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Abstract

We present a 9-node finite element for compressible flow solutions. A high-order derivative upwind term and a shock capturing
term are employed for stability and accuracy of the formulation. We give the solutions of various example problems to illustrate our
experiences with the element. © 2000 Published by Elsevier Science S.A. All rights reserved.

1. Introduction

The numerical solution of the governing equations of high-speed compressible flows entails many dif-
ficulties due to the presence of shocks, viscous boundary layers and their interactions in the domain of
interest. To solve compressible flow problems using the usual low-order control volume and finite difference
procedures, extremely fine meshes are used, in particular, in the areas where boundary layers and their
interactions with shocks occur, to obtain reasonably accurate results. Similar fine meshes are also required
when using the usually employed low-order finite element techniques, although of course the use of un-
structured meshes allows the use of coarser meshes in some regions of the flow. The reason for requiring the
fine meshes are the low-order convergence behavior of the finite elements, both for the diffusive and the
convective terms in the Navier—Stokes equations. This observation motivates us to study the possibility of
developing a parabolic quadrilateral element for compressible flows. The element would naturally provide a
higher convergence behavior for the diffusive terms, and — provided effective upwinding and shock cap-
turing schemes are embedded in the element — should also give a higher accuracy for the convective terms of
the flow equations [1].

Many methods have been proposed to obtain numerical solutions of compressible flow problems using a
linear (that is, low-order) triangular element [2-7] or using a linear quadrilateral element [8-10]. Also,
Shapiro endeavored to develop a parabolic quadrilateral element but the author did not entirely use
parabolic functions as the convective term was discretized using linear interpolations [9]. Oden et al. de-
veloped h—p discretization schemes that include, of course, higher-order elements [11-14]. These schemes
are based upon the Taylor-Galerkin method, which has second order accuracy in time, to discretize the
time and space variables, and to stabilize the convective term, an artificial diffusion is employed.

Oscillations might occur in the numerical solutions at the locations where the convective term is dom-
inant and to eliminate these oscillations, an upwind method need be used. The SUPG method, proposed by
Hughes et al. originally for incompressible flows [15], is a very popular upwind technique used in finite
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element discretizations. The use of the SUPG technique and modifications thereof for compressible flow
problems have been proposed in several contributions [5,8,16] but only linear elements were used. Some
authors extended the SUPG technique also for use with a quadratic element, but only the scalar, con-
vective—diffusive problem and not the system of Navier—Stokes equations was considered [17-20].

In the present paper, we propose a new upwind method for a parabolic quadrilateral element to solve
high-speed compressible flows. The upwinding is similar to what is used in the finite difference method.

In a quadratic element, the nodal connectivity is wider than in a linear element. This nodal connectivity
makes it possible to design a higher order upwind method [21]. The upwind method that we propose
contains second order derivatives, hence the numerical results using this upwind technique are expected to
have a higher order accuracy.

In the presence of a shock, a stable numerical method still gives solutions with oscillations around the
shock and to reduce these oscillations, a shock capturing method is needed. We propose here a shock
capturing procedure for the quadratic element compatible in error with the accuracy obtained using the
new upwind term.

In the next sections we first present the finite element formulation of the 9-node element, and then we
present the solutions of various low and high Mach number problems obtained with the element.

2. Governing equations

The fluid flow is modeled with the Navier—Stokes equations that contain the conditions of conservation
of mass, momentum and energy. In vector form, the Navier—Stokes equations can be written as

U/+F;;—G;;—R=0, (1)

where (), and ( ) ; denote derivatives with respect to time and the x;-coordinate. We consider only the two-
dimensional case (i,j,k = 1,2) for which
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where p,v;, E, fB,¢® are density, velocity component in the x;-direction, specific energy, body force in the
x;- direction and body heat generation, respectively; and y, u, 4, k, ¢, are the ratio of the specific heats, fluid
viscosity, second viscosity coefficient, coefficient of thermal conductivity and the specific heat at constant
volume, respectively; J;; is the Kronecker delta (i.e. 6;; = 1 for i = j, and J;; = 0 for i # j). Here, we have

used the constitutive relations for an ideal gas, the Newtonian stress—strain relation and Fourier’s law of
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heat conduction. Taking the quasi-linear form of the convective term and rewriting the diffusive and source
terms, the Navier—Stokes equations can be written as [23]

()

U,+4,U; - (K;U,),—SU=0,

where the Jacobian matrices of F; are
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and the source matrix is

0O 0 0 O

g |/E 0 0 0
s 0 0 0
qB le sz 0

The boundary conditions that we consider correspond to subsonic, transonic and supersonic flows; and
appropriate flux boundary values are used to establish well-posed problems, see Ref. [23]. We impose the
boundary conditions in terms of the solution variables, density, momentum and total energy. For the
specification of other boundary values, we employ constraint equations.

3. Finite element discretization

In this section, we discuss the finite-dimensional spaces used for the quadratic element and give the finite
element formulation. The artificial diffusion to stabilize the convective terms, and the shock capturing term
to reduce oscillations around shocks and other discontinuities are presented.

3.1. Finite element spaces

Consider a finite element discretization of the fluid domain Vol, into subdomains Vol™, m = 1,2,...,N,
where N is the number of elements [1]. A two-dimensional quadrilateral nine node element as shown in
Fig. 1 is considered. In the element, all variables are interpolated quadratically. Let the prescribed Dirichlet
boundary conditions on the surface S, be g(¢) where the vector g(¢) contains the specified function of the
solution on the boundary S,. Then the solution lies in ¥}, and the weighting functional space is W,

V= { e 22(Vol): W% ¢ 12(Vol), (1), € Qu(Vol™), i=1,2,3,45 j=1,2: wy, = g(r)}

Xj

0 ,
W, = {wh|wh S LZ(VOI),% S LZ(VOI),(W},)i S Qz(\IOI(m))7 i=1,2,3,4; j= 1,2; whlSu = 0}

J

X

Fig. 1. Nine-node quadrilateral element used for planar flows.
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where 0,(Vol™) denotes the biquadratic function in the reference element m; and L2(Vol) is the space of
square integrable functions in the volume, “Vol”, of the body considered,

I

4
L*(Vol) = {ww is defined in Vol and ( (w,-)2> dVol = Hw||iz(v(,l) < +oo}
Vol —1

3.2. Weighted residual formulation

The finite element formulation of the Navier—Stokes equations is:
Find U, € V} such that for all W, € W, the following variational equation is satisfied:

/ [W}, . (Uh,l —_ SU},) - Wh‘j . AjUh + Wh,j ) KjiUh.i ]dVOI
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) m

Vol(m)

Here we have used that F; = A4;U. The vector W) is the weighting function evaluated on the surface S,
where S is the entire boundary surface, and F. and F, are prescribed boundary values corresponding to the
convective and diffusive terms
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0
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where 7; is the x;-direction cosine of the unit (pointed outward) boundary normal vector.

The first integral term and the surface force terms correspond to the standard Galerkin procedure ap-
plied to the compressible flow governing equations. The second integral term is the artificial diffusion term
and the third integral term is the shock capturing term, both discussed in the following sections.

3.3. Artificial diffusion

The purpose of the artificial diffusion is to stabilize the unstable convective terms in the standard
Galerkin procedure. Although the quadratic element is “more stable” than the linear element, it still re-
quires artificial diffusion (that is, upwinding) to reduce oscillations. Oden et al. used an artificial diffusion of
the form —(c Az #?|0v;/0x;|U ) ,, for their h-p discretization schemes where ¢, Az, i are a problem-adjustable

parameter, the time increment and the element size, respectively. In our work, the artificial diffusion term
for the quadratic element is given by

Wi i - (AkaAk)Uh‘kk dVol<’”), (10)

. J Vol

The motivation for the upwind term in Eq. (10) is given in Appendix A. Note that high-order derivatives
are used in order to achieve a higher order accuracy in the upwind method.

The above upwind technique applies an artificial diffusion in all directions instead of only in the
streamline direction as in the SUPG technique, but the magnitude of upwinding in the k-direction depends
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on the convective matrix A;. Our numerical experiments have shown that applying the artificial diffusion in
all directions gives a more stable numerical result than when the artificial diffusion is only applied in the
streamline direction, and crosswind diffusion is insignificant. This is because a high order upwind method is
employed.

The value of t; for the artificial diffusion is of the form used in finite difference solutions,

)3Ak|‘, (11)

where r denotes the coordinates in the natural coordinate system of the element. For the two-dimensional

case
- ka 2 ka 2
(&) () @

and we define

Ox, k
or

A = Xl AT X! (13)

where X, stores the eigenvectors of the matrix A4; and A, is a diagonal matrix with the corresponding ei-
genvalues. The factor 1/9 is chosen by considering the 1-D convection-diffusion problem. With the factor
1/9, the artificial diffusion results into full upwinding corresponding to the corner nodes of the elements.

To obtain an understanding of how the artificial diffusion term affects the Galerkin formulation, we
consider the finite element method applied to the one-dimensional steady-state Euler equation,

—/ Whyl'Ath dVOl+Z/
Vol m

Vol(m

Wh,ll . A1T1A1Uhyll dVOl<m> = —/ W; 'FL. ds. (14)
) s

For a uniform mesh, Ax is constant so that for each of the elements

1/Ax\° |
T1—9<2> ‘A1| 1. (15)

Combining Egs. (14) and (15), we obtain

>

Vol(m)

1 [ Ax

3
{ — Wy - AU, + W, 5 (7> |A1|U,,,u} dvol™ = _/ W5 - F. ds, (16)
N

where for a smooth function U, the second term (the artificial diffusion term) approaches zero with third
order as Ax — 0. Hence for a smooth function U, the parabolic element with the third order artificial dif-
fusion term can be expected to give more accurate results than the SUPG method using the linear element.

3.4. Shock capturing

The shock capturing term is designed to reduce oscillations in the vicinity of shocks and other discon-
tinuities. In the formulation considered, the shock capturing term is

Z /V ) Vi Wh,k . Uh‘,k dVOl(m), (17)

where v; is a tuned variable. This shock capturing term applies an artificial diffusion in all directions with

the magnitude in the x;-direction proportional to v;. We wish to have a value of v, that is small at a

reasonable distance from the shock and sufficiently large in the vicinity of the shock, and use
1 [R3A Ul

ve = o VLA 18
R TN (18)
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Fig. 2. Two dimensional shock problem.
where #; is the x;-direction “length” of the element,
1
h; = ) (19)

2 2
1 Or 1 or
V(8)+(18)

The value 1/4 is obtained by choosing the factor that gives the best shock solution of the test problem
considered at the end of this section. If, instead, the factors 1/3 or 1/6 are used, only a slightly different
shock solution is observed. This shock capturing term has the form given by Beau et al. [8] (derived from
the shock capturing term proposed by Hughes et al. [16,22]) for linear elements, but the difference lies in the
definition of vy.

Away from the shock where the finite element solution is smooth, U, ;; is not large (the magnitude depends
of course on the problem considered) and v; is small for a small element size. In those regions, the shock
capturing term gives third-order accuracy since U, ;; weakly depends on the mesh size. On the other hand, in
the vicinity of a shock, the finite element solution gives a large value U, ;, hence v is large and the shock
capturing term smoothens the solution. Near a shock, the shock capturing term gives first-order accuracy
because on the shock U, is a function of the mesh size which cancels the /7 term in the v, definition.

To show the capability of the shock capturing method, consider the test problem in Fig. 2 [6,26]. The
two-dimensional steady-state problem contains an oblique shock. At the inlet on the left and upper
boundaries, the convective fluxes are prescribed corresponding to the condition

M=2 p=1,0v =cosl0, v, =—sin10".

The convective fluxes are imposed at the left and upper boundaries instead of imposing the Dirichlet
boundary condition in order to avoid the inconsistency in the boundary conditions at the lower-left corner
where the slip-wall condition is imposed. On the right boundary, no variable is prescribed. The uniform and
distorted meshes shown in Fig. 3 were used. The finite element solutions are shown in Fig. 4. The finite
element method using the quadratic element gives reasonable results for both meshes.

The plots of density distributions along x; = 1 using both meshes are shown in Fig. 5. ! This figure shows
that the shock is captured within at most four elements with two elements containing the high gradient of

! Solutions are presented by simply connecting nodal values.
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(@)

Fig. 3. Meshes used for the two-dimensional shock problem (a) uniform mesh, (b) distorted mesh.
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Fig. 5. Density distribution along x; = 1.0 using (a) uniform mesh, (b) distorted mesh.

the jump variable and the other two elements giving a smooth transition of the solution. The solutions also
show some overshoot at the shock front which is of course not desirable.

Fig. 4 shows that the mesh with distorted elements gives a better solution. This is the case, because the
element distribution is favorable to the shock in the lower-left corner where the shock starts. Namely, the
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mesh is finer in this corner, and of course the smaller the elements used to capture the shock, the better is
the solution.

4. Numerical examples

In this section, we present numerical examples to demonstrate the stability and accuracy of the finite
element method using the quadratic element.

4.1. Supersonic flow over a bump

The problem of supersonic flow over a bump is described in Fig. 6. In this problem, a bump is placed in a
wind tunnel and the flow is assumed to be frictionless. The bump arc is described by

X = 0.04(1 40 — 1.5)2) 1<x <2

The free-stream flow has the following condition
M=14 p=1,v=1,0v,=0.

The fluid properties are assumed to be constant with y =1.4,¢, = 715,k = 0,u = 0. The domain is
discretized into a mesh of 15 x 46 elements where the velocity boundary condition on the curved slip wall is
specified as explained by Wang and Bathe [24]. The calculated nodal pressure distribution using the
quadratic element is shown in Fig. 7. For comparison, the ADINA-F solution for this problem is shown in
Fig. 8 [25].

X

Slip-wall

Far-field Far-field

= B E—

0 SIS

0 1 Slip-wall 2 3 X,

Fig. 6. Supersonic flow over a bump problem.
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15 0.5467
14 0.5267
13 0.5067
12 0.4867
1" 0.4667
10 0.4467
0.4267
0.4067
0.3867
0.3667
0.3467
0.3267
0.3067
0.2867
0.2667

SANWARONON®DO

Fig. 7. Nodal pressure solution of the supersonic flow over a bump problem.
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Fig. 8. Nodal pressure solution of the supersonic flow over a bump problem using ADINA-F.

The solution shows that a shock originates from the leading edge of the bump. As the shock reaches the
upper boundary where the slip-wall condition is applied, the shock is reflected and then as the reflected
shock hits the lower boundary, to the right of the trailing edge of the bump, it is reflected again. The re-
flected shock is interacting with the shock developed at the trailing edge of the bump.

The density distributions along x, =1 and along the center of the channel are shown in Fig. 9.
The solution by Beau et al. [8] using a fine mesh, 60 x 184, and the solution using ADINA-F with a
very fine mesh are also shown for comparison. From Fig. 9, we see that the quadratic element so-
lution is close to the prediction presented by Beau et al. and the ADINA-F solution. The quadratic
element solution for the shock originating from the leading edge is close to the comparison solutions
in terms of the shock magnitude and location, and the same holds for the calculated reflected shock.
However, considering the solutions for the trailing edge shock, a difference in location is observed,
with the quadratic element solution being closer to the ADINA-F solution than is Beau’s solution.
Note that in Fig. 9(b), the ADINA-F solution gives distinct shock locations for the doubly reflected
leading edge shock and the trailing edge shock (around x; = 2.7) due to a sufficiently small element
size being used.

4.2. Natural convection problem

To show the ability of the quadratic element to solve a very low Mach number problem, we consider the
natural convection problem described in Fig. 10. To obtain the steady state solution, we used a transient
analysis and iterated the solution from the initial condition to the time when the changes in the variables are
small. The initial condition is given as: pressure p = 10°, temperature 0 = 300 and velocity v; = v, = 0. The
fluid properties are assumed to be constant, R = 286,¢, = 715,k = 1.0, u = 0.001. The Rayleigh number of
this problem is Ra ~ 6.5 x 10°. We discretized the domain into a mesh of 20 x 20 elements with smaller
elements close to the boundary to capture the boundary layers, see Fig. 11. The results of the problem using
the quadratic element are shown in Figs. 12 and 13. The maximum Mach number in the solution is about
0.0005 which is reached by the fluid located at x, = 0.5 and right outside the boundary layer of the left and
right side walls.

For comparison, we solve the natural convection problem using ADINA-F with the incompressible
formulation and the Boussinesq approximation [27] for the density change. The calculated x,-direction
velocity and temperature distributions along x, = 0.5 are plotted in Fig. 14 for the quadratic element so-
lution and the ADINA-F solution. The results are close to each other, especially the calculated temperature
distributions.
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Fig. 9. Density distribution (a) along x, = 1.0, (b) along the center of the channel.

11

The predicted heat flux distributions on the left and right side boundaries are plotted in Fig. 15. The
solution using the quadratic element is reasonably close to the solution obtained with ADINA-F.

4.3. Supersonic flow over a flat plate

The flow over a flat plate is solved to study the stability and accuracy of the method. The domain and
boundary conditions of the 2D Navier—Stokes flow problem are shown in Fig. 16. In this problem, a Mach
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Fig. 10. The natural convection problem.

Fig. 11. The mesh used for the natural convection problem.
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Fig. 12. The velocity vector solution of the natural convection problem.
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Fig. 13. The temperature distribution solution of the natural convection problem.

three flow is passing over an infinitely thin plate at zero angle of attack and a curved shock and a boundary
layer are developed. The Reynolds number is 10° based on the free stream values and the length of the
plate, L. The fluid properties are y = 1.4, R = 286.62, = 0.0906 0" /(0 + 0.0001406) and k = (yc,u)/ Pr,
where Pr is the Prandtl number, Pr = 0.72.

The computational domain is given by —0.2 <x; < 1.2, 0 <x, <0.8, and the leading edge of the plate is
located at x; = 0. The domain is discretized into a mesh of 24 x 42 elements with smaller elements close to

13
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Fig. 14. The solution along x, = 0.5 (a) temperature, (b) velocity component in x,-direction.

the leading edge of the plate. At the inflow boundary (x; = —0.2) and top boundary (x, = 0.8), all four
variables are prescribed with the condition p = 1,v; = 1,v, = 0,0 = 2.769E — 4. Along the line x, = 0 and
x; < 0, the symmetric conditions v, = 7, = ¢, = 0 are imposed. On the plate (x, = 0 and x; > 0), the no-
slip condition, v; = v, = 0, and the stagnation temperature, 0, = 7.754E — 4, are prescribed. At the outflow
boundary (x; = 1.2), no variable is prescribed except the shear stress term to accommodate the boundary
layer velocity profile at the right boundary,

oo (T e
2= # axz axl '
The calculated solution for the problem is shown in Fig. 17. A shock originates from the leading edge of
the plate along with the development of a boundary layer. Across the shock, the density increases and the
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Fig. 15. The heat flux on the wall (a) left side, (b) right side.

Mach number decreases (the density has a maximum value at the leading edge point where there is a
singularity). To give a comparison, Fig. 18 shows the plot of the coefficient of skin friction along the plate
(defined as C; = tyan/((1/2)po V2 ), where p_, and V., are the far-field fluid density and velocity, and Ty, is
the wall shear stress) and compares the computed result with the result published by Shakib et al. [26] using
a very fine mesh (28672 linear elements). Although a rather coarse mesh was used, the skin friction co-
efficient obtained using the quadratic element is very close to the result given in Ref. [26].

4.4. Mach 6.06 compression corner

A Mach 6.06, Reynolds number 150000, flow over a compression corner at an angle of 10.25" is con-
sidered, see Fig. 19. The Reynolds number is calculated based on the free stream conditions and the dis-
tance from the leading edge of the plate to the corner. The fluid properties are y = 1.4, R = 286.62,
@ = 0.002637 0" /(0 4 0.00015324), and k = yc i/ Pr, where Pr is the Prandtl number, Pr = 0.72.
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Fig. 16. Supersonic flow over a flat plate problem.
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Fig. 19. Flow over a compression corner.

Fig. 20. The mesh used for the flow over a compression corner problem.

On the inflow and upper boundaries, all four variables are prescribed with the condition
p=1v=1,0,=0,0=06.7861E — 5. On the plate, the no-slip condition, v; = v, = 0, and the adiabatic
condition are prescribed. A rather long computational domain is employed to avoid boundary effects due to
the inflow and outflow conditions. The computational domain is discretized into 21 x 46 quadratic ele-
ments. The mesh used is shown in Fig. 20. We use many elements close to the wall to capture the boundary
layer.
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The solution of this problem using the quadratic element is shown in Fig. 21. A shock starts at the
leading edge of the plate and propagates through the whole domain. At the corner, a compression shock is
developed due to the change of angle of the wall, and a back flow is observed.

Fig. 22 shows the calculated pressure distribution normalized by the free-stream pressure along the plate
as well as experimental data [28]. Reasonable agreement is observed.

5. Conclusions

Our objective in this work was to develop a versatile and computationally effective parabolic quad-
rilateral finite element for the solution of compressible flows. We have presented in this paper an element
formulation and the results obtained in the solution of various flow problems, in which the Mach
number ranged from about 0.0005 to 6. The numerical results indicate that the element can be used to
give reasonably good solutions and is applicable to a wide range of problems. For the problems con-
sidered, the solution results using the quadratic element in coarse meshes are comparable to the results
produced using other methods with very fine meshes. Of course, further numerical studies and a
mathematical analysis of the proposed finite element scheme, especially of the shock capturing term,
should be pursued.

When considering very low Mach number solutions, the element formulation should be stable and
optimal as has been achieved for elements applicable to incompressible flows [1]. For very low Mach
number problems, the element proposed in this paper may suffer from the difficulties that are encountered
when the inf-sup condition is not satisfied by a discretization for incompressible flows. Therefore, the
formulation still needs to be extended to be more effective for the solution of very low Mach number flow
problems.

While the results using the element appear promising, we have not yet considered in our study the de-
tails of numerical effectiveness of the element, in particular, the solution of the governing finite element
equations. To obtain the solutions of the problems considered in this paper, we used a successive substi-
tution and relaxation method which resulted into slow convergence. An iterative solver specific for the
quadratic element should be developed to obtain faster convergence in the solution of the governing
equations. We leave these topics of numerical effectiveness for further research.
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Appendix A. The upwind term

The objective in this appendix is to give some thoughts regarding the effect of the upwinding in Eq. (10)
by considering a simple scalar convective-diffusive problem.
Consider the following one-dimensional problem

V0, —a0,,=q in 0<x<I, (A.1)
6(0) =0(1) =0,

where 0, 0", g, v*, are temperature, diffusivity, heat generation and constant velocity. The variables v*, o*,
and ¢ are given for the problem and we want to solve for §. We introduce the spaces

V= {v|v € L*(Vol); ?ELZ(VOI); vlg = 0},
. ’



20 D. Hendriana, K.J. Bathe | Comput. Methods Appl. Mech. Engrg. 186 (2000) 1-22
- dv Qv
2 . 2 . 2 . —
V= {U|v € L*(Vol); € L*(Vol); = €L (Vol™); vy =0¢,

% € L*(Vol); v, € 0x(Vol™); vyl = o},

= {vhvh € L*(Vol);
where 0,(Vol™) denotes the quadratic function of the reference element m. Vol™ is characterized by the
element length /.
Introducing the variational formulation for the problem (A.1), the solution 0 € V is obtained from the
following equation

/ (w0, + w00 ,) dVol = / wg dVol VYwe V. (A.2)
Vol

Vol

The finite element solution 0, € ¥}, of the problem (A.1) is obtained by solving the following equation

/ (Wpv* 0y x + Wi 0" 0),) dVol = / wyg dVol  VYw, € V. (A.3)
Vol

Vol

As is well-known, the solution shows oscillations as the Peclet number of the problem increases. To
stabilize the solution, in our scheme, we add the high-order derivative artificial diffusion term

> /V o W o O dVoI™ (A.4)
and obtain

/ (W0 Opx + Wy 0" 0p,) dVol + Z / Wioee o O dVoI™ = / wpg dVol  VYwy, € W}, (A.5)
Vol ' m Vol ' ’

Vol

where o is the artificial diffusion, o' = o(|v*|A?), and 7 is the element length. Note that the upwind term is
applied on the element level since the second derivatives w,, and 0,,, cannot be integrated across the
element boundaries.

Adding the high-order derivative artificial diffusion term modifies the original problem considered. Let
us consider the consistency of the modified problem with respect to the original problem. The modified
problem is to find 0 € V satisfying

/ (00" 0, + e 0,) dVol + ) / W o 0 dVol™ = / wgdVol Vwe V. (A.6)
Vol m Vol Vol

Assuming a continuous dependence of the solution on the parameter o, consistency of the modified
problem with respect to the original problem in Eq. (A.2) follows because the upwind term vanishes as
h — 0 and also the extra constraint in the space definition (V) disappears as & — 0. So, we have that § — 6
as i — 0. The consistency of the modified finite element problem in Eq. (A.5) with respect to the original
finite element problem in Eq. (A.3) also follows.

To prove that the upwind term stabilizes the solution, we establish an error bound. Consider the con-
sistency condition of the modified problem,

{Whli*(é — 0;,),)C + wh,xo&*(é — Hh)x}dVOI + Z / . Wh xx OCt (é — Qh),xx dVOl(m> =0 VWh S V;,,
m Vol

Vol
(A7)

where 0 is the exact solution of the modified problem.
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However, also for any w, € V},, we have

21
/ (Wpv Wi + Wy 0wy, ) dVol + Z / Wire & Wi dVo1™ = oc*|wh|f + oc’|w;,|§. (A.8)

Vol ' ' Vol '

Using w;, = 0, — v, v, € V},, we have
2|0 — onf? + o105 — vy = / {0 — v0)0" (O — v4) , + (0 — ) , 2 (0, — ;) } dVol
Vol
+)° / (0 — o), o (0, — vy) ., dVol™ (A.9)
o J Vol ’ '

= {=(0h — vn) 07 (0 —vp) + (04 — vh),x oc*(é —v,) .} dVol

" Z /VolW) (On = vn) “l(é — V) dvol™,

where we have used Eq. (A.7) and integration by parts on the convective term.
If we choose v, to satisfy the following constraint equation over each element m,

/ ( )(é —v;) dVol™ =0,
Vol

(A.10)
we have
/ —(0, — v;,).xv*(H~ —v,)dVol = — {(0 — vy) , — mean((6, — vh)d{)}v*(é — ;) dVol (A.11)
Vol ' Vol ' ’
<[o"] 1105 = o) , — mean((6, — va) |2 16 = w2
Also, we have the following inequality
(04 — o) , — mean((0y — vx) I 2 < ch|(0h — ) |y
= Ch|0h — Uh‘z, (A12)
where ¢ is a constant independent of 4. Hence, Eq. (A.9) becomes
OC*|0h — Uhﬁ + O(t|0h — Uh|§
<ch|o"| 10h — ol 10 = oall,2 + (05 = val, 10 = val, + o[04 — valy]0 — val, (A.13)
1
R~ ~ . 2
<[t = b0, ]| L0l - 42210
where ¢’ is also a constant independent of /. Rewriting the above equation, we have
x 2 ( 2 C/h2|U*|2 it 2 “17 2 na 2
o |0y — vl + |0, — va; < o 10 — vnll;2 + o |0 — va|] + 2610 — 5. (A.14)
So that by the triangle inequality, for all v, € ¥}, satisfying the constraint equation (Eq. (A.10))
O(*|9~— Ohﬁ + OCt|0~— 0h|§ = d*lé— Uy + Uy — ghﬁ + O(t‘é e 0h|§
<o (10— vali + o = Ouf7) + o (10 = val3 + 04 — O4]3) (A.15)
C/hz‘v*‘z
<

py 10 = vall7> + 2010 — 0]} + 300 — 045

Considering the case «* > 0, this relation shows that convergence is reached in the finite element solu-

tion. The relation also shows that the choice of o = o(h3|v*]) is a reasonable one. Of course, further analysis
is necessary in order to identify the more detailed behavior of the solution scheme.
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