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On a new segment-to-segment contact algorithm

Nagi El-Abbasi, Klaus-Jürgen Bathe *

Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Abstract

A new contact algorithm is presented which satisfies both stability and the contact patch test. The segment-to-segment
algorithm involves a contact pressure interpolation and an accurate integration of the contact constraints over the surfaces
of the contacting bodies. Numerical integration is carried out over sub-segments based on the element topologies of both
contacting surfaces. The algorithm is applicable to both linear and quadratic element surface interpolations.
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1. Introduction

To guarantee stability and optimal convergence, contact
formulations, like other mixed formulations, should satisfy
an ellipticity and an inf–sup condition [1,2]. Furthermore,
the contact algorithm should satisfy a contact patch con-
dition, which describes its ability to represent a state of
constant normal traction between two flexible contacting
bodies. However, a review of the literature indicates that
current contact algorithms do not satisfy both, the stability
and contact patch conditions [3].

In this paper, we present a new contact algorithm, which
satisfies both requirements. We classify the algorithm as a
segment-to-segment procedure since it involves an accurate
integration of the contact constraints over the surfaces of
the contacting bodies, not just using values at the nodes.
We describe the solution approach using 2D conditions
but the theory is directly applicable to 3D conditions as
well.

2. Contact formulation

Consider a system consisting of two bodies in con-
tact (Fig. 1). Assuming infinitesimally small displacements,
a linear elastic material and frictionless conditions, the
contact problem can be expressed as a constrained mini-

Ł Corresponding author. Tel: C1 (617) 253-6645; Fax: C1 (617)
253-2275; E-mail: kjb@mit.edu

mization problem

min
v2K

[ΠA.v/CΠB.v/] (1)

where v represents any admissible displacement, ΠI de-
notes the total potential of body I not accounting for con-
tact effects, and K represents the set of functions satisfying
the no-penetration contact constraint

K D fv j v 2 V I g.v/ ½ 0 on ΓCg (2)

where g is the gap,

V D ýv j v 2 H 1I v D 0 on ΓD

�
(3)

and H 1 is the usual Sobolev space.
Using a Lagrange multiplier to enforce the contact con-

straint, and assuming contact, the minimization problem is

Fig. 1. Two bodies in contact.
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Fig. 2. Schematic of new contact algorithm.

converted to an unconstrained saddle point problem involv-
ing the following functional

ΠL.v; ½/ D ΠA.v/CΠB.v/CΠC .v; ½/ (4)

where

ΠC.v; ½/ D
Z
ΓC

½g.v/ dΓC (5)

and ½ is the contact pressure which can only be zero or
positive.

The variational form of the contact problem can be
obtained by extremizing Eq. (4) with respect to the field
variables v and ½. Note that the constraint function method
can be used to solve the contact problem without the
need for distinguishing between active and inactive contact
constraints [1].

3. New contact algorithm

The algorithm involves a master–slave approach. One
of the surfaces, ΓC , is assumed to be the contactor, and
the other, ΓT , is the target as shown in Fig. 2. The con-
tact constraint is evaluated at the integration points (not
necessarily the nodes) along ΓC . Let the superscript i de-
note an integration point. For a point with coordinates xi S

C ,
the displacement vi S

C can be interpolated from the nodal
displacements on ΓC as follows:

vi S
C D

X
k

hik
C vk

C (6)

where hik
C is the interpolation function (evaluated at point

i) relating the displacement of the contactor point to the
displacements of the contactor nodes. For each integration
point on the contactor surface ΓC the displacement of the
target point on ΓT is interpolated as follows:

viŁ
T D

X
j

hi j
T v j

T (7)

We then assume that the discretized Lagrange multiplier
space Qh is

Qh D
n
½h j ½h 2 H�1=2; ½h j OK 2 P j

i .
OK /
o

(8)

where P j
i denotes a polynomial of degree j , with Ci -

continuity between elements, and OK is a reference contact
segment. The polynomial degree j must be less than or
equal to that of the element interpolation, and the segments
OK are defined on ΓC . Thus, the Lagrange multiplier value

at integration point i is obtained as follows:

½i S
C D

X
k

H ik
C ½

k
C (9)

where the ½k
C are the independent (usually nodal) multipli-

ers on ΓC and the interpolation function values H ik
C depend

on the polynomial degree and inter-element continuity of
the contact pressure field.

The contact integral of Eq. (5) is then converted to a
summation over the integration points (see Fig. 2)

ΠC D
X

i

½i S
C w

i [.vi S
C � viŁ

T / ÐNi C giS
0 ] (10)

where wi is the integration weight factor, Ni is the unit
normal vector to measure the gap, and giS

0 is the initial gap
width; all given at integration point i .

It is important that we select a numerical quadrature
rule that accurately evaluates the contact integral. This
expression is piecewise continuous with possible disconti-
nuities occurring at the nodes of either contact surfaces.
Accordingly, any integration scheme involving integration
points that are dictated by only one of the two surfaces
cannot exactly evaluate Eq. (5) regardless of the number
of integration points used. If, however, the integration in-
tervals are based on ‘sub-segments’ corresponding to any
two neighboring nodes regardless of their surface of origin,
an exact evaluation is possible. This accurate integration
feature enables the algorithm to pass the patch test for both
linear and quadratic elements.
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Fig. 3. Location of integration points based on: (a) Gaussian quadrature, and (b) trapezoidal rule.

Hence, the algorithm involves two main steps. In the
first, the sub-segment boundaries are determined by pro-
jecting the nodes of the target surface onto the contac-
tor surface (only the edge nodes need to be projected
for quadratic and higher order elements). In the second
step, the contact expression on each sub-segment is inte-
grated using Gaussian or Newton–Cotes integration rules
as shown in Fig. 3.

4. Stability and patch conditions for contact algorithms

Contact algorithms should satisfy the stability and patch
conditions. Stability is represented by an ellipticity and
an inf–sup condition. Satisfying the ellipticity condition
depends on the use of appropriate finite elements and
boundary conditions, not on the contact formulation. The
inf–sup condition for contact problems can be represented
as follows [3]

inf
½h2Qh

sup
vh2Vh

R
ΓC
½h g.vh/ dΓC

k½hk�1=2;Γ kvhk1
½ þ > 0 (11)

The inf–sup condition is satisfied if the constant þ is in-
dependent of the element size. The stability of the new
contact algorithm has been assessed numerically, and it was
found that with linear elements it is best to use a linear
continuous pressure interpolation, whereas with quadratic

elements the quadratic continuous pressure interpolation is
optimal [3].

As mentioned above, the patch test is also passed by the
algorithm [3].

5. Conclusions

A new segment-to-segment contact algorithm was de-
veloped which accurately evaluates the contact constraints
between the contacting bodies. The algorithm provides op-
timal performance by satisfying both the stability and the
contact patch conditions, using linear or quadratic element
displacement interpolations. While the theory given here
is directly applicable to 3D contact problems, the actual
detailed solution algorithm needs still to be developed.
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