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Abstract

We present a 9-node ®nite element for compressible ¯ow solutions. A high-order derivative upwind term and a shock capturing

term are employed for stability and accuracy of the formulation. We give the solutions of various example problems to illustrate our

experiences with the element. Ó 2000 Published by Elsevier Science S.A. All rights reserved.

1. Introduction

The numerical solution of the governing equations of high-speed compressible ¯ows entails many dif-
®culties due to the presence of shocks, viscous boundary layers and their interactions in the domain of
interest. To solve compressible ¯ow problems using the usual low-order control volume and ®nite di�erence
procedures, extremely ®ne meshes are used, in particular, in the areas where boundary layers and their
interactions with shocks occur, to obtain reasonably accurate results. Similar ®ne meshes are also required
when using the usually employed low-order ®nite element techniques, although of course the use of un-
structured meshes allows the use of coarser meshes in some regions of the ¯ow. The reason for requiring the
®ne meshes are the low-order convergence behavior of the ®nite elements, both for the di�usive and the
convective terms in the Navier±Stokes equations. This observation motivates us to study the possibility of
developing a parabolic quadrilateral element for compressible ¯ows. The element would naturally provide a
higher convergence behavior for the di�usive terms, and ± provided e�ective upwinding and shock cap-
turing schemes are embedded in the element ± should also give a higher accuracy for the convective terms of
the ¯ow equations [1].

Many methods have been proposed to obtain numerical solutions of compressible ¯ow problems using a
linear (that is, low-order) triangular element [2±7] or using a linear quadrilateral element [8±10]. Also,
Shapiro endeavored to develop a parabolic quadrilateral element but the author did not entirely use
parabolic functions as the convective term was discretized using linear interpolations [9]. Oden et al. de-
veloped h±p discretization schemes that include, of course, higher-order elements [11±14]. These schemes
are based upon the Taylor±Galerkin method, which has second order accuracy in time, to discretize the
time and space variables, and to stabilize the convective term, an arti®cial diffusion is employed.

Oscillations might occur in the numerical solutions at the locations where the convective term is dom-
inant and to eliminate these oscillations, an upwind method need be used. The SUPG method, proposed by
Hughes et al. originally for incompressible ¯ows [15], is a very popular upwind technique used in ®nite
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element discretizations. The use of the SUPG technique and modi®cations thereof for compressible ¯ow
problems have been proposed in several contributions [5,8,16] but only linear elements were used. Some
authors extended the SUPG technique also for use with a quadratic element, but only the scalar, con-
vective±di�usive problem and not the system of Navier±Stokes equations was considered [17±20].

In the present paper, we propose a new upwind method for a parabolic quadrilateral element to solve
high-speed compressible ¯ows. The upwinding is similar to what is used in the ®nite di�erence method.

In a quadratic element, the nodal connectivity is wider than in a linear element. This nodal connectivity
makes it possible to design a higher order upwind method [21]. The upwind method that we propose
contains second order derivatives, hence the numerical results using this upwind technique are expected to
have a higher order accuracy.

In the presence of a shock, a stable numerical method still gives solutions with oscillations around the
shock and to reduce these oscillations, a shock capturing method is needed. We propose here a shock
capturing procedure for the quadratic element compatible in error with the accuracy obtained using the
new upwind term.

In the next sections we ®rst present the ®nite element formulation of the 9-node element, and then we
present the solutions of various low and high Mach number problems obtained with the element.

2. Governing equations

The ¯uid ¯ow is modeled with the Navier±Stokes equations that contain the conditions of conservation
of mass, momentum and energy. In vector form, the Navier±Stokes equations can be written as

U ;t � F j;j ÿ G j;j ÿ R � 0; �1�
where � �;t and � �;j denote derivatives with respect to time and the xj-coordinate. We consider only the two-
dimensional case (i; j; k � 1; 2) for which

U �

q

qv1

qv2

qE

26664
37775; �2�

F j �

qvj

qv1vj � �cÿ 1�q�E ÿ 1
2
v2

k�d1j

qv2vj � �cÿ 1�q�E ÿ 1
2
v2

k�d2j

qEvj � �cÿ 1�qvj�E ÿ 1
2
v2

k�

26664
37775; �3�

G j �

0

kvk;kd1j � l�v1;j � vj;1�
kvk;kd2j � l�v2;j � vj;2�

kvjvk;k � lvi�vi;j � vj;i� � k
cv
�E ÿ 1

2
v2

k�;j

26664
37775; �4�

R �

0

qf B
1

qf B
2

qvif B
i � qqB

26664
37775; �5�

where q; vi;E; f B
i ; q

B are density, velocity component in the xi-direction, speci®c energy, body force in the
xi- direction and body heat generation, respectively; and c; l; k; k; cv are the ratio of the speci®c heats, ¯uid
viscosity, second viscosity coe�cient, coe�cient of thermal conductivity and the speci®c heat at constant
volume, respectively; dij is the Kronecker delta (i.e. dij � 1 for i � j, and dij � 0 for i 6� j). Here, we have
used the constitutive relations for an ideal gas, the Newtonian stress±strain relation and Fourier's law of
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heat conduction. Taking the quasi-linear form of the convective term and rewriting the di�usive and source
terms, the Navier±Stokes equations can be written as [23]

U ;t � AjU ;j ÿ �K jiU ;i�;j ÿ SU � 0; �6�
where the Jacobian matrices of Fj are

A1 �

0 1 0 0
�cÿ3�

2
v2

1 � �cÿ1�
2

v2
2 �3ÿ c�v1 �1ÿ c�v2 �cÿ 1�

ÿv1v2 v2 v1 0

ÿcv1E � �cÿ 1�v1�v2
1 � v2

2� cE ÿ �cÿ1�
2
�3v2

1 � v2
2� �1ÿ c�v1v2 cv1

266664
377775;

A2 �

0 0 1 0

ÿv1v2 v2 v1 0
�cÿ1�

2
v2

1 � �cÿ3�
2

v2
2 �1ÿ c�v1 �3ÿ c�v2 �cÿ 1�

ÿcv2E � �cÿ 1�v2�v2
1 � v2

2� �1ÿ c�v1v2 cE ÿ �cÿ1�
2
�v2

1 � 3v2
2� cv2

266664
377775:

The matrices of the di�usive terms are

K11 �
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q
k
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q
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and the source matrix is

S �
0 0 0 0

f B
1 0 0 0

f B
2 0 0 0

qB f B
1 f B

2 0

2664
3775:

The boundary conditions that we consider correspond to subsonic, transonic and supersonic ¯ows; and
appropriate ¯ux boundary values are used to establish well-posed problems, see Ref. [23]. We impose the
boundary conditions in terms of the solution variables, density, momentum and total energy. For the
speci®cation of other boundary values, we employ constraint equations.

3. Finite element discretization

In this section, we discuss the ®nite-dimensional spaces used for the quadratic element and give the ®nite
element formulation. The arti®cial di�usion to stabilize the convective terms, and the shock capturing term
to reduce oscillations around shocks and other discontinuities are presented.

3.1. Finite element spaces

Consider a ®nite element discretization of the ¯uid domain Vol, into subdomains Vol�m�, m � 1; 2; . . . ;N ,
where N is the number of elements [1]. A two-dimensional quadrilateral nine node element as shown in
Fig. 1 is considered. In the element, all variables are interpolated quadratically. Let the prescribed Dirichlet
boundary conditions on the surface Su be g�t� where the vector g�t� contains the speci®ed function of the
solution on the boundary Su. Then the solution lies in Vh and the weighting functional space is Wh

Vh � vhjvh 2 L2�Vol�; o�vh�i
oxj

2 L2�Vol�; �vh�i 2 Q2�Vol�m��; i
�

� 1; 2; 3; 4; j � 1; 2; vhjSu
� g�t�

�

Wh � whjwh 2 L2�Vol�; o�wh�i
oxj

2 L2�Vol�; �wh�i 2 Q2�Vol�m��; i
�

� 1; 2; 3; 4; j � 1; 2; whjSu
� 0

�

Fig. 1. Nine-node quadrilateral element used for planar ¯ows.
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where Q2�Vol�m�� denotes the biquadratic function in the reference element m; and L2�Vol� is the space of
square integrable functions in the volume, ``Vol'', of the body considered,

L2�Vol� � wjw is defined in Vol and

Z
Vol

X4

i�1

�wi�2
 !

dVol

(
� kwk2

L2�Vol�<�1
)

3.2. Weighted residual formulation

The ®nite element formulation of the Navier±Stokes equations is:
Find Uh 2 Vh such that for all Wh 2 Wh the following variational equation is satis®ed:Z

Vol

W h � �Uh;t

� ÿ SUh� ÿWh;j � AjUh �Wh;j � K jiUh;i

�
dVol

�
X

m

Z
Vol�m�

Wh;kk � AkskAkUh;kk dVol�m� �
X

m

Z
Vol�m�

mkWh;k �Uh;k dVol�m�

�
Z

S

W s
h � �ÿFc � Fd� dS �7�

Here we have used that Fj � AjU . The vector W s
h is the weighting function evaluated on the surface S,

where S is the entire boundary surface, and Fc and Fd are prescribed boundary values corresponding to the
convective and diffusive terms

Fc � Fjnj �

qvjnj

qv1vjnj � �cÿ 1�q�E ÿ 1
2
v2

k�d1jnj

qv2vjnj � �cÿ 1�q�E ÿ 1
2
v2

k�d2jnj

qEvjnj � �cÿ 1�qvj�E ÿ 1
2
v2

k�nj

26664
37775; �8�

Fd � G jnj �

0

kvk;kd1jnj � l�v1;j � vj;1�nj

kvk;kd2jnj � l�v2;j � vj;2�nj

kvjvk;knj � lvi�vi;j � vj;i�nj � k
cv
�E ÿ 1

2
v2

k�;jnj

26664
37775; �9�

where nj is the xj-direction cosine of the unit (pointed outward) boundary normal vector.
The ®rst integral term and the surface force terms correspond to the standard Galerkin procedure ap-

plied to the compressible ¯ow governing equations. The second integral term is the arti®cial di�usion term
and the third integral term is the shock capturing term, both discussed in the following sections.

3.3. Arti®cial di�usion

The purpose of the arti®cial di�usion is to stabilize the unstable convective terms in the standard
Galerkin procedure. Although the quadratic element is ``more stable'' than the linear element, it still re-
quires arti®cial di�usion (that is, upwinding) to reduce oscillations. Oden et al. used an arti®cial di�usion of
the form ÿ�c Dt h2jovi=oxijU ;xi�;xi

for their h-p discretization schemes where c;Dt; h are a problem-adjustable
parameter, the time increment and the element size, respectively. In our work, the arti®cial diffusion term
for the quadratic element is given byX

m

Z
Vol�m�

W h;kk � �AkskAk�Uh;kk dVol�m�; �10�

The motivation for the upwind term in Eq. (10) is given in Appendix A. Note that high-order derivatives
are used in order to achieve a higher order accuracy in the upwind method.

The above upwind technique applies an arti®cial di�usion in all directions instead of only in the
streamline direction as in the SUPG technique, but the magnitude of upwinding in the k-direction depends
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on the convective matrix Ak. Our numerical experiments have shown that applying the arti®cial diffusion in
all directions gives a more stable numerical result than when the arti®cial diffusion is only applied in the
streamline direction, and crosswind diffusion is insigni®cant. This is because a high order upwind method is
employed.

The value of sk for the arti®cial di�usion is of the form used in ®nite di�erence solutions,

sk � 1

9

oxk

or

���� ����� �3

jAkjÿ1; �11�

where r denotes the coordinates in the natural coordinate system of the element. For the two-dimensional
case

oxk

or

���� ���� �
����������������������������������������

oxk

or1

� �2

� oxk

or2

� �2
s

�12�

and we de®ne

jAkjÿ1 � XkjKkjÿ1
Xÿ1

k �13�
where Xk stores the eigenvectors of the matrix Ak and Kk is a diagonal matrix with the corresponding ei-
genvalues. The factor 1=9 is chosen by considering the 1-D convection-di�usion problem. With the factor
1=9, the arti®cial di�usion results into full upwinding corresponding to the corner nodes of the elements.

To obtain an understanding of how the arti®cial di�usion term a�ects the Galerkin formulation, we
consider the ®nite element method applied to the one-dimensional steady-state Euler equation,

ÿ
Z

Vol

Wh;1 � A1Uh dVol�
X

m

Z
Vol�m�

W h;11 � A1s1A1Uh;11 dVol�m� � ÿ
Z

S

W s
h � Fc dS: �14�

For a uniform mesh, Dx is constant so that for each of the elements

s1 � 1

9

Dx
2

� �3

jA1jÿ1
: �15�

Combining Eqs. (14) and (15), we obtain

X
m

Z
Vol�m�

(
ÿW h;1 � A1Uh �Wh;11 � 1

9

Dx
2

� �3

jA1jUh;11

)
dVol�m� � ÿ

Z
S

W s
h � Fc dS; �16�

where for a smooth function U , the second term (the arti®cial di�usion term) approaches zero with third
order as Dx! 0. Hence for a smooth function U , the parabolic element with the third order arti®cial dif-
fusion term can be expected to give more accurate results than the SUPG method using the linear element.

3.4. Shock capturing

The shock capturing term is designed to reduce oscillations in the vicinity of shocks and other discon-
tinuities. In the formulation considered, the shock capturing term isX

m

Z
Vol�m�

mkW h;k �Uh;k dVol�m�; �17�

where mk is a tuned variable. This shock capturing term applies an arti®cial di�usion in all directions with
the magnitude in the xk-direction proportional to mk. We wish to have a value of mk that is small at a
reasonable distance from the shock and su�ciently large in the vicinity of the shock, and use

mk � 1

4

hkkh2
j AjUh;jjk
kUhk ; �18�
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where hl is the xl-direction ``length'' of the element,

hl � 1���������������������������������������
1
2

or1

oxl

� �2

� 1
2

or2

oxl

� �2
r : �19�

The value 1=4 is obtained by choosing the factor that gives the best shock solution of the test problem
considered at the end of this section. If, instead, the factors 1=3 or 1=6 are used, only a slightly di�erent
shock solution is observed. This shock capturing term has the form given by Beau et al. [8] (derived from
the shock capturing term proposed by Hughes et al. [16,22]) for linear elements, but the di�erence lies in the
de®nition of mk.

Away from the shock where the ®nite element solution is smooth, Uh;jj is not large (the magnitude depends
of course on the problem considered) and mk is small for a small element size. In those regions, the shock
capturing term gives third-order accuracy since Uh;jj weakly depends on the mesh size. On the other hand, in
the vicinity of a shock, the ®nite element solution gives a large value Uh;jj, hence mk is large and the shock
capturing term smoothens the solution. Near a shock, the shock capturing term gives ®rst-order accuracy
because on the shock Uh;jj is a function of the mesh size which cancels the h2

j term in the mk de®nition.
To show the capability of the shock capturing method, consider the test problem in Fig. 2 [6,26]. The

two-dimensional steady-state problem contains an oblique shock. At the inlet on the left and upper
boundaries, the convective ¯uxes are prescribed corresponding to the condition

M � 2; q � 1; v1 � cos 10°; v2 � ÿ sin 10°:

The convective ¯uxes are imposed at the left and upper boundaries instead of imposing the Dirichlet
boundary condition in order to avoid the inconsistency in the boundary conditions at the lower-left corner
where the slip-wall condition is imposed. On the right boundary, no variable is prescribed. The uniform and
distorted meshes shown in Fig. 3 were used. The ®nite element solutions are shown in Fig. 4. The ®nite
element method using the quadratic element gives reasonable results for both meshes.

The plots of density distributions along x1 � 1 using both meshes are shown in Fig. 5. 1 This ®gure shows
that the shock is captured within at most four elements with two elements containing the high gradient of

Fig. 2. Two dimensional shock problem.

1 Solutions are presented by simply connecting nodal values.
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the jump variable and the other two elements giving a smooth transition of the solution. The solutions also
show some overshoot at the shock front which is of course not desirable.

Fig. 4 shows that the mesh with distorted elements gives a better solution. This is the case, because the
element distribution is favorable to the shock in the lower-left corner where the shock starts. Namely, the

Fig. 5. Density distribution along x1 � 1:0 using (a) uniform mesh, (b) distorted mesh.

Fig. 4. Contour plot of density of the ®nite element solution using (a) uniform mesh, (b) distorted mesh.

Fig. 3. Meshes used for the two-dimensional shock problem (a) uniform mesh, (b) distorted mesh.
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mesh is ®ner in this corner, and of course the smaller the elements used to capture the shock, the better is
the solution.

4. Numerical examples

In this section, we present numerical examples to demonstrate the stability and accuracy of the ®nite
element method using the quadratic element.

4.1. Supersonic ¯ow over a bump

The problem of supersonic ¯ow over a bump is described in Fig. 6. In this problem, a bump is placed in a
wind tunnel and the ¯ow is assumed to be frictionless. The bump arc is described by

x2 � 0:04 1
�
ÿ 4�x1 ÿ 1:5�2

�
16 x16 2:

The free-stream ¯ow has the following condition

M � 1:4; q � 1; v1 � 1; v2 � 0:

The ¯uid properties are assumed to be constant with c � 1:4; cv � 715; k � 0; l � 0. The domain is
discretized into a mesh of 15� 46 elements where the velocity boundary condition on the curved slip wall is
speci®ed as explained by Wang and Bathe [24]. The calculated nodal pressure distribution using the
quadratic element is shown in Fig. 7. For comparison, the ADINA-F solution for this problem is shown in
Fig. 8 [25].

Fig. 6. Supersonic ¯ow over a bump problem.

Fig. 7. Nodal pressure solution of the supersonic ¯ow over a bump problem.
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The solution shows that a shock originates from the leading edge of the bump. As the shock reaches the
upper boundary where the slip-wall condition is applied, the shock is re¯ected and then as the re¯ected
shock hits the lower boundary, to the right of the trailing edge of the bump, it is re¯ected again. The re-
¯ected shock is interacting with the shock developed at the trailing edge of the bump.

The density distributions along x2 � 1 and along the center of the channel are shown in Fig. 9.
The solution by Beau et al. [8] using a ®ne mesh, 60� 184, and the solution using ADINA-F with a
very ®ne mesh are also shown for comparison. From Fig. 9, we see that the quadratic element so-
lution is close to the prediction presented by Beau et al. and the ADINA-F solution. The quadratic
element solution for the shock originating from the leading edge is close to the comparison solutions
in terms of the shock magnitude and location, and the same holds for the calculated re¯ected shock.
However, considering the solutions for the trailing edge shock, a di�erence in location is observed,
with the quadratic element solution being closer to the ADINA-F solution than is Beau's solution.
Note that in Fig. 9(b), the ADINA-F solution gives distinct shock locations for the doubly re¯ected
leading edge shock and the trailing edge shock (around x1 � 2:7) due to a su�ciently small element
size being used.

4.2. Natural convection problem

To show the ability of the quadratic element to solve a very low Mach number problem, we consider the
natural convection problem described in Fig. 10. To obtain the steady state solution, we used a transient
analysis and iterated the solution from the initial condition to the time when the changes in the variables are
small. The initial condition is given as: pressure p � 105, temperature h � 300 and velocity v1 � v2 � 0. The
¯uid properties are assumed to be constant, R � 286; cv � 715; k � 1:0; l � 0:001. The Rayleigh number of
this problem is Ra � 6:5� 105. We discretized the domain into a mesh of 20� 20 elements with smaller
elements close to the boundary to capture the boundary layers, see Fig. 11. The results of the problem using
the quadratic element are shown in Figs. 12 and 13. The maximum Mach number in the solution is about
0.0005 which is reached by the ¯uid located at x2 � 0:5 and right outside the boundary layer of the left and
right side walls.

For comparison, we solve the natural convection problem using ADINA-F with the incompressible
formulation and the Boussinesq approximation [27] for the density change. The calculated x2-direction
velocity and temperature distributions along x2 � 0:5 are plotted in Fig. 14 for the quadratic element so-
lution and the ADINA-F solution. The results are close to each other, especially the calculated temperature
distributions.

Fig. 8. Nodal pressure solution of the supersonic ¯ow over a bump problem using ADINA-F.
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The predicted heat ¯ux distributions on the left and right side boundaries are plotted in Fig. 15. The
solution using the quadratic element is reasonably close to the solution obtained with ADINA-F.

4.3. Supersonic ¯ow over a ¯at plate

The ¯ow over a ¯at plate is solved to study the stability and accuracy of the method. The domain and
boundary conditions of the 2D Navier±Stokes ¯ow problem are shown in Fig. 16. In this problem, a Mach

Fig. 9. Density distribution (a) along x2 � 1:0, (b) along the center of the channel.
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Fig. 10. The natural convection problem.

Fig. 11. The mesh used for the natural convection problem.
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three ¯ow is passing over an in®nitely thin plate at zero angle of attack and a curved shock and a boundary
layer are developed. The Reynolds number is 103 based on the free stream values and the length of the
plate, L. The ¯uid properties are c � 1:4; R � 286:62, l � 0:0906 h1:5=�h� 0:0001406� and k � �ccvl�=Pr,
where Pr is the Prandtl number, Pr � 0:72.

The computational domain is given by ÿ0:26 x16 1:2, 06 x26 0:8, and the leading edge of the plate is
located at x1 � 0. The domain is discretized into a mesh of 24� 42 elements with smaller elements close to

Fig. 12. The velocity vector solution of the natural convection problem.

Fig. 13. The temperature distribution solution of the natural convection problem.
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the leading edge of the plate. At the in¯ow boundary (x1 � ÿ0:2) and top boundary (x2 � 0:8), all four
variables are prescribed with the condition q � 1; v1 � 1; v2 � 0; h � 2:769E ÿ 4. Along the line x2 � 0 and
x1 < 0, the symmetric conditions v2 � s12 � q2 � 0 are imposed. On the plate (x2 � 0 and x1 P 0), the no-
slip condition, v1 � v2 � 0, and the stagnation temperature, hs � 7:754E ÿ 4, are prescribed. At the out¯ow
boundary (x1 � 1:2), no variable is prescribed except the shear stress term to accommodate the boundary
layer velocity pro®le at the right boundary,

s12 � l
ov1

ox2

�
� ov2

ox1

�
:

The calculated solution for the problem is shown in Fig. 17. A shock originates from the leading edge of
the plate along with the development of a boundary layer. Across the shock, the density increases and the

Fig. 14. The solution along x2 � 0:5 (a) temperature, (b) velocity component in x2-direction.
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Mach number decreases (the density has a maximum value at the leading edge point where there is a
singularity). To give a comparison, Fig. 18 shows the plot of the coe�cient of skin friction along the plate
(de®ned as Cf � swall=��1=2�q1V 2

1�, where q1 and V1 are the far-®eld ¯uid density and velocity, and swall is
the wall shear stress) and compares the computed result with the result published by Shakib et al. [26] using
a very ®ne mesh (28672 linear elements). Although a rather coarse mesh was used, the skin friction co-
e�cient obtained using the quadratic element is very close to the result given in Ref. [26].

4.4. Mach 6.06 compression corner

A Mach 6.06, Reynolds number 150000, ¯ow over a compression corner at an angle of 10:25° is con-
sidered, see Fig. 19. The Reynolds number is calculated based on the free stream conditions and the dis-
tance from the leading edge of the plate to the corner. The ¯uid properties are c � 1:4; R � 286:62,
l � 0:002637 h1:5=�h� 0:00015324�, and k � ccvl=Pr, where Pr is the Prandtl number, Pr � 0:72.

Fig. 15. The heat ¯ux on the wall (a) left side, (b) right side.
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Fig. 16. Supersonic ¯ow over a ¯at plate problem.

Fig. 17. Solution of the ¯ow over a ¯at plate problem (a) density, (b) Mach number, (c) density distribution in 3D representation, (d)

Mach number distribution in 3D representation.
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On the in¯ow and upper boundaries, all four variables are prescribed with the condition
q � 1; v1 � 1; v2 � 0; h � 6:7861E ÿ 5. On the plate, the no-slip condition, v1 � v2 � 0, and the adiabatic
condition are prescribed. A rather long computational domain is employed to avoid boundary e�ects due to
the in¯ow and out¯ow conditions. The computational domain is discretized into 21� 46 quadratic ele-
ments. The mesh used is shown in Fig. 20. We use many elements close to the wall to capture the boundary
layer.

Fig. 18. Skin friction coe�cient distribution along the plate.

Fig. 19. Flow over a compression corner.

Fig. 20. The mesh used for the ¯ow over a compression corner problem.
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Fig. 21. Solution of the ¯ow over a compression corner (a) back¯ow in the corner, (b) Mach number distribution in 3D representation.

Fig. 22. Normalized pressure distribution along the plate.
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The solution of this problem using the quadratic element is shown in Fig. 21. A shock starts at the
leading edge of the plate and propagates through the whole domain. At the corner, a compression shock is
developed due to the change of angle of the wall, and a back ¯ow is observed.

Fig. 22 shows the calculated pressure distribution normalized by the free-stream pressure along the plate
as well as experimental data [28]. Reasonable agreement is observed.

5. Conclusions

Our objective in this work was to develop a versatile and computationally e�ective parabolic quad-
rilateral ®nite element for the solution of compressible ¯ows. We have presented in this paper an element
formulation and the results obtained in the solution of various ¯ow problems, in which the Mach
number ranged from about 0.0005 to 6. The numerical results indicate that the element can be used to
give reasonably good solutions and is applicable to a wide range of problems. For the problems con-
sidered, the solution results using the quadratic element in coarse meshes are comparable to the results
produced using other methods with very ®ne meshes. Of course, further numerical studies and a
mathematical analysis of the proposed ®nite element scheme, especially of the shock capturing term,
should be pursued.

When considering very low Mach number solutions, the element formulation should be stable and
optimal as has been achieved for elements applicable to incompressible ¯ows [1]. For very low Mach
number problems, the element proposed in this paper may su�er from the di�culties that are encountered
when the inf-sup condition is not satis®ed by a discretization for incompressible ¯ows. Therefore, the
formulation still needs to be extended to be more e�ective for the solution of very low Mach number ¯ow
problems.

While the results using the element appear promising, we have not yet considered in our study the de-
tails of numerical e�ectiveness of the element, in particular, the solution of the governing ®nite element
equations. To obtain the solutions of the problems considered in this paper, we used a successive substi-
tution and relaxation method which resulted into slow convergence. An iterative solver speci®c for the
quadratic element should be developed to obtain faster convergence in the solution of the governing
equations. We leave these topics of numerical e�ectiveness for further research.
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Appendix A. The upwind term

The objective in this appendix is to give some thoughts regarding the e�ect of the upwinding in Eq. (10)
by considering a simple scalar convective-di�usive problem.

Consider the following one-dimensional problem

v�h;x ÿ a�h;xx � q in 0 < x < 1; �A:1�
h�0� � h�1� � 0;

where h; a�; q; v�; are temperature, di�usivity, heat generation and constant velocity. The variables v�; a�,
and q are given for the problem and we want to solve for h. We introduce the spaces

V � vjv 2 L2�Vol�; ov
ox
2 L2�Vol�; vjSu

�
� 0

�
;
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~V � vjv 2 L2�Vol�; ov
ox
2 L2�Vol�; o2v

ox2
2 L2�Vol�m��; vjSu

�
� 0

�
;

Vh � vhjvh 2 L2�Vol�; ovh

ox
2 L2�Vol�; vh 2 Q2�Vol�m��; vhjSu

�
� 0

�
;

where Q2�Vol�m�� denotes the quadratic function of the reference element m. Vol�m� is characterized by the
element length h.

Introducing the variational formulation for the problem (A.1), the solution h 2 V is obtained from the
following equationZ

Vol

�wv�h;x � w;xa
�h;x� dVol �

Z
Vol

wq dVol 8w 2 V : �A:2�

The ®nite element solution hh 2 Vh of the problem (A.1) is obtained by solving the following equationZ
Vol

�whv�hh;x � wh;xa
�hh;x� dVol �

Z
Vol

whq dVol 8wh 2 Vh: �A:3�

As is well-known, the solution shows oscillations as the Peclet number of the problem increases. To
stabilize the solution, in our scheme, we add the high-order derivative arti®cial di�usion termX

m

Z
Vol�m�

wh;xx at hh;xx dVol�m� �A:4�

and obtainZ
Vol

�whv�hh;x � wh;xa
�hh;x� dVol�

X
m

Z
Vol�m�

wh;xx at hh;xx dVol�m� �
Z

Vol

whq dVol 8wh 2 Vh; �A:5�

where at is the arti®cial di�usion, at � o�jv�jh3�, and h is the element length. Note that the upwind term is
applied on the element level since the second derivatives wh;xx and hh;xx cannot be integrated across the
element boundaries.

Adding the high-order derivative arti®cial di�usion term modi®es the original problem considered. Let
us consider the consistency of the modi®ed problem with respect to the original problem. The modi®ed
problem is to ®nd ~h 2 ~V satisfyingZ

Vol

�~wv� ~h;x � ~w;xa
� ~h;x� dVol�

X
m

Z
Vol�m�

~w;xx at ~h;xx dVol�m� �
Z

Vol

~wq dVol 8~w 2 ~V : �A:6�

Assuming a continuous dependence of the solution on the parameter at, consistency of the modi®ed
problem with respect to the original problem in Eq. (A.2) follows because the upwind term vanishes as
h! 0 and also the extra constraint in the space de®nition ( ~V ) disappears as h! 0. So, we have that ~h! h
as h! 0. The consistency of the modi®ed ®nite element problem in Eq. (A.5) with respect to the original
®nite element problem in Eq. (A.3) also follows.

To prove that the upwind term stabilizes the solution, we establish an error bound. Consider the con-
sistency condition of the modi®ed problem,Z

Vol

fwhv��~hÿ hh�;x � wh;xa
��~hÿ hh�;xgdVol�

X
m

Z
Vol�m�

wh;xx at �~hÿ hh�;xx dVol�m� � 0 8wh 2 Vh;

�A:7�
where ~h is the exact solution of the modi®ed problem.
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However, also for any wh 2 Vh, we haveZ
Vol

�whv�wh;x � wh;xa
�wh;x�dVol�

X
m

Z
Vol�m�

wh;xx at wh;xx dVol�m� � a�jwhj21 � atjwhj22: �A:8�

Using wh � hh ÿ vh, vh 2 Vh, we have

a�jhh ÿ vhj21 � atjhh ÿ vhj22 �
Z

Vol

f�hh ÿ vh�v��hh ÿ vh�;x � �hh ÿ vh�;x a��hh ÿ vh�;xg dVol

�
X

m

Z
Vol�m�
�hh ÿ vh�;xx at�hh ÿ vh�;xx dVol�m� �A:9�

�
Z

Vol

fÿ�hh ÿ vh�;xv��~hÿ vh� � �hh ÿ vh�;x a��~hÿ vh�;xg dVol

�
X

m

Z
Vol�m�
�hh ÿ vh�;xx at�~hÿ vh�;xx dVol�m�;

where we have used Eq. (A.7) and integration by parts on the convective term.
If we choose vh to satisfy the following constraint equation over each element m,Z

Vol�m�
�~hÿ vh� dVol�m� � 0; �A:10�

we haveZ
Vol

ÿ�hh ÿ vh�;xv��~hÿ vh� dVol � ÿ
Z

Vol

f�hh ÿ vh�;x ÿmean��hh ÿ vh�;x�gv��~hÿ vh� dVol �A:11�

6 jv�j k�hh ÿ vh�;x ÿmean��hh ÿ vh�;x�kL2 k~hÿ vhkL2 :

Also, we have the following inequality

k�hh ÿ vh�;x ÿmean��hh ÿ vh�;x�kL2 6 chj�hh ÿ vh�;xj1
� chjhh ÿ vhj2; �A:12�

where c is a constant independent of h. Hence, Eq. (A.9) becomes

a�jhh ÿ vhj21 � atjhh ÿ vhj22
6 chjv�j jhh ÿ vhj2k~hÿ vhkL2 � a�jhh ÿ vhj1j~hÿ vhj1 � atjhh ÿ vhj2j~hÿ vhj2 �A:13�

6 a�jhh

h
ÿ vhj21 � atjhh ÿ vhj22

i1
2 c0h2jv�j2

at
k~h

"
ÿ vhk2

L2 � a�j~hÿ vhj21 � 2atj~hÿ vhj22
#1

2

;

where c0 is also a constant independent of h. Rewriting the above equation, we have

a�jhh ÿ vhj21 � atjhh ÿ vhj226
c0h2jv�j2

at
k~hÿ vhk2

L2 � a�j~hÿ vhj21 � 2atj~hÿ vhj22: �A:14�

So that by the triangle inequality, for all vh 2 Vh satisfying the constraint equation (Eq. (A.10))

a�j~hÿ hhj21 � atj~hÿ hhj22 � a�j~hÿ vh � vh ÿ hhj21 � atj~hÿ vh � vh ÿ hhj22
6 a��j~hÿ vhj21 � jvh ÿ hhj21� � at�j~hÿ vhj22 � jvh ÿ hhj22� �A:15�

6 c0h2jv�j2
at

k~hÿ vhk2
L2 � 2a�j~hÿ vhj21 � 3atj~hÿ vhj22:

Considering the case a� > 0, this relation shows that convergence is reached in the ®nite element solu-
tion. The relation also shows that the choice of at � o�h3jv�j� is a reasonable one. Of course, further analysis
is necessary in order to identify the more detailed behavior of the solution scheme.
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