dt that
satisfy Dt=T 6 0:3 and then rapidly decreases to zero for larger
time steps is a useful property [1]. This leads to accuracy in the fre-
quencies to be integrated and the discarding of those frequencies
from the response that cannot and should not be integrated
because they are not excited or carry at most spurious response.

In order to reach a simple and effective scheme in which
besides c only one more parameter is employed, we have focused
on the use of the standard Bathe method with the spectral radius
q1 as an additional parameter. This research is thus a continuation
of our work presented in Ref. [20].

In this paper we present this generalization of the Bathe
method, in which we still use d ¼ 0:5; a ¼ 0:25 for the first sub-
step but we employ c and q1 as parameters. The method is uncon-
ditionally stable, second-order accurate, and the amplitude decay
and period elongation can be smoothly changed to have no ampli-
tude decay, like when using the trapezoidal rule for both sub-steps,
and very large amplitude decay, always with corresponding period
elongations. Since we introduce q1 as an additional parameter in
the standard Bathe scheme, we refer to the method as the q1-
Bathe scheme. This method contains as special cases the standard
Bathe scheme and, as we show below, also the b1=b2-Bathe scheme
if the conditions of second-order accuracy are not imposed.

In the following sections, we present the basic time integration
formulae of the q1-Bathe scheme, including the amplification
matrix, and we discuss the properties of amplitude decay and per-
iod elongation when different sets of parameters ðc;q1Þ are used.
We also evaluate the scheme in comparison to the use of the b1=b2

parameters in the Bathe method (with c ¼ 0:5) and in comparison
to other methods, which provides novel insight. Based on this
study, we conclude that the standard Bathe method with c ¼ 0:5
and q1 ¼ 0 (of course, included in the q1-Bathe scheme) gives
overall, in general, good accuracy but that the use of the parame-
ters ðc;q1Þ can be valuable in the solution of some problems.
2. The q‘-Bathe time integration scheme

Considering linear analysis, the governing finite element equa-
tions to be solved are

M€Uþ C _Uþ KU ¼ R ð1Þ
with given initial conditions, where M; C; K are the mass, damping
and stiffness matrices, and the vectors U and R list, respectively, the
nodal displacements (rotations) and externally applied nodal forces
(moments). An overdot denotes a time derivative. Assuming that
the time step size Dt is set and all solution variables are known
up to time t, the time integration scheme is to calculate the solution
at time t þ Dt.

In the Bathe method we calculate the unknown displacements,
velocities, and accelerations at time t þ Dt by considering the time
step Dt to consist of two sub-steps. The sub-step sizes are cDt and
ð1� cÞDt for the first and second sub-steps, respectively.

In the first sub-step of the q1-Bathe scheme, as in the standard
scheme, we use the trapezoidal rule for the equilibrium at time
t þ cDt,

M tþcDt €Uþ C tþcDt _Uþ K tþcDtU ¼ tþcDtR ð2Þ

tþcDtU ¼ tUþ cDt
2

ðt _Uþ tþcDt _UÞ ð3Þ

tþcDt _U ¼ t _Uþ cDt
2

ðt €Uþ tþcDt €UÞ ð4Þ

For the second sub-step, instead of using the 3-point Euler back-
ward method as in the standard Bathe method, we use the follow-
ing relations for the equilibrium at time t þ Dt,

M tþDt €Uþ C tþDt _Uþ K tþDtU ¼ tþDtR ð5Þ

tþDtU ¼ tUþ Dtðq0
t _Uþ q1

tþcDt _Uþ q2
tþDt _UÞ ð6Þ

tþDt _U ¼ t _Uþ Dtðs0t €Uþ s1tþcDt €Uþ s2tþDt €UÞ ð7Þ
where q0; q1; q2; s0; s1; s2 and c are parameters to be determined. We
should note here that the Ansatz in Eqs. (6) and (7) is quite similar
to the Ansatz used in Ref. [23] and with s0 ¼ q0 ¼ cð1� b1Þ,
s1 ¼ q1 ¼ cðb1 þ b2 � 1Þ þ 1� b2 and s2 ¼ q2 ¼ ð1� cÞb2, these time
stepping relations reduce to the b1=b2-Bathe scheme. Table 1 sum-
marizes already the various Bathe integration schemes. We discuss
the similarities and the differences between the standard Bathe
method, the b1=b2-Bathe scheme and the present method in
Section 2.2.

Using the relations and the equilibrium equations in Eqs. (2)–
(7), we can construct the time-stepping equations as

K̂1
tþcDtU ¼ R̂1 ð8Þ

K̂2
tþDtU ¼ R̂2 ð9Þ

where

K̂1 ¼ 4
c2Dt2

Mþ 2
cDt

Cþ K ð10Þ

K̂2 ¼ 1
Dt2q2s2

Mþ 1
Dtq2

Cþ K ð11Þ

R̂1 ¼ tþcDtR þM t €Uþ 4
cDt

t _Uþ 4
c2Dt2

tU
� �

þ C t _Uþ 2
cDt

tU
� �

ð12Þ



Table 1
Attributes and parameters used in the Bathe time integration schemes (in all cases the Newmark parameters for the first sub-step are a ¼ 0:25, d ¼ 0:5 to have the Trapezoidal
rule).

Standard Bathe scheme [15,16,19,20]:
The parameter c can be varied, but usually c ¼ 0:5; inherently q1 ¼ 0:0

b1=b2-Bathe scheme [23]:
The parameter c can in principle be varied but analysis was only given for c ¼ 0:50. The method is a 3-parameter method with b1; b2 and c. More or less numerical
dissipation can be achieved in a smooth manner; b2 ¼ 1� b1 is used for reduced numerical dissipation while maintaining second order accuracy; b2 ¼ 2b1 is used for
large numerical dissipation while providing first order accuracy

q1-Bathe scheme
The additional parameter to the standard Bathe scheme is q1 . The method reduces to the standard Bathe scheme with q1 ¼ 0:0; it reduces to the b1=b2-Bathe
scheme with s0 ¼ q0 ¼ cð1� b1Þ; s1 ¼ q1 ¼ cðb1 þ b2 � 1Þ þ 1� b2 and s2 ¼ q2 ¼ ð1� cÞb2. The method is second-order accurate for any q1 and c provided the
relations in Eq. (14) are employed (but then no longer reduces to the b1=b2-Bathe scheme). Using c ¼ c0 given by q1 in Eq. (21), the scheme uses only one effective
stiffness matrix and is a one-parameter method with optimal properties
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R̂2 ¼ tþDtR þM
1

Dt2q2s2
tUþ 1

Dtq2s2
ðq0 þ q2Þt _Uþ q1

tþcDt _U
� ��

þ 1
s2

s0t €Uþ s1tþcDt €U
� ��

þ C
1

Dtq2

tUþ 1
q2

q0
t _Uþ q1

tþcDt _U
� �� �

ð13Þ
These relations are computationally quite similar to the relations
using the standard Bathe method and the b1=b2-Bathe scheme.

2.1. Stability and accuracy characteristics of the q1-Bathe time
integration method

To have second-order accuracy, we use, with and without
physical damping included,

q0 ¼ ðc� 1Þq1 þ
1
2

q2 ¼ �cq1 þ
1
2

ð14Þ

s0 ¼ ðc� 1Þs1 þ 1
2

s2 ¼ �cs1 þ 1
2

Note that with these conditions enforced the scheme no longer
reduces to the b1=b2-Bathe method. In the decoupled modal
equations, the method may be expressed as [1,24]

tþDt€x
tþDt _x
tþDtx

2
64

3
75 ¼ A

t€x
t _x
tx

2
64

3
75þ La

tþcDtr þ Lb
tþDtr ð15Þ

where A; La and Lb are the integration approximation and load
operators, respectively (see Appendix A). The stability and some
accuracy characteristics of the method may be studied using this
form of the scheme.

Using the relations in Eq. (14) and considering the case of no
physical damping, the characteristic polynomial of A becomes

pðkÞ ¼ k3 � 2A1k
2 þ A2k� A3 ð16Þ

where

A1 ¼ 1
b01b02

ðc2 q1s1c2 � 2q1s1cþ ðq1 þ s1Þð1=2Þ � 1=4
� �

X4
0

þ �1þ 4q1s1 þ 1ð Þc2 � 2 q1 þ s1ð Þc� �
X2

0 þ 4ÞÞ;

A2 ¼ 1
b01b02

ðc2 �2s1 þ cs1 þ ð1=2Þð Þ cq1 þ ð1=2Þ � 2q1ð ÞX4
0

þ 1þ 4q1s1 þ 1ð Þc2 � 2 q1 þ s1ð Þc� �
X2

0 þ 4ÞÞ; ð17Þ
A3 ¼ 0;

b01 ¼ X2
0c

2 þ 4; b02 ¼ 1þ ðcq1 � ð1=2ÞÞðcs1 � ð1=2ÞÞX2
0

where x0 is the modal natural frequency and X0 ¼ x0Dt.
Using the Routh-Hurwitz stability criteria for Eq. (15), we

obtain the useful relation for unconditional stability and the eigen-
values to be complex conjugate for all positive X0:

s1 ¼ q1 ð18Þ
Using Eq. (18) in Eq. (14) gives s0 ¼ q0 and s2 ¼ q2 and the coeffi-
cients in the approximations of the displacement and the velocity
are identical, see Eqs. (6) and (7).

To directly prescribe the amount of numerical dissipation in the
high frequency range, we use the relation between q1 and the spec-
tral radius in the high frequency range, q1:

q1 ¼ q1 þ 1
2cðq1 � 1Þ þ 4

ð19Þ

where

q1 ¼ lim
X0!1

qðAÞ; q1 2 0;1½ � ð20Þ

The scheme now has two free parameters, c and q1. The step-by-
step procedure of the method is summarized in Table 2. Note that,
in practice, c ¼ 0, 1 and 2=ð1� q1Þ should be avoided since these
values give zero denominators of constants in the method.

From Eqs. (10) and (11), we notice that the effective stiffness

matrix in the first sub-step, K̂1, is identical to the one in the sec-

ond sub-step, K̂2, when s2 ¼ q2 ¼ c=2. Eqs. (14), (18) and (19)
with s2 ¼ q2 ¼ c=2 provide the expression of c in terms of q1
to obtain identical effective stiffness matrices for all q1 2 0;1½ �
as

c0 ¼ 2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2q1

p
1� q1

; c0 ¼ 0:5 if q1 ¼ 1 ð21Þ

In Eq. (21), the value of c0 decreases from 2�
ffiffiffi
2

p
to 0.5 as the value

of q1 increases from 0 to 1. Note that for any value of q1 2 0;1½ �, at
c0 we have a local minimum of qðAÞ (that is, qðAÞ is smallest for a
given Dt=T), a local maximum of the amplitude decay within the
range of c 2 0;1ð Þ, and the global minimum of the period elonga-
tion. In this sense we can refer to c0 as the optimal value of the
method for any given q1 and using Eq. (21) the method is a one-
parameter scheme.

Figs. 1–5 show the spectral radii, the amplitude decays and per-
iod elongations for various values of q1 and c. Considering
q1 2 0;1½ � and c 2 0;1ð Þ we have the largest amplitude decay
and the smallest period elongation at c0 with the values decreasing
and increasing, respectively, as c is smaller and larger than c0.
These results correspond to the observations given above. But for



Table 2
Step-by-step solution using the q1-Bathe method for linear analysis with general
loading.

A. Initial calculation
1. Form stiffness matrix K, lumped mass matrix M, and damping matrix C

2. Initialize 0U, 0 _U and 0 €U.
3. Select time step Dt; q1 (default = 0.0), c (default = c0 in Eq. (21)),
and calculate integration constants:

q1 ¼ q1þ1
2cðq1�1Þþ4 ; q0 ¼ ðc� 1Þq1 þ 1

2 ; q2 ¼ �cq1 þ 1
2

a0 ¼ 4
c2Dt2 ; a1 ¼ 2

cDt ; a2 ¼ 1
Dt2q22

; a3 ¼ 1
Dtq2

; a4 ¼ 4
cDt;

a5 ¼ q0þq2
Dtq22

; a6 ¼ q1
Dtq22

; a7 ¼ q0
q2
; a8 ¼ q1

q2
;

4. Form effective stiffness matrix K̂1 and K̂2:

K̂1 ¼ Kþ a0Mþ a1C; K̂2 ¼ Kþ a2Mþ a3C;

5. Triangularize K̂1 and K̂2: K̂1 ¼ L1D1L
T
1; K̂2 ¼ L2D2L

T
2

B. For each time step:
<First sub-step>
1. Calculate effective loads at time t þ cDt:

tþcDtR̂ ¼ tþcDtR þM t €Uþ a4 t _Uþ a0 tU
� �

þ C t _Uþ a1 tU
� �

2. Solve for displacements at time t þ cDt:
L1D1L

T
1
tþcDtU ¼ tþcDtR̂

3. Calculate velocities and accelrations at time t þ cDt:
tþcDt _U ¼ a1 tþcDtU� tU

� �� t _U
tþcDt €U ¼ a1 tþcDt _U� t _U

� �
� t €U

<Second sub-step>
1. Calculate effective loads at time t þ Dt:

tþDtR̂ ¼ tþDtR þM a2 tUþ a5 t _Uþ a6 tþcDt _Uþ a7 t €Uþ a8 tþcDt €U
� �

þC a3tUþ a7 t _Uþ a8 tþcDt _U
� �

2. Solve for displacements at time t þ Dt:

L2D2L
T
2
tþDtU ¼ tþDtR̂

3. Calculate velocities and accelrations at time t þ Dt:
tþDt _U ¼ �a3 tUþ a3 tþDtU� a7 t _U� a8 tþcDt _U
tþDt €U ¼ �a3 t _Uþ a3 tþDt _U� a7 t €U� a8 tþcDt €U

Fig. 1. Spectral radii of approximation operator of the q1-Bathe method when
n ¼ 0 for various values of c and q1; Each color indicates a value of c; Each line type
indicates a value of q1: solid (q1 ¼ 0), dashed (q1 ¼ 0:3), dotted (q1 ¼ 0:6),
dashed dot (q1 ¼ 1); The curves with solid line (q1 ¼ 0) are identical to the curves
of the standard Bathe method with the same c. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
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c 2 1;2=ð1� q1Þð Þ, both the amplitude decay and period
elongation increase as c increases. Also, as c approaches 0 or 1,
for all q1 2 0;1½ �, the properties of the method approach those of
the single-step trapezoidal rule. Finally, we note that for all
q1 2 0;1½ �, the properties of the method change with c in the same
way as the properties change in the standard Bathe method, see in
particular Fig. 1.
Considering c0, as q1 increases from 0 to 1, both, the amplitude
decay and the period elongation are reduced. However, with
c 2 1;2=ð1� q1Þð Þ, as q1 increases, the amplitude decay decreases
significantly while the change in the period elongation is small.

It is interesting to note that the relation between the splitting
ratio c and spectral radius q1 shown in Eq. (21) is identical to
the relation between the splitting ratio p and the spectral radius
at the bifurcation point qb in an explicit time integration method
proposed by the authors [3].

As in the standard Bathe method, the spectral properties of the
q1-Bathe scheme for a given q1 possess symmetry (with some
scaling) with respect to c, where the center of the symmetry is
c0: namely c and 2ð1� cÞ=ð2� cþ cq1Þ provide an identical char-
acteristic polynomial in Eq. (16), hence the same spectral proper-
ties arise. With q1 ¼ 0, the symmetry in the spectral properties
of the q1-Bathe scheme is identical to that of the standard Bathe
method [20].

Due to the symmetry with respect to c, with q1 2 0;1½ �, the
spectral properties of c 2 0; c0ð Þ can be reproduced by using
c 2 c0;1ð Þ, where c 2 1;2=ð1� q1Þð Þ has its counterpart in
c 2 �1;0ð Þ. For example, with q1 ¼ 0:5, the curves of the spectral
radius, the amplitude decay and the period elongation for c ¼ 0:3
are identical to those for c ¼ 0:757 (the value is rounded). We refer
to Ref. [20] for comments on the use of negative values of c.

2.2. Similarities and differences to the standard Bathe and b1=b2-Bathe
methods

Considering q1 ¼ 0, the method is spectrally identical to the
standard Bathe method: an identical characteristic polynomial in
Eq. (16) is obtained. Moreover, for nonzero q1 values, the method
shows various desired characteristics of the standard Bathe
method, but of course with the effects of nonzero q1. For
q1 ¼ 1, the method has no amplitude decay for all frequencies,
and with c ¼ 0:5 which is c0 for q1 ¼ 1, the method provides the
performance of the two-step trapezoidal rule.

In the standard Bathe method, the splitting ratio c ¼ 2�
ffiffiffi
2

p

provides identical effective stiffness matrices for the two sub-
steps, the local minimum of qðAÞ, the local maximum of amplitude
decay and the global minimum of the period elongation: this split-
ting ratio is obtained in Eq. (21) with q1 ¼ 0. Also, with q1 ¼ 0, the
symmetry in the spectral properties of the standard Bathe method
is recovered. Furthermore we note that for all q1 2 ½0;1�, the
amplitude decays and period elongations of the q1-Bathe scheme
change with c in the same way as when q1 ¼ 0, that is, in the stan-
dard Bathe method. Hence we can interpret the scheme as a ‘‘Bathe
method with controllable q1.”

Recently, the b1=b2-Bathe scheme was proposed to change the
amplitude decay in the standard Bathe method [23]. The values
b2 ¼ 2b1 (for b1 2 ½1=3;1Þ) and b2 ¼ 1� b1 (for b1 2 1=3;1=2½ �)
are used (with c ¼ 1=2) to have more or less numerical dissipation
than obtained in the standard Bathe method.

In the b1=b2-Bathe scheme, second order accuracy can only be
obtained by satisfying

ðb1 þ b2 � 1Þc2 þ ð1� 2b2Þcþ b2 �
1
2
¼ 0 ð22Þ

Therefore, for c ¼ 1=2, only b2 ¼ 1� b1 provides second order accu-
racy. The only case of second-order accuracy with b2 ¼ 2b1 (with
the condition b2 ¼ 1� b1) is b1 ¼ 1=3 and b2 ¼ 2=3, which is when
the b1=b2-Bathe method reduces to the standard Bathe method.
Therefore, while the amplitude decay can be smoothly increased
to provide a larger numerical dissipation than obtained in the stan-
dard Bathe method with c ¼ 1=2, the b1=b2-Bathe scheme is then
only a first-order accurate method. Note that the q1-Bathe method



Fig. 2. Percentage amplitude decays of the q1-Bathe method when n ¼ 0 for various values of c 2 0;1ð Þ and q1 .
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always provides second-order accuracy for all possible values of c
and q1 since the conditions in Eq. (14) are imposed.

A major advantage of the b1=b2-Bathe method over the standard
Bathe method is that for the least numerical dissipation and dis-
persion, the method can be used as the two-step trapezoidal rule
while the standard Bathe method can only provide the perfor-
mance of the one-step trapezoidal rule but using the two sub-
steps. Note that the q1-Bathe method also provides the perfor-
mance of the two-step trapezoidal rule with q1 ¼ 1 and c ¼ 0:5.

With specific values of b1 and b2, the b1=b2-Bathe scheme
reduces to the standard Bathe method and using a specific value
c also the two coefficient matrices are identical. However, three
parameters are in essence used. Therefore, while using the b1; b2

parameters and possibly c the amount of numerical dissipation
and dispersion can be smoothly changed to have small or large val-
ues, the use of c and q1 in the q1-Bathe scheme is simpler because
less parameters are used and the scheme for any q1 2 ½0;1�
behaves as the standard Bathe method, as an analyst may like to
have in practical solutions.

Regarding the usage of the q1-Bathe method, we recommend to

use q1 ¼ 0, the standard Bathe method, with c ¼ 0:5 or 2�
ffiffiffi
2

p
, as

the default setting for general structural dynamics problems, see
Section 3.1. If we understand the characteristics of the dynamic
problem to be solved a priori or after studying the numerical
results obtained using the default values, we may use other values
of c and q1 for enhanced accuracy. For problems which do not
require high numerical damping in the high frequency range, we
may use q1 2 ½0;1� with c ¼ c0 in Eq. (21) for reduced amplitude
decays and period elongations; namely, as q1 approaches 1 from
0, the method gives less amplitude decay and period elongation.
The usefulness of nonzero q1 values is illustrated in Section 3.2.
For the solution of a problem requiring large numerical dissipation,
like problems of wave propagations, we may use q1 ¼ 0 with
c > 1:3, see. Section 3.3.



Fig. 3. Percentage period elongations of the q1-Bathe method when n ¼ 0 for various values of c 2 0;1ð Þ and q1 .
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3. Illustrative solutions

We consider a 3 degree-of-freedom model problem and a 1D
wave propagation problem to illustrate the behavior of the q1-
Bathe method. For the model problem, we consider two cases:
k1 ¼ 107 and 5.

3.1. Three degree-of-freedom spring system: stiff-soft spring case

We first consider the case of k1 ¼ 107 in the model problem
shown in Fig. 6. This problem was already used in Refs. [19,20]
to represent a general structure with stiff and flexible parts. We
refer to Refs. [19,1] for comments on the importance of the
problem.

Figs. 7–15 show the results obtained using various time integra-
tion methods – the U0V0optimal scheme presented by Zhou and
Tamma as a U0-V0 scheme [11], the three-parameter method (or
generalized-a method) [12–14], the standard Bathe method, a
one-parameter composite method using q1 proposed by Kim and
Choi [22], and the q1-Bathe method. In all solutions, we use
Dt ¼ 0:5236 with the period of the external loading Tp ’ 5:236.
For the standard Bathe method, we use a ¼ 1=4; d ¼ 1=2 with
c ¼ 0:5 and 0.9. We use the parameter values q1 ¼ 0 and 0.3 for
the U0V0optimal, three-parameter and one-parameter methods. For
the q1-Bathe method, we consider c ¼ 0:5 with q1 ¼ 0 and 0.3.

The standard Bathe method with c ¼ 0:5 and the q1-Bathe
method with c ¼ 0:5 and q1 ¼ 0 provide identical results (as
expected, see Section 2) and the best results, indeed with other c
values for the standard Bathe scheme and other values of q1 for
the q1-Bathe method, the accuracy is decreased. The results using
the other methods are not satisfactory. For the 3-parameter
method and the one-parameter composite method, a smaller q1
value provides better accuracy and, interestingly, the U0V0optimal

scheme provides the same results for the values q1 considered.



Fig. 4. Percentage amplitude decays of the q1-Bathe method when n ¼ 0 for various values of c > 1 and q1 .
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This example solution shows the importance of the rapid suppres-
sion of spurious response in the higher mode. Also, for the acceler-
ation at node 2 and the reaction, the q1-Bathe scheme and the
one-parameter composite method provide practically the same
results for the first step (see. Figs. 12 and 15), while only the q1-
Bathe method provides satisfactory results for the rest of the time
steps.

Note that in the standard Bathe method, and equivalently in the
q1-Bathe method with q1 ¼ 0, there is a first time step overshoot
in the acceleration at node 2 and in the reaction. This error can be
eliminated by using a different set of a and d only for the first sub-
step, see Refs. [1,20] for the details.
3.2. Three degree-of-freedom spring system: soft-soft spring case

We now consider the 3-degree-of-freedom model problem of
Fig. 6 with k1 ¼ 5 as a problem with no spurious high frequency.
We use Dt ¼ 0:25 for the standard Bathe, the one-parameter com-
posite, and the q1-Bathe methods.

In this case all frequencies should be integrated quite accu-
rately. Hence we use q1 ¼ 0:99 for the one-parameter composite
method and the q1-Bathe scheme with c ¼ 0:5. With both meth-
ods, as q1 increases from 0 to 1, the amplitude decays and the per-
iod elongations are minimized. For the standard Bathe method, we
consider c ¼ 0:5 and 0:9.

Figs. 16 and 17 show the calculated reactions. As expected,
using the q1-Bathe and the one-parameter composite methods
with q1 ¼ 0:99 gives accurate and practically the same results.
Using the standard Bathe method with c ¼ 0:5 provides better
results than when using c ¼ 0:9.

These results indicate the usefulness of using q1 – 0 in the q1-
Bathe method for the solution of problems when no spurious high
frequencies are to be eliminated. However, in practice, the judi-
cious use of q1 other than zero may require some numerical
experimentation.



Fig. 5. Percentage period elongations of the q1-Bathe method when n ¼ 0 for various values of c > 1 and q1 .

Fig. 6. Model problem of three degrees of freedom spring system,
k2 ¼ 1; m1 ¼ 0; m2 ¼ 1; m3 ¼ 1; xp ¼ 1:2; k1 ¼ 107 or 5:
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3.3. One-dimensional wave propagation in a clamped-free bar

In this solution we consider the 1D wave propagation problem
shown in Fig. 18 [25,23]. A clamped bar is excited by a constant
external load at its end, FðtÞ ¼ 104, and the material and geometri-
cal constants are Young’s modulus E ¼ 3� 107, mass density
q ¼ 0:00073, cross-sectional area A ¼ 1, and length L ¼ 200. We
use 1000 equal size two-node elements. This problem was also
solved using these data in Ref. [23].

In wave propagation analysis using an implicit time integration,
high numerical dissipation is frequently desired to suppress spuri-
ous modes [21,26]. Therefore, we use the q1-Bathe method with
c ¼ 1:99 and q1 ¼ 0, the standard Bathe method with c ¼ 1:99,
and the one-parameter composite method with q1 ¼ 0. For the
time step size, we use two CFL numbers, 0.1 and 1. The CFL number
is the ratio of the propagation length per time step (using the exact
wave speed) to the element size: Dt1 ¼ 9:8658� 10�8 and
Dt2 ¼ 9:8658� 10�7. The computed results are given in Figs. 19
and 20.

All methods with the considered parameters predict the dis-
placement at the center of the bar (at node 500) accurately
(Fig. 19), while for the velocity at the same point, there are spuri-
ous oscillations in the results using the one-parameter composite



Fig. 7. Displacement of node 2 for various methods; The U0V0 method is described
in Ref. [11], the 3-Par. method is described in Refs. [12–14] and the 1-Par. comp.
method is described in Ref. [22].

Fig. 8. Displacement of node 3 for various methods for k1 ¼ 107.

Fig. 9. Velocity of node 2 for various methods for k1 ¼ 107 (the static correction
gives the nonzero velocity at time = 0.0).

Fig. 10. Velocity of node 3 for various methods for k1 ¼ 107.

Fig. 11. Acceleration of node 2 for various methods for k1 ¼ 107.

Fig. 12. Close-up of acceleration of node 2 for various methods for k1 ¼ 107.
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Fig. 13. Acceleration of node 3 for various methods for k1 ¼ 107.

Fig. 14. Reaction force at node 1 for various methods for k1 ¼ 107.

Fig. 15. Close-up of reaction force at node 1 for various methods for k1 ¼ 107.

Fig. 16. Reaction force at node 1 for various methods for k1 ¼ 5.

Fig. 17. Close-up of reaction force at node 1 for various methods for k1 ¼ 5.

Fig. 18. A clamped-free bar excited by end load.

Fig. 19. Displacement at x ¼ 100 for various methods.
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Fig. 20. Velocity at x ¼ 100 for various methods.
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method for both CFL numbers considered. Since in the one-
parameter composite method the smallest value of q1 is used
already, a further suppression of spurious oscillations cannot be
expected for the time step sizes used. The standard Bathe method
and the q1-Bathe method with q1 ¼ 0 provide the same results, as
expected, and perform reasonably well using both CFL numbers.
We see that using CFL = 0.1 in the Bathe scheme provides a solution
showing more accurately the step change in velocity but with a lar-
ger overshoot. However, a further study is needed to identify the
CFL number for optimal accuracy of the methods with various val-
ues of c [26]. We note that the b1=b2-Bathe method provides
remarkably accurate solutions for this problem with b2 ¼ 2b1

although only being a first-order accurate method. We refer to
Ref. [23] for the solutions using the b1=b2-Bathe method. Hence
the first order method may give quite accurate results for this type
of problem, but this observation requires more research.
4. Concluding remarks

We considered the standard Bathe time integration scheme
with the objective to be able to prescribe ranges of numerical dis-
sipation and dispersion for the numerical integration of finite ele-
ment equations. To achieve this aim, we proposed to use the
trapezoidal rule for the first sub-step and a set of relations between
the solution variables for the second sub-step. In its final form, the
method has two parameters: the time step splitting ratio, c, and
the spectral radius at large time step sizes, q1. We refer to the
method as the q1-Bathe scheme.

With q1 ¼ 0, the method reduces to the standard Bathe method
for any value of c. For values of q1 other than zero, the q1-Bathe
method shows the same change in accuracy characteristics for any
c value as when using q1 ¼ 0. When q1 ¼ 1 and c ¼ 1=2, the
method is the two-step trapezoidal rule.
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Hence for the solution of problems for which the errors in pre-
dicted amplitudes and periods should be small, a value q1 – 0 can
be used with the c value determined by q1 for optimal accuracy.
Then the method is a one-parameter method.

In general, values of q1 and c can be used to adjust the solution
accuracy of the method in a smooth manner, namely from includ-
ing no dissipation to very large dissipation, with correspondingly
small period elongation to very large period elongation, while
maintaining second-order accuracy.

In this paper, we focused on the development and basic proper-
ties of the q1-Bathe method. Further studies on its performance
and the optimal usage in the analysis of wave propagations would
be very valuable, in particular when used with overlapping finite
elements [27].
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Appendix A. The integration operator A and the load operators
La and Lb

A ¼ 1
j1j2

a11 a12 a13
a21 a22 a23
a31 a32 a33

2
64

3
75

La ¼ 1
j1j2

�2X0 cq1 þ 2s1q2ð ÞX0 þ 4ns1ð Þ
�2Dt X2

0q1cs2 � 2s1
� �

4Dt2 X0q1cs2nþ ð1=2Þcq1 þ s1q2ð Þ

2
664

3
775

Lb ¼ 1
j1j2

X2
0c2 þ 4X0cnþ 4

s2Dt X2
0c2 þ 4X0cnþ 4

� �
q2s2Dt

2 X2
0c2 þ 4X0cnþ 4

� �
2
6664

3
7775

where

j1 ¼ X2
0c

2 þ 4X0cnþ 4

j2 ¼ X2
0q2s2 þ 2X0s2nþ 1

a11 ¼ �2X0
ð1=2Þc2q2 s0 � s1ð ÞX3

0 þ 2cn c=2þ q2ð Þ s0 � s1ð ÞX2
0

þ 4 s0 � s1ð Þn2 þ q1

� �
cþ 2q2s0

� �
X0 þ 4s0n

 !

a12 ¼ �4X0

Dt

ð1=4Þ q0 � q1 þ q2ð Þc� 4s1q2ð ÞcX3
0 þ ð1=2Þc2�

þ q0 þ q2 � 2s1ð Þc� 2s1q2ÞnX2
0

þ 2cn2 � 4s1n2 þ q0 þ q1 þ q2

� �
X0 þ 2n

0
BB@

1
CCA

a13 ¼ 2X2
0

Dt2
�2þ cq1 þ 2s1q2 � ð1=2Þc2� �

X2
0 þ 4 s1 � ðc=2Þð ÞnX0

� �

a21 ¼ �2Dt c �s0 þ s1ð Þðc=2Þ þ s2q1ð ÞX2
0 � 2cnX0 s0 � s1ð Þ � 2s0

� �

a22 ¼ 4� c2s2X4
0 q0 � q1ð Þ � 4X3

0cs2nq0

þ c2 � 4s1c� 4s2 q0 þ q1ð Þ� �
X2

0 � 8 s1 � ðc=2Þð ÞnX0
a23 ¼ 2X2
0

Dt
s2c q1 � ðc=2Þð ÞX2

0 � 2cs2nX0 � 2s1 � 2s2
� �

a31 ¼ 4Dt2 ð1=4Þc2q2X
2
0 s0 � s1ð Þ þ s0 � s1ð Þq2 þ s2q1ð ÞnX0 þ ðq1=2Þð Þcþ q2s0

� �

a32 ¼ 8Dt

ð1=4Þs2n q0 � q1ð ÞX3
0c2

þ q0 � q1 þ q2ð Þðc=8Þ þ s2n
2q0 � ð1=2Þs1q2

� �
cX2

0

þ q0 þ q2ð Þðc=2Þ þ s2q0 þ s2q1 � s1q2ð ÞnX0 þ ð1=2Þðq0 þ q1 þ q2Þ

0
BB@

1
CCA

a33 ¼ 4� 4 q1 � ðc=2Þð Þs2cnX3
0 þ c2 þ 8s2n2 � 2q1

� �
c� 4s1q2

� �
X2

0

þ 8 s2 þ ðc=2Þð ÞnX0
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