
Computers and Structures 187 (2017) 64–76
Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate/compstruc
Overlapping finite elements for a new paradigm of solution
http://dx.doi.org/10.1016/j.compstruc.2017.03.008
0045-7949/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: kjb@mit.edu (K.J. Bathe).
Lingbo Zhang, Klaus-Jürgen Bathe ⇑
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 December 2016
Accepted 13 March 2017

Keywords:
Finite elements
Overlapping elements
Meshfree methods
Meshing
Numerical integration of matrices
CAD
We present novel overlapping finite elements for a new paradigm of solution proposed in our previous
papers, see Bathe (2016) and Bathe and Zhang (2017).
We give the formulation of the new overlapping elements and the solutions of basic numerical exam-

ples to investigate the robustness and efficiency of the new finite elements. The results show that the new
overlapping elements are quite distortion insensitive and the numerical integration of the element matri-
ces is efficient. The computational effort to integrate the matrices is much less than in meshfree methods.
Finally, we illustrate the complete solution scheme of the new paradigm using the overlapping finite ele-
ments in the analysis of the bracket problem already considered in Bathe and Zhang (2017).
While the paper proposes and studies new overlapping elements, we conclude that further research is

needed to fully harvest the potential of the new analysis approach.
� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The finite element method is now established as an effective
numerical procedure and is much used for the analysis of struc-
tures, fluids, and multi-physics problems, see for example [3].
However, despite its great success, the required meshing still pre-
sents difficulties. In engineering analyses of complex components,
oftentimes, much more time is spent on reaching an adequate
mesh than obtaining the solution of the finite element model. In
a traditional finite element analysis, the elements must abut each
other and cannot overlap, which leads to meshing difficulties and
frequently to highly distorted elements that pollute the accuracy
of the overall finite element solution.

For these reasons, many meshfree or meshless methods have
been developed, see for example Refs. [2,4]. In a meshfree method,
the global solution field is constructed using scattered points in the
analysis domain without a mesh. Compared with analyses using
traditional finite elements, the solutions obtained using a meshfree
method may be relatively insensitive to the points or nodes used.
Hence the solution accuracy may be improved. However, while
the effort to establish the discretization is much less, and good
solution accuracy can be obtained, the required numerical integra-
tion using a meshfree method is computationally expensive
[2,4–9]. This expense largely restricts the wide use of meshless
methods in engineering practice.
To improve the accuracy of solutions obtained when using tra-
ditional finite elements, specifically when distorted meshes are
employed, some researchers have focused on improving the per-
formance of the traditional finite elements by generalizing finite
element formulations, see for example [10–13]. In a related
approach, interpolation covers were introduced in Refs. [14,15] to
obtain improved solution accuracy. Compared with the use of
meshfree methods, these schemes are quite efficient in the numer-
ical integration. However, the procedures need a mesh and the
solutions are still quite sensitive to mesh distortions, indeed the
solution accuracy may decay rapidly when highly distorted ele-
ments are used.

To significantly improve the meshing procedures of geometri-
cally complex solids, we proposed a new paradigm for CAD driven
simulations [1,2]. In the new approach, the CAD part is immersed
in a Cartesian grid of uniform cells determined by the analyst,
the boundary of the part is discretized, and the cells within the
analysis domain of the CAD part are automatically, and with very
little computational effort, converted to traditional finite elements.
Thereafter, overlapping finite elements are used along the bound-
aries of the part to fill-in the empty space and couple with the tra-
ditional finite elements.

In the new paradigm of solution, the meshing, including the
clean-up of the geometry, is embedded into CAD driven solutions.
Undistorted finite elements are used in the inner part of the anal-
ysis domain and overlapping elements are used on and near the
boundaries. Hence, provided the overlapping finite elements per-
form well, the scheme does not have an element distortion prob-
lem, and compared with meshfree methods, the computational
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Fig. 1. Schematic of elements corresponding to DI , DJ , DK using triangular regions;
the local fields are constructed for the support of each node I, J, K; the global field is
built from the local fields.

Fig. 2. Schematic of the 7-node element 1, or discretized support D1.

L. Zhang, K.J. Bathe / Computers and Structures 187 (2017) 64–76 65
time is much less because overlapping elements are only used near
the boundaries.

In Ref. [2] we used the spheres of the method of finite spheres
[16,17] as overlapping elements, and also pointed out that other
Fig. 3. Schematic of the interpolation
overlapping elements could be used. Clearly, to fully harvest the
potential of the given analysis approach, efficient overlapping ele-
ments are needed.

Our objective in this paper is to present new robust and efficient
overlapping finite elements that satisfy the consistency require-
ments and use much less integration points, and hence are, for
example, much more efficient than those in Refs. [2,18]. In Sec-
tion 2, we give the basic theory of the new overlapping elements
including the theory for coupling the overlapping elements to the
traditional finite elements. Then in Section 3, we discuss the solu-
tions of four numerical examples in which we compare the perfor-
mance of the new overlapping elements with the performance of
the method of finite spheres [16,17] and the finite element method
enriched by interpolation covers [14,15]. Thereafter, to illustrate
the complete solution scheme of the new paradigm for analysis
using the new overlapping elements, we revisit in Section 4 the
analysis of the bracket already considered in Ref. [2]. Finally, we
present our conclusions in Section 5.

2. The overlapping finite elements

Our objective in this section is to present the theoretical formu-
lation of the new overlapping elements including the theory for
coupling these with the traditional finite elements, the imposition
of the Dirichlet boundary conditions and the numerical integration
used for the element matrices.

2.1. The interpolations used for the overlapping finite elements

Effective overlapping elements should show two important
properties. Firstly, the integration of the element stiffness matrices
should be computationally efficient, and secondly, the overlapping
elements should be distortion-insensitive. In order to develop
overlapping elements that show both properties, we propose a
new scheme for the local and global approximation fields. Consid-
ering Fig. 1, there are three major steps.

The first step is to discretize ‘‘the region” in the usual way. We
use here 3-node triangular elements but other elements could also
be used. In the new paradigm of solution, the region considered is
the space between the boundary of the discretized CAD part and
the Cartesian mesh of traditional finite elements [2]. The second
step is to construct the local field within the support of each node.
The local analysis domain DI (in Fig. 1, given by the union of the 6
triangular regions) denotes the support of node I, and we refer to it
as element I. In order for the scheme to be quite distortion insen-
sitive, the local field is constructed as discussed in Section 2.1.1.
process in the overlap region E1.



(1)

3

1

2

4

5 6

7

8

910

(1)

Finite element node Overlapping element node

Fig. 4. A schematic mesh generated with the new meshing scheme; the green elements denote the coupling regions (here 3-node triangular regions) and the blue element
represents the 4-node traditional finite element.

Fig. 5. A typical Dirichlet boundary Su .

Fig. 6. An elastic bar with varying cross section (L ¼ 5, E ¼ 200� 109, R ¼ 1000,
A ¼ 1þ x).

Fig. 7. A mesh of overlapping elements.

1 While in our earlier papers for spheres/disks, we employed the symbol aJn to
dicate the unknowns, we use now, including the coupling, the symbol aJn .
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In the third step the global approximation field is established.
The global field is built from the local fields using the partition of
unity. For example, in the overlap region Em (see step 3, in
Fig. 1), given by the three overlapping 7-node elements (each dis-
cretized by six 3-node regions which look like traditional finite ele-
ments), the global field is obtained from the local overlapping
fields in DI , DJ , and DK . The details are given in Section 2.1.2.

2.1.1. Local interpolation
Let N I be the set of nodes contained in DI

N I :¼ fM : DM

\
DI – £g ð1Þ
where M denotes a node number. Consider a sphere SI with center
at node I and containing all nodes in N I.

In the domain SI , the local field is assumed to be

wIðxÞ ¼
X
J2N I

X
n2I

uI
JðxÞðpnaJnÞ ð2Þ

with uI
JðxÞ given as

uI
JðxÞ ¼

WI
JðxÞP

K2N I
WI

KðxÞ
ð3Þ

where WI
JðxÞ is the weight function of node J. In Eq. (2), pn denotes

the nth polynomial term of the node J in

pT ¼ ½1 x y x2 xy . . .� ð4Þ

Here, the coordinate variables ðx; yÞ are measured from node J,
with the origin of the coordinate system located at node J. We can
include in p higher order terms or special functions to improve the
accuracy of the local interpolation. In Eq. (2), aJn ¼ ½auJn avJn� repre-
sents the unknown nodal variables.1

For Eq. (3) the weight function is chosen as

WI
JðxÞ ¼

1� 6s2 þ 8s3 � 3s4 0 6 s 6 1
0 s > 1

(
ð5Þ

with s given by

s ¼ dJ

2rI
ð6Þ
in



Fig. 8. Convergence of the calculated strain energy Eh using various methods.

Fig. 9. The mesh for the element distortion study; element quality decreases as the
distance ‘ decreases.

Fig. 11. Solution accuracy of the method of finite spheres as a function of the
number of integration points per sphere; the same order composite Gauss
integration rule is employed for all spheres.
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where dJ denotes the distance between node J and point x ¼ ðx; yÞ,
and rI is the radius of SI . This radius is selected to contain all nodes
listed in N I. For an example see Fig. 2 in which I ¼ 1:

From Eq. (2), the local field contribution from the solution vari-
ables of nodes in N 1 is expressed as

w1ðxÞ ¼
X
J2N 1

X
n2I

u1
J ðxÞðpnaJnÞ

¼
X
J2N 1

W1
J ðxÞP

K2N 1
W1

KðxÞ
ðaJ1 þ aJ2xþ aJ3yþ aJ4x2 þ aJ5xyþ � � �Þ

 !

ð7Þ
Fig. 10. Element distortion study with various methods. Using the overlapping el
where in Fig. 2 N 1 ¼ f1;2;3;4;5;6;7g. As shown in Eq. (7), the local
field w1ðxÞ contains contributions from all nodes in N 1.

2.1.2. Global interpolation
Let fT hg :¼ fEmgem¼1 be the e triangular overlap regions that

together discretize the global analysis domain X

[e
m¼1

Em ¼ X ð8Þ

Let Im be the set of indices defined by

Im :¼ fI : DI

\
Em – £g ð9Þ

In the overlap region of the three overlapping elements, the glo-
bal field is constructed from the local fields based on the partition
of unity

uðxÞ ¼
Xe
m¼1

X
I2Im

hIwIðxÞ ¼
Xe
m¼1

X
I2Im

hI

X
J2N I

X
n2I

uI
JðxÞðpnaJnÞ

 !
ð10Þ

where wIðxÞ is the local field corresponding to node I (see Eqs. (2)–
(6)) and hI is the partition of unity function of node I, equal to the
ements (OFE), elements with covers, and the method of finite spheres (MFS).



Fig. 12. The patch of elements; plate in plane strain conditions subjected to normal stresses sxx ¼ 2:0; syy ¼ 2:0 (Length = 6, thickness = 1, E ¼ 100, v ¼ 0:3); (a) the mesh of
the overlapping elements; (b) the finite spheres, here disks; in each case, the linear polynomial basis is used.

Fig. 13. The accuracy of the strain energy as a function of the number of integration
points used for each integration domain; using the overlapping elements the
integration domain is the triangular overlap region, in the method of finite spheres,
the domain is the disk.
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nodal shape function of the traditional triangular finite element. We
note that in this formulation the regions DI , DJ , DK are the overlap-
ping elements with Em the region that is overlapped, see Fig. 1, and
that the displacement field thus constructed is continuous.

From Eq. (10), the global field in Em is given as

uðxÞ ¼
X
M2Im

hMwMðxÞ ¼ hIwIðxÞ þ hJwJðxÞ þ hKwKðxÞ ð11Þ
We present an example in Fig. 3, with I ¼ 1; J ¼ 2;
K ¼ 3; m ¼ 1; where also the partition of unity functions
h1;h2;h3 are shown. This example also shows how local nodes
are used in the calculation, to obtain as usual the global contribu-
tions to the matrices of the element assemblage [5].

2.2. Coupling with traditional finite elements

In the new paradigm of solution [2], the complete analysis
domain is first immersed in a grid determined by the analyst.
Then the cells located entirely within the analysis domain are
automatically converted to traditional finite elements. Thereafter,
the overlapping elements are used along the boundaries to cover
the otherwise empty space and extended to couple with the tra-
ditional finite elements. Fig. 4 shows schematically a simple
mesh generated for an in-plane problem with the new meshing
scheme.

The coupling between the overlapping elements and the finite
elements is presented in our previous paper [2]. Using the local
node numbering, the displacement field within a 3-node triangular
overlap region (next referred to as ‘‘element”) is given as

uðxÞ ¼
X
I2X

hI hIuI þ
X
K2j
K–I

hKaK1

0
B@

1
CAþ

Xnoe
I¼1

hIŵI ð12Þ

where X is the index set of the pure finite element nodes of the ele-
ment in the coupling region considered, hI is the shape function of
node I of the traditional finite element, j is the index set of all nodes
of the element, noe is the number of overlapping elements which
have an intersection with the element in the coupling region,



Fig. 14. Eight meshes used in the analysis of a cantilever beam problem; plane strain conditions, thickness = 1, p ¼ 100; E ¼ 200� 107; v ¼ 0:3.
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Fig. 15. Stress plots (non-smoothed) of the longitudinal stress sxx for the 8 distorted meshes used.
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Table 1
Numerical results (rounded) at selected points of the cantilever beam problem.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Reference
solution

sxxð50;10Þ 2922 2770 3043 3193 3003
eh 2.7% 7.8% 1.3% 6.3%
sxxð50;0Þ �2922 �3163 �3043 �3076 �3003
eh 2.7% 5.3% 1.3% 2.4%
dð100;10Þ �1.80E�3 �1.80E�3 �1.80E�3 �1.81E�3 �1.83E�3
eh 1.4% 1.7% 1.7% 1.03%
Eh 0.902 0.899 0.899 0.905 0.915
eh 1.4% 1.7% 1.7% 1.02%

Mesh 5 Mesh 6 Mesh 7 Mesh 8 Reference
solution

sxxð50;10Þ 3084 3007 2607 2992 3003
eh 2.7% 0.1% 13.2% 0.4%
sxxð50;0Þ �3050 �2861 �3077 �3026 �3003
eh 1.5% 4.7% 2.4% 0.7%
dð100;10Þ �1.79E�3 �1.81E�3 �1.79E�3 �1.81E�3 �1.83E�3
eh 2.0% 1.0% 2.0% 1.2%
Eh 0.897 0.905 0.896 0.904 0.915
eh 2.0% 1.0% 2.0% 1.2%

Percent error eh ¼ 100%� g�gh
g

��� ���; gh denotes the numerical result and g is the reference solution which is obtained using a 100� 1000 element mesh of 9-node finite
elements, d denotes the transverse displacement.

Fig. 16. Percent error eh of the strain energy obtained using the overlapping
elements.

Fig. 17. A cantilever plate in plane strain conditions subjected to a uniformly
distributed load, p ¼ 1:0 per unit length (thickness = 1.0, L ¼ 2:0; E ¼ 100; v ¼ 0:3).
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ŵIðxÞ ¼
X
J2N I
JRv

uI
JðxÞ

X
n2I

ðpnaJnÞ þ
X
J2v

uI
JðxÞ

X
K2j

hKaK1

 !
ð13Þ

where aK1 ¼ ½auK1 avK1� is the unknown solution vector of node K,
equal to uK .

The resulting field satisfies the rigid body mode conditions and
the patch test, see Ref. [2]. For the coupling region (1) in Fig. 4, we
have two overlapping elements 1 and 2, identified through their
center nodes 1 and 2, and the index sets used in Eqs. (12) and
(13) are j ¼ f1;2;3g and X ¼ f3g, respectively, with
N 1 ¼ f1;2;3;4;5;6;7g and N 2 ¼ f1;2;3;7;8;9;10g. Of course,
the local nodes used here are related to the global nodes as usual
for the assemblage process [5].

2.3. Governing equations in linear elastic solid mechanics

Using the general principle of virtual work [5], as in traditional
finite element analysis, we haveZ
X

�eTs dX ¼
Z
X

�uTfB dXþ
Z
Sf

�uSf TfSf dS ð14Þ

where e is the strain vector, s is the stress vector, u is the displace-

ment vector (which satisfies the essential boundary conditions), fB

is the body force, and fSf is the prescribed surface traction vector
on the boundary Sf . An overbar denotes a virtual quantity.

In elastic solid mechanics, the stress-displacement relation is
given as

s ¼ CeðuÞ ð15Þ

where C is the stress-strain matrix, eðuÞ is the strain, a function of u.
From Eq. (10), the displacement formulation of the overlapping ele-
ments could be expressed as

u ¼
Xe
m¼1

X
I2Im

hIwI ¼
XN
I¼1

X
n2I

HInaIn ð16Þ

where N is the total number of applicable nodes, HIn denotes the
displacement interpolation matrix corresponding to the nth degree
of freedom at node I, aIn ¼ ½auIn avIn� is the vector of unknowns of node
I corresponding to n. The strain-displacement function eðuÞ is



Fig. 18. The discretizations using the various schemes; (a) 4-node traditional finite elements (2� 2 Gauss integration); (b) method of finite spheres (MFS) with bilinear basis
(24� 24 Gauss integration); (c) overlapping elements only, with bilinear basis (OFE) (9-point integration); (d) new meshing scheme with MFS and hat functions for the
coupling (for red nodes on the boundary) [2]; (e) new meshing scheme with OFE; the green zones represent the coupling regions and the blue zones denote the traditional 4-
node finite elements.

Fig. 19. Convergence of the strain energy in the analysis of the cantilever plate
using various methods. The reference strain energy E is obtained using a 100� 100
element mesh of traditional 9-node finite elements.

Fig. 20. Geometry of bracket as obtained from the CAD program (unit thickness).
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eðuÞ ¼
XN
I¼1

X
n2I

BInaIn ð17Þ

where BIn denotes the strain interpolation matrix corresponding to
the nth degree of freedom at node I. From Eqs. (14)–(17), with the
usual procedure in finite element analysis, we obtain

Ka ¼ R ð18Þ

where the vector of unknown solution variables is

aT ¼ ½a11 a12 . . . a21 a22 . . . aN1 aN2 . . . aNm� ð19Þ

where m is the number of terms included in p and K is the stiffness
matrix and R is the load vector. Inertia and damping effects could be
included as usual [5]. The expressions for the stiffness matrix
K and the load vector R are for node I and degree of freedom m of
the form

XN
J¼1

X
n2I

KImJnaJn ¼ fBIm þ fSfIm ð20Þ

where for the stiffness matrix

KImJn ¼
Z
VI

BT
ImCBJn dV ð21Þ



4-node finite elements Coupling elements Overlap  regions

Fig. 21. The mesh of the new scheme in the analysis of the bracket. In the overlapping elements, the bilinear polynomial basis is used.

Fig. 22. The meshes of the traditional finite method using 4-node elements and the new scheme; for the overlapping elements, the bilinear polynomial basis is used with 6-
point integration; for the traditional finite elements 2� 2 Gauss integration is used.
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the body force load vector

fBIm ¼
Z
VI

HImf
B dV ð22Þ

and the traction force vector

fSfIm ¼
Z
Sf I

HImf
Sf dS ð23Þ
Table 2
Analysis of the bracket example: comparison of the total number of degrees of
freedom (DOF), calculated strain energy and total number of integration points.

Meshing scheme DOF Strain
energy

Total number of
integration points

Mesh, 4-node elements 1506 1.04 2848
New meshing scheme 1524 1.04 2276
with VI ¼
S

J2N I
DJ and Sf I ¼ Sf

T
DI .

Similarly, the contributions from the elements in the coupling
regions are evaluated.

2.4. Imposition of the Dirichlet boundary conditions

To impose the Dirichlet boundary conditions we simply place
the nodes of the overlapping elements along the boundary and
reconstruct the local field using interpolation covers [14]

wIðxÞ ¼
X
n2I

pnaIn ð24Þ

in which p is constructed to automatically set (or be able to set) the
relevant degrees of freedom to the appropriate values.

Fig. 5 shows a typical Dirichlet boundary where

uðxÞ ¼ 0; for u on Su ð25Þ



Fig. 23. Stress shxx and absolute error jshxx � sxxj; (a) 4-node finite element mesh; (b) new scheme mesh.
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Using the r coordinate aligned with the normal n on the Dirich-
let boundary Su, the vector p is expressed as

pT ¼ ½r r2 rs r3 . . .� ð26Þ

As we could see from Eqs. (24) and (26), with the new vector p,
the local field is automatically zero at r = 0, i.e. on Su.

2.5. Numerical evaluation of element matrices

The expensive numerical spatial integration is the major diffi-
culty in the use of meshfree methods. The order of integration to
be used can be highly dependent on the node distributions and
the computational cost can increase significantly when nodes are
distributed non-uniformly. The expense in the numerical integra-
tion is mainly due to the fact that the overlap regions and the func-
tions therein must be integrated with sufficient accuracy [6]. Using
the new overlapping elements, the overlap regions are easily iden-
tified and the numerical integration is much more effective. Hence
we simply use the commonly employed integration rules for tradi-
tional triangular elements [5]. For the new overlapping elements,
we usually use, in two-dimensional analyses, 9-point integration
(or even 6-point integration with the bilinear basis) which we so
far found to lead to reliable results. We give below a brief study
of the effect of the integration orders in the illustrative solutions.
3. Illustrative solutions of problems

In this section, we investigate the properties of the new over-
lapping elements through the solutions of several numerical exam-
ples. We are mainly interested in the effort required in the
numerical integration and the element performance when the ele-
ments are distorted. We also show the application in the new para-
digm of solution proposed in our previous paper [2].

3.1. An elastic bar of varying cross-section

We first consider an elastic bar with varying cross-section, see
Fig. 6. The objective is to study the solution convergence of the



Fig. 24. Stress shxy and absolute error jshxy � sxyj; (a) 4-node finite element mesh; (b) new scheme mesh.
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new scheme, the finite element method enriched by interpolation
covers [14,15] and the method of finite spheres [16,17].

The analytical solution of the response is

u ¼ lnð1þ xÞ
2� 108 0 6 x 6 5 ð27Þ

with the resulting strain energy

Z 5

0

1
2
EA

du
dx

� �2

dx ¼ lnð6Þ
4

� 10�5 ð28Þ

We study the convergence of the strain energy when all meth-
ods can theoretically reproduce a quadratic displacement field. The
finite element method reproduces the quadratic polynomial dis-
placement field when enriched by linear interpolation covers
[14], the method of finite spheres reproduces the quadratic field
when the quadratic polynomial basis is used [16], and the overlap-
ping elements reproduce the quadratic field when the quadratic
polynomial basis is used in Eq. (4). Fig. 7 shows typical overlapping
elements. For the overlapping elements and the finite elements
enriched by linear/quadratic covers we use the standard Gauss
quadrature rule for one-dimensional analysis, and 5-point and 2-
point/3-point integration respectively [5]. For the method of finite
spheres we use a composite Gauss integration rule, the domain of
integration (here the ‘‘one-dimensional sphere”) is divided into
equal parts and for each part 4-point Gauss integration is used,
with a total of 100 integration points per domain.

Fig. 8 presents the convergence of the strain energy when h-
type uniform refinement is performed. The theoretical order of
convergence is 4, which all schemes show, but the overlapping ele-
ments perform slightly best.

We next study the effect of a mesh distortion. Fig. 9 shows the
specific mesh used. The elastic bar is first discretized using 6
equally spaced nodes where ‘ denotes the distance between the
nodes. To introduce a distortion in the mesh, we move nodes 2
and 4 to decrease the distance ‘ between them. The solution



Fig. 25. Stress shyy and absolute error jshyy � syyj; (a) 4-node finite element mesh; (b) new scheme mesh.
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quality may decrease with ‘. Since we measure the calculated
strain energy versus the analytical strain energy (given in Eq.
(28)) using this coarse mesh, the total error is due to the use of
numerical integration and the discretization used, but should be
constant with high enough integration order.

Fig. 10 shows the strain energy error of all three methods as a
function of the distance ‘. The solution accuracy of the finite ele-
ment method enriched by interpolation covers decreases as the
mesh is distorted. On the other hand, the results using the overlap-
ping elements and the method of finite spheres are hardly affected
by changing ‘, hence these schemes are less distortion-sensitive.
However, as shown in Figs. 10 and 11 the overlapping elements
require much less Gauss integration points in the numerical inte-
gration, in fact only 5 integration points are needed for each region
Em while in the method of finite spheres, in each one-dimensional
integration domain, many more integration points are required.
3.2. A patch of elements

We consider the patch of elements in Fig. 12 and want to study
the accuracy of the strain energy as a function of the number of
integration points used per integration domain. For the overlap-
ping elements we use the quadrature rule for the triangular ele-
ments [5], and in the method of finite spheres, we use the
standard Gauss numerical integration in each quadrant of the disk
[17]. In both methods, the displacement field is a rational function,
and a high enough integration order must be used.

Fig. 13 shows the accuracy of the strain energy as a function of
the number of integration points employed in the integration
domains.

As shown in Fig. 13, for a given accuracy, the overlapping ele-
ments require much less integration points than the method of
finite spheres for which also the required number of integration
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points increases very much as the spheres are placed non-
uniformly. This sensitivity is not seen when using the overlapping
elements for which 6-point integration is sufficient and 9-point
integration gives a very small error.

3.3. A cantilever beam analysis using distorted meshes

Our objective is to study the solutions obtained in the analysis
of a cantilever beam problem when the mesh using overlapping
elements is distorted. Fig. 14 shows the 8 meshes we use, each con-
taining only 8 nodes. We use the quadratic polynomial basis with
9-point integration for the overlapping elements.

Fig. 15 shows the non-smoothed plots of the calculated longitu-
dinal stress sxx. Table 1 gives the numerical results at selected
points of the cantilever beam. To show the performance of the
overlapping elements, the percent error eh of the strain energy is
plotted in Fig. 16. The energy error remains almost constant for
all meshes, which indicates that the solutions are quite insensitive
to the mesh distortions used, although these are quite high.

3.4. A cantilever plate under uniformly distributed load

The analysis of a cantilever plate is considered to illustrate the
application of the overlapping elements in the new paradigm of
solution. Fig. 17 shows the plate considered and Fig. 18 shows
the discretizations used.

Fig. 19 shows the convergence of the strain energy when h-type
uniform refinement is performed (since the displacement field of
the overlapping elements is a rational function, in order to reach
a higher accuracy, 9-point integration is used in this example).
During the mesh refinement using the procedure of the new para-
digm of solution, always only two layers of the overlapping ele-
ments are used at the plate boundary. The overlapping elements
perform very well and indeed better than the discretizations using
the finite spheres because the stress boundary conditions are bet-
ter captured.

4. Using the new paradigm of solution: analysis of a bracket

In this section we present the application of the overlapping
elements in the new paradigm of solution by solving the bracket
problem already considered in Ref. [2] (see Fig. 20). Our objective
is to compare the new solution scheme with a traditional finite ele-
ment analysis.

Fig. 21 shows the mesh of the new meshing scheme. The inner
analysis domain is meshed with the traditional 4-node finite ele-
ments and the overlapping elements (with bilinear basis) are used
near the boundaries of the bracket and extended to couple with the
traditional finite elements. We note that in areas of stress concen-
trations, like near the hole of the bracket, we can use a finer mesh
to improve the solution accuracy.

We solve the bracket problem first with the traditional finite
element method using a very fine 9-node element mesh, and use
these results as our reference solution, the reference strain energy
E ¼ 1:07.

In order to compare a traditional finite element analysis with
the new paradigm of solution, we solve the bracket problem with
4-node finite elements (see Fig. 22(a)). Table 2 gives the total num-
ber of degrees of freedom (DOF), the calculated strain energy and
the total number of integration points using the new meshing
scheme and the traditional finite element method. We see that
the entries given for the two solution approaches are not far apart.

Figs. 23–25 show the resulting stress plots; with e.g. shxx and sxx
denoting the predicted and reference normal stresses correspond-
ing to the x-axis. We see that the new analysis scheme gives
smoother stress fields with smaller absolute stress errors, although
a quite distorted mesh is used near the hole of the bracket.
5. Concluding remarks

Our objective in this paper was to present new overlapping ele-
ments for the new paradigm of solution of Refs. [1,2]. We gave the
basic formulation of the new overlapping elements, including the
coupling between these and the traditional finite elements, and
studied the performance of the overlapping elements in several
numerical examples. The results show two important properties
of the new elements: the required numerical integration is much
more efficient than in meshfree methods, and the new overlapping
elements are quite insensitive to mesh distortions. Then we illus-
trated the use of the new overlapping elements in the new para-
digm of solution of Ref. [2] by solving a cantilever plate problem
and a bracket problem.

While the new overlapping elements are very useful and much
more efficient than the use of finite spheres, or disks, we realize
that to fully harvest the potential of the new paradigm of analysis,
more research is needed. For example, the use of the new overlap-
ping elements should be studied in three-dimensional solutions, in
the analysis of incompressible media; and they need to be studied
in dynamic and wave propagation problems [19,20]. A disadvan-
tage of the overlapping finite elements given in this paper is that
they lead to a relatively large bandwidth corresponding to their
degrees of freedom. Hence, further studies should also be directed
to find even more effective overlapping elements; these would be
very valuable for the new paradigm of solution.
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