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Abstract. In this paper we focus on the analysis of solids and structures when 
these are subjected to extreme conditions of loading resulting in large deformations 
and possibly failure. The analysis should be conducted with finite element methods 
that are as reliable as possible and effective. The requirement of reliability is 
important in any finite element analysis but is particularly important in simulations 
involving extreme loadings since physical test data are frequently not available, or 
only available for some similar conditions. To then reach a high level of confidence 
in the computed solutions requires that reliable finite element procedures be used. 
 While in this paper a large field of analysis is covered, the presentation is 
narrow because it only focuses on our research results, mostly published in the last 
decade (since 1995), and only on some of our contributions. Hence, this paper is 
not written to fully survey the field. 
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1. Introduction 

Finite element methods are now widely used in engineering analysis and we 
can expect a continued growth in the use of these methods. Finite element 
programs are extensively employed for linear and nonlinear analyses, and 
the simulations of highly nonlinear events are of much interest1-3.  In 
particular, the simulations may be used to postulate accidents and natural 
disasters, and thus can be used to study how a structure will perform in such 
severe events. Then, if necessary, remedies in the design of a structure can 
be undertaken, and equally important, warning devices might be installed, 
that all lead to greater public safety. 

An important point is that for large civil and mechanical engineering 
structures (long-span bridges, off-shore plants, storage tanks, power plants, 
chemical plants, underground storage caverns, to name just a few), physical 
tests can only be performed to a limited extent. Parts of the structures can 
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be tested (like connections between pipes) but a complete structure may 
only be tested when completely assembled in the field and sometimes that 
is not possible either. Hence, the simulations of such structures subjected to 
severe loadings probe into, and try to predict, the future based on scarce 
actual physical tests.  It is then very important to use reliable finite element 
methods in order to have the highest possible confidence in the computed 
results3.

The objective in this paper is to survey some finite element analysis 
techniques with a particular focus on the reliability of the methods. Of 
course, any simulation starts with the selection of a mathematical model, 
and this model must be chosen judiciously. Once an appropriate 
mathematical model has been selected, for the questions asked, the finite 
element analysis is performed. 

In this paper, we consider the solution of problems involving 2D and 3D 
solids, plates and shells, fluid-structure interactions, and general multi-
physics events.  The simulation of structures subjected to extreme loading 
conditions frequently comprises multi-physics events that involve fluids 
and severe thermal effects. For all these analyses, we need to use effective 
and reliable finite elements, efficient methods for the solution of the 
equations, for steady-state (static) and transient conditions, and finally, as 
far as possible, appropriate error measures. 

While a large analysis field is covered in this paper, we shall focus only 
on our research accomplishments since 1995, and that also only partially. 
Indeed, throughout our research endeavors since the 1970’s, the aim was 
always to only develop reliable and effective finite element procedures3.

Therefore, this paper is not intended to be a survey paper, neither to 
give all of our achievements nor to give adequate acknowledgement of the 
many important works of other researchers. All we focus on is to survey 
some valuable analysis methods for structures in extreme loading 
conditions. 

2. On the Selection of the Mathematical Model 

The first step of any structural analysis involves the selection of an 
appropriate mathematical model3,4. This model needs to be selected based 
on the geometry, material properties, the loading and boundary conditions 
(the effect of the ‘rest of the universe’ on the structure) and, most 
importantly, the questions asked by the analyst. If fluid-structure 
interactions are important, then the mathematical model should also include 
the fluid and the loading and boundary conditions thereon. 

The purpose of the analysis is of course to answer certain questions 
regarding the stiffness, strength and possible failure of the structure under 
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consideration. In the case of extreme loading conditions, we would like to 
ascertain the behavior of the structure in postulated accidents, either man-
made or imposed by nature, or in natural disasters. Hence, when studying 
the behavior of the structure, we would like to predict the future not only 
when the structure is operating in normal conditions, which requires a linear 
analysis, but also when the structure is subjected to extreme conditions of 
loading, which requires a highly nonlinear analysis. 

The mathematical model should naturally be as simple as possible to 
answer the engineering questions but not be too simple (an observation 
attributed to A. Einstein) because the answers may then be erroneous and 
misleading. For most structures, it is necessary to choose a mathematical 
model that can only be solved using numerical methods and finite element 
procedures are widely used.  

It is clear that the finite element solution of the mathematical model will 
contain all the assumptions of the mathematical model and hence cannot 
predict any response not contained in this model. Selecting the appropriate 
mathematical model is therefore most important. But it is also clear that the 
analysis can only give insight into the physical behavior of a structure, that 
is, nature, because it is impossible to reproduce nature exactly. 

In this paper we only consider deterministic analyses. If non-
deterministic simulations need  to be carried out, then still,  the 
considerations given here are all valid because the deterministic procedures 
are basic methods used in those analyses as well1.

A fundamental question must always be whether the mathematical 
model used is appropriate. This question can be addressed by the process of 
hierarchical modeling3-4. In this process of mathematical modeling and finite 
element solution, it is best to use one finite element program for the 
solution of the different linear and nonlinear mathematical models, because 
the assumptions in the finite element procedures are then the same in all 
solutions. In the case of extreme conditions of loading, this finite element 
program need be used for linear and highly nonlinear structural and multi-
physics problems, including fluid flows, severe temperature conditions, and 
the full mechanical interactions. In this paper we are focusing on ADINA 
for such analyses. 

3. The Finite Element Solution of Solids and Structures 

With the mathematical model chosen, the finite element procedures are 
used to solve the model. It is important that in this phase of the analysis 
well-founded and reliable procedures be used. By reliability of a finite 
element procedure we mean that in the solution of a well-posed 
mathematical model, the procedures always, for a reasonable finite element 
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mesh, give a reasonable solution. And if the mesh is reasonably fine, an 
accurate solution of the chosen mathematical model is obtained3.

It is sometimes argued that since the geometry, material conditions, 
loadings are not known to great accuracy, there is no need to solve the 
mathematical model accurately. This is a reasonable argument provided the 
mathematical model is solved to ‘sufficient’ accuracy and a control on the 
level of accuracy is available. Such a control on the accuracy of the finite 
element solution of the mathematical model is difficult to achieve and 
reliable finite element procedures are best used. 

The reliability of  a finite element procedure means in particular that 
when some geometric or material properties are changed in the 
mathematical model, then for a given finite element mesh the accuracy of 
the finite element solution does not drastically decrease. Hence, pure 
displacement-based finite element methods are not reliable when 
considering almost incompressible materials (like a rubber material, or a 
steel in large strains). As well-known, these methods ‘lock’, and for such 
analyses, well-founded mixed methods need be used3.

To exemplify what can go wrong in a finite element solution when 
unreliable finite element procedures are used, we refer to ref. 3, page 474, 
where the computed frequencies of a cantilever bracket are given. If 
reduced integration is used, then phantom frequencies (that are totally non-
physical) are predicted. Such ghost frequencies may also be predicted when 
some hour-glass control with reduced integration is employed. 

Similar situations also arise in the analysis of plates and shells, when 
reduced integration is employed, but in shell analyses, in addition, the use 
of flat shell elements can result in unreliable solutions, see Section 3.2.  
And similar conditions can also arise in the analysis of fluids and the 
interactions with structures, see Section 4. 

3.1. SOLIDS 

The use of well-formulated mixed methods has greatly enhanced the 
reliable analysis of solids and structures3.

Considering the analysis of solids, in large strains, the condition of an 
almost incompressible material response is frequently reached. This 
situation is of course encountered in simulations involving rubber-like 
materials (that already are almost incompressible in small strain conditions) 
but also in simulations of many inelastic conditions, like elasto-plasticity 
and visco-plasticity. In these analyses, the displacement/pressure (u/p) finite 
elements are very effective and if the appropriate pressure interpolations are 
chosen, the elements are also optimal3. An optimal element uses for a given 
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displacement interpolation the highest pressure interpolation that satisfies 
the inf-sup condition3-6

0 1

,div
inf sup 0
h h h h

h h

q Q V h h

q

qv

v

v
 (1) 

where Vh is the finite element displacement space, Qh is the finite element 
pressure space, and  is a constant independent of h (the element size). 

Reference 3 gives a table of u/p elements that satisfy the above inf-sup 
condition. These elements can of course also be used for analyses that do 
not involve the incompressibility condition (but are computationally 
slightly more costly than the pure displacement-based elements). 

For 2D solutions, for example, the 9/3 element (9 nodes for the 
displacement interpolations, and 3 degrees of freedom for the pressure 
interpolation) is an effective element.  But, in practice, a 4-node element is 
desirable and frequently the 4/1 element (4 nodes for the displacement 
interpolations and a constant pressure) is used. While the 4/1 element does 
not satisfy the above inf-sup condition, it can be quite effective when used 
with care.  A 4-node element that does satisfy the inf-sup condition was 
presented by Pantuso and Bathe7,8. Of course, equivalent elements exist for 
3D solutions. 

In any simulation, it is desirable to obtain, as the last step of the 
analysis, some indication regarding the accuracy of the finite element 
solution when measured on the exact solution of the mathematical model. 
We briefly address this issue in Section 3.4. 

3.2. PLATES AND SHELLS 

In the analysis of plates and shells, the situation is more complex than 
encountered in the analysis of solids. Here, for a given mesh, an optimal 
element would give the same error irrespective of the thickness of the plate 
or shell, and for any plate and shell geometry, boundary conditions and 
admissible loading used3,5. As well known, all displacement-based shell 
elements formulated using the Reissner-Mindlin kinematic assumption do 
not satisfy this condition in the analysis of general shells, and for this 
reason research has  focused on the development of mixed elements, based 
in essence on the general formulation: 

Find uh Vh and h Eh

, ,h h h h h h ha b f Vu v v v v  (2) 

2, ,h h h h h hb t c Eu 0  (3) 
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where a( ), b( ), and c(↕ ), are bilinear forms, f( ) is a linear form, t is 

the thickness of the shell, and Vh , Eh are the finite element displacement 
and strain spaces.

Mixed elements, however, then should satisfy the consistency condition, 
the ellipticity condition, and ideally the inf-sup condition5,6, 9-12

, ,
sup sup

h h

h h h
h h

V Vh V V

b b
c E

v v

v v

v v
 (4) 

where V is the complete (continuous) displacement space, and c is a 
constant independent of t and h.

If an element satisfies these conditions, the discretization is optimal.  
However, the first mixed elements proposed were not tested for these 
conditions, and only relatively lately a more rigorous testing has been 
proposed 13, 14.

Of course, the resulting test problems can (and should) also be used to 
evaluate any already earlier-proposed shell element, even if it seems that 
the element is effective. For example, when so evaluating flat shell 
elements formulated by superimposing membrane and bending actions, a 
non-convergence behavior may be found, see ref. 12.  

We have proposed some time ago the MITC plate and shell elements, 
see refs. 3, 15 and the references therein, and have also given some further 
recent MITC developments for shells 16, 17.  For the analysis of plates, the inf-
sup condition can be re-written into a simpler form and we were able to 
check that the MITC plate elements are optimal (or close thereto)9,10 (see 
Section 7.1).  

However, for shell elements the inf-sup condition needs to be evaluated 
as given above and in general only numerical tests seem possible because V
is the complete space in which the shell problem is posed 11,12. Then it can 
be equally effective to instead solve well-designed test problems 12, 13, 18-20.  In 
these tests an appropriate norm to measure the error must be used – a norm 
that ideally is applicable to all shell problems – and the s-norm proposed by 
Hiller and Bathe is effective12, 20.

The difficulty in formulating a general shell element lies in that the 
element should ideally be optimal in the analysis of membrane-dominated 
shells, bending-dominated shells, and mixed- behavior shells. For the 
membrane-dominated case, actually, the displacement-based shell elements 
perform satisfactorily but for the bending-dominated and mixed cases, the 
displacement-based elements ‘lock’ and a mixed formulation need be         
used – which satisfies consistency, ellipticity, and ideally the inf-sup 
condition. The inf-sup condition can be by-passed, but then nonphysical 
numerical factors enter the element formulation. 
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At present, there seems no shell element formulated based on the 
Reissner-Mindlin assumption that is ‘proven analytically’ to satisfy all three 
conditions. However, well-designed numerical tests can be performed to 
identify whether the conditions seem to be satisfied and the MITC shell 
elements have performed well in such tests. Indeed, the MITC4 shell 
element (the 4-node element3) has shown excellent convergence and is used 
abundantly in a number of finite element codes (see Section 7.2).  

Considering convergence studies of the general shell elements used in 
engineering practice, a basic step was to identify the underlying shell 
mathematical model used 21. The different terms  in the variational 
formulation of this shell model can thus also be studied, and it is possible to 
identify how well the specific terms are approximated in the finite element 
solution 22.

The MITC interpolations can of course also be employed in the 
formulation of 3D-shell elements and here too the underlying shell model 
was identified 23.

3.3.  NONLINEAR ANALYSIS OF SOLIDS AND STRUCTURES, 
INCLUDING CONTACT CONDITIONS  

The above considerations naturally also hold for geometric and material 
nonlinear analyses. The large deformation analysis of solids and structures 
has now been firmly established 3, 24, although of course improvements are 
sought, specifically in establishing more comprehensive material models.  
A particular area of interest is to increase the accuracy of the response 
predictions when considering inelastic orthotropic metals, where the 
anisotropy may exist initially or be induced by the response25-27. The elastic 
response may be anisotropic, the yielding may be anisotropic and the 
directions and magnitude of anisotropy may change during the response.  
      The development of increasingly more comprehensive material models 
will clearly continue for some time and will also involve the molecular 
modeling of materials and coupling of these models to finite element 
discretizations.  

A field that has still undergone, in recent years, considerable 
developments, is the more accurate analysis of contact problems, in 
particular when higher-order elements are used. Such higher-order elements 
are typically the 10-node or 11-node tetrahedral elements generated in free-
form meshing. The consistent solution algorithm proposed in ref. 28 is quite 
valuable in that the patch test can be satisfied exactly28-30. The algorithm is 
also used effectively in gluing different meshes in a multi-scale analysis 
(see Section 7.4), and a mathematical analysis has given insight into the 
performance of the discretization scheme30.
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      The basic approach is that along the contactor surface, the tractions are 
interpolated and the gap and slip between the contactor and target are 
evaluated from the nodal positions and displacements. Let  be the contact 
pressure and g(s) be the gap at the position s along the contact surface C ,
then the normal contact conditions are  

0, 0, 0g g  (5) 

where the last equation in (5) is the complementary condition. We use a 
constraint function ,nw g to turn the inequality constraints of contact 
into the equality constraint  

, 0nw g (6)    

which gives in variational form  

, d 0
C

n Cw g (7)  

Whether the gap is open or closed on the surface is automatically contained 
in the formulation using the constraint function. For frictional contact 
conditions another constraint function is used.  

The scheme published in  ref. 28 should be used  with  appropriate 
interpolations for the contact pressure – for given geometry and 
displacement interpolations – and appropriate numerical integration 
schemes  to evaluate the integrals enforcing the contact conditions.   

The  inf-sup condition for the contact discretization is given by  

1 1

d d
sup supC C

h h

h h C h C

h h
V Vh

g g
M

v v

v v

v v
   (8)    

where  Mh is the space of contact tractions and • is a constant, greater than 
zero. This condition can be satisfied as discussed in refs. 28, 30. 

For some example solutions involving contact conditions, see Sections 
7.3, 7.8, 7.10, 7.11.  

While we considered so far the analysis of solids and structures, of 
course similar considerations also hold when developing discretization 
schemes for fluids, including the interactions with structures, see Section 4 
below, and in these cases nonlinearities are usually present.  

3.4. MEASURING THE FINITE ELEMENT SOLUTION ERRORS 

Once a finite element solution of a mathematical model has been obtained, 
ideally, we could assess the solution error. Much research has focused on 
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the ‘a posteriori’ assessment of these errors31, 32. However, the problem is 
formidable since the error between the numerical solution and the exact 
solution of the mathematical model shall be established when the exact 
solution is unknown. 

A review of techniques currently available to establish this error has 
been published in ref. 31. It was concluded that no technique is currently 
available that establishes lower and upper bounds, proven to closely bracket 
the exact solution, when considering general analysis and an acceptable 
computational effort. The simple recovery-based error ‘estimators’ are still, 
in many regards, the most attractive and can of course be used in general 
linear and nonlinear analyses. However, they only give an indication of the 
error and need be used with care. 

Considering recovery-based estimators, higher-order accuracy points or 
approximations thereof are frequently used33 but then the error estimator 
may only be applicable in linear analysis. In our experience, the stress 
bands proposed by Sussman and Bathe34,35 (see also Refs. 3 and 31) are 
quite effective to obtain error estimates in general analyses (see Section 
7.5). Of course, in practical engineering analysis, frequently very fine 
meshes are used, simply to ensure that an accurate solution has been 
obtained. Then no error assessment is deemed necessary. 

The recovery-based error estimators can be used directly to estimate the 
error in different regions of the domain analyzed. However, in some 
analyses, it may be of interest to control the error in only a specific 
quantity, like the bending moment at a section of the structure. Then we 
may need to use a fine mesh only in certain regions of the complete analysis 
domain. A typical example is the analysis of fluid flows with structural 
interactions. It may not be necessary to solve for the fluid flow very 
accurately in the complete fluid domain in order to only predict the stresses, 
accurately, in the structure at a certain location. In these cases, the concept 
of goal-oriented error estimation can be very effective and has considerable 
potential for further developments31, 36,37.

4. The Finite Element Solution of Fluids and Interactions with 
Structures 

The analyses of fluids and fluid structure interactions (FSI) have obtained 
in recent years much attention because the dynamic behavior of structures 
can be much influenced by surrounding fluids.  If the fluid can be idealized 
as inviscid and undergoing only small motions, the analysis is much simpler 
than when actual flow and Euler or Navier-Stokes fluid assumptions are 
necessary.  However, many analysis cases can now be modeled effectively, 
and when free surfaces or interactions with structures undergoing large 
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deformations are considered, an arbitrary Lagrangian-Eulerian (ALE) 
formulation is widely used. 

4.1. ACOUSTIC FLUIDS AND INTERACTIONS WITH STRUCTURES 

The first models to describe an acoustic fluid were simply extensions of 
solid analysis discretizations, assuming a large bulk modulus and a small 
shear modulus (corresponding to the fluid viscosity).  However, these fluid 
models are not effective because they ‘lock’ and even when formulated in a 
mixed formulation need be implemented to prevent loss of mass. In 
addition, the formulations then contain many zero energy modes, or modes 
of very small energy38-41.

A clearly more effective approach is to use a potential formulation3 (see 
Section 7.6) and such formulation extended also for actual flow has been 
used very successfully to solve large and complex fluid-structure 
interactions42.

4.2. EULER AND NAVIER-STOKES FLUIDS AND FLUID STRUCTURE 
INTERACTIONS 

The solution of fluid flow structure interactions (FSI) requires effective 
finite element / finite volume techniques to model the fluid including high 
Péclet and Reynolds number conditions, effective finite element methods 
for the structure, and the proper coupling of the discretizations43-47.

Since in engineering practice, frequently rather coarse meshes are much 
desirable for the fluid flow (and indeed may have to be used because the 3D 
fluid mesh would otherwise result into too many degrees of freedom), we 
have concentrated our development efforts on establishing finite element 
discretization schemes that are stable even when coarse meshes are used for 
very high (element) Péclet and Reynolds numbers and show optimal 
accuracy48-51.  The basic approach in the development is to use flow-
condition-based interpolations (FCBI) in the convective terms of the fluid 
and to use element control volumes (like in the finite volume method) in 
order to assure local mass and momentum conservation51-56.

To present the basic approach of the FCBI schemes, consider the 
solution of the following Navier-Stokes equations: 

Find the velocity v(x) V  and the pressure p(x) P in the domain 
such that 

0,v x  (9) 
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,vv 0 x  (10)  

T1
,

Re
p pv I v v (11)  

where we assume that the problem is well-posed in the Hilbert spaces V and 
P,  is the stress tensor and Re is the Reynolds number. Equations (9) and 
(10) are subject to appropriate boundary conditions.   

In the FCBI approach, we use for the solution a Petrov-Galerkin 
variational formulation with subspaces Uh, Vh, and Wh of V, and Ph and Qh of 
P.  The formulation for the numerical solution is: 

Find h hUu , h hVv and h hp P such that for all hw W and hq Q

, dh h h hw pu v u 0 (12)  

d 0hq u  (13)  

The trial functions in Uh and Ph are the usual functions of finite element 
interpolations for velocity and pressure, respectively.  These are selected to 
satisfy the inf-sup condition of incompressible analysis3.  An important 
point is that the trial functions in Vh are different from the functions Uh and 
are defined using the flow conditions in order to stabilize the convection 
term.  The weight functions in the spaces W

h
 and Q

h
 are step functions, 

which enforce the local conservation of momentum and mass, respectively. 
The resulting FCBI elements do not require a tuning of upwind 

parameters, of course satisfy the property of local and global mass and 
momentum conservation, pass the inf-sup test of incompressible analysis 
and appropriate patch tests on distorted meshes, and the interpolations can 
be used to establish a consistent Jacobian for the iterations in the 
incremental step by step solutions.  The elements can be used with first and 
second-order accuracy.  

We have developed FCBI elements for incompressible, slightly 
compressible and low-speed compressible flows.  Each of these flow 
categories are abundantly used in engineering practice with various 
turbulence models.  For some solutions, see Sections 7.7, 7.8, 7.9.  

In addition, of course, there is the category of high-speed compressible 
flows and here we use the established and widely used Roe schemes. 

These fluid flow models can all be coupled with structural models, in 
large deformations, with contact conditions, and with piezo-electric, 
thermal and electro-magnetic effects3, 47, 57.
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5. An Extension of the Finite Element Method – the Method of Finite 
Spheres

In engineering practice, usually a major effort is necessary in a finite 
element analysis to establish an adequate mesh of elements. To mesh a part 
of a motor car may take months, when the actual computer runs, including 
the plotting of the results, may take only a few days. 

Much research has lately been focused on the development of meshfree 
discretization schemes for which no mesh is used for the interpolations and 
numerical integrations.  However, while some techniques are referred to as 
meshless, they are actually not truly meshless methods because a mesh is 
still needed for the numerical integration. 

In our research we have focused on the development of the method of 
finite spheres (MFS) which is one of the most effective truly meshless 
techniques available58-63. In this technique no mesh is used, and the complete 
domain needs simply be covered by the spheres (or disks in 2D solutions). 
The nodal unknowns are located at the nodes representing the centers of the 
spheres. Of course, the accuracy of the numerical solution (compared to the 
exact solution of the mathematical model) depends on the number of 
spheres used. The main advantage is that the spheres (disks) overlap 
(whereas the classical finite elements abut to each other) and hence highly 
distorted or sliver elements do not exist. 

The MFS can simply be understood to be a specific finite element 
method and, of course, the elements (disks or spheres) of the MFS can be 
coupled to traditional finite elements 63.

So far we have tested the MFS in the analysis of solids, and have found 
that while the technique of course gives much more flexibility in placing 
nodal unknowns in the analysis, the cost of the numerical integrations is 
high. The traditional finite elements are much less costly in the required  
numerical integrations.  However, further research should increase the 
effectiveness of the MFS and  there is good potential in the technique, in 
particular when coupled to traditional finite elements63,64. Then the spheres 
would only be employed in those regions where highly distorted traditional 
finite elements would otherwise be used, due to the geometric complexities 
or the deformations that have taken place in a large deformation solution. 

Of course, in principle, meshless methods can be employed also for the 
analysis of shells, for fluid flow simulations and FSI analyses, but the 
reliability issues, for example the basic phenomenon of ‘locking’, need be 
addressed as well, just like in the classical finite element discretizations3, 59.
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6. The Solution of the Algebraic Finite Element Equations 

Consider that an appropriate finite element model has been established, for 
a static/steady-state  or transient/dynamic analysis. The next step is to solve 
the governing finite element equilibrium equations. 

For static (steady-state) and implicit dynamic (transient) solutions, 
direct sparse Gauss elimination methods are effective up to model sizes of 
about half a million equations65. For larger models, (iterative) algebraic 
multi-grid methods are much more effective. For ill-conditioned systems, 
combinations of these techniques can be used. Since in fluid flow analyses, 
the number of algebraic equations to be solved is usually large, the 
solutions are generally obtained using an algebraic multi-grid procedure, 
sweeping through the momentum, continuity, turbulence, mass transfer, 
etc., equations.  

 Considering transient structural response, a widely-used scheme of 
time integration is the Newmark method trapezoidal rule. However, if large 
deformations over long-time durations need be solved, then the  scheme 
given in ref. 66  is much more  effective. In this time integration, we 
consider each time step t to consist of two equal sub-steps, each solved 
implicitly. The first sub-step is solved using the trapezoidal rule with the 
usual assumptions 

/ 2 / 2

4
t t t t t tt

U U U U (14)

/ 2 / 2

4
t t t t t tt

U U U U (15)  

Then the second sub-step is solved using the three-point Euler backward 
method with the governing equations 

/ 2
1 2 3
t t t t tt t c c cU U U U (16)  

/ 2
1 2 3
t t t t tt t c c cU U U U (17)  

where c1 = 1/ t, c2 = -4/ t, c3 = 3/ t.
This scheme is in essence a fully implicit second-order accurate Runge-

Kutta method and requires per step about twice the computational effort as 
the trapezoidal rule. However, the accuracy per time step is significantly 
increased, and in particular the method remains stable when the trapezoidal 
rule fails to give the solution (see Section 7.12) This scheme is an option in  
ADINA for nonlinear dynamics, and is also  employed in the ADINA FSI 
solutions. The Navier-Stokes and structural finite element equations are 
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fully coupled in FSI solutions, and are either solved iteratively or directly 
using this time integration scheme.  

For explicit dynamic solutions of structural response, the usual central 
difference method is effectively used. However, we employ this method 
with the same finite elements that are also used in static or implicit dynamic 
analyses (see Sections 7.10, 7.11). Hence the only difference to an implicit 
solution is that the time integrator is the central difference method and that 
the solution scheme can only be used with a lumped mass matrix. Of 
course, the time step needs to satisfy the stability limit3 and therefore many 
time steps are frequently used. This is clearly the method of choice for fast 
transient analyses. 

Since the element discretizations are the same in explicit and implicit 
dynamic solutions, restarts from explicit to implicit solutions, and vice 
versa, are directly possible. This option can be of use when an initial fast 
transient response is followed by a slow transient, almost static response. 
For example, in the analysis of metal forming problems, the initial response 
might be well calculated using the explicit solution scheme, and the spring-
back might be best calculated using the implicit scheme. 

A key point is that explicit dynamic solutions can be obtained very 
efficiently using distributed memory processing (DMP) environments. The 
scalability is excellent, so that a hundred processors, or more, can 
effectively be used. This possibility renders explicit time integration very 
attractive, so that in some cases even solutions that normally would be 
obtained using implicit integration, because a relatively long time scale 
governs the response, might be more effectively calculated with the explicit 
scheme.

7. Illustrative Solutions using ADINA 

The objective in this section is to briefly give some solutions that 
demonstrate the capabilities mentioned above. The solutions have all been 
obtained when studying the finite element methods mentioned above or 
using the ADINA program for the analysis of solids, structures, fluids and 
multi-physics problems67. Additional solutions can be found on the ADINA 
web site67 and, for example, in ref. 68.  

7.1. EVALUATION OF PLATE BENDING ELEMENTS 

In engineering practice mostly shell elements based on the Reissner-
Mindlin kinematic assumption are employed for the analysis of plates, since 
plates are just a special case of a shell.  If a shell element (used in a plate 
bending analysis) is based on the Reissner-Mindlin kinematic assumption 
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and satisfies the inf-sup condition for plate bending, then it does not ‘lock’, 
meaning that the convergence curves for any (admissable) plate bending 
problem have the optimal slope and do not shift as the thickness of the plate 
decreases.

Figure 1 shows a square plate, fixed around its edges. The plate is 
loaded with uniform pressure. Uniform meshes of the MITC4 and MITC9 
shell elements have been used and the solutions were calculated for 
decreasing element sizes (h) and decreasing thickness (t) of the plate. 

z
q t

x
 a) 

2L

y

x

2L

 b)

Figure 1. Clamped plate under uniform load: a) Side view of plate, b) Plan view showing 

also quarter of plate represented by shell elements. 

Figure 2 shows the convergence curves obtained using the s-norm20. We 
notice that the calculated convergence curves have the optimal slope and 
the curves do not shift as the thickness of the plate decreases. 

We show these results because it is important to test element 
formulations in this way – that is, the performance of a formulation in terms 
of convergence curves should be evaluated as the thickness of the plate 
decreases.

7.2. EVALUATION OF SHELL ELEMENTS 

The thorough evaluation of shell elements is much more difficult than the 
evaluation of plate bending elements, because a shell element should 
perform well in membrane-dominated, bending-dominated and mixed 
problem solutions, and for any curvature shell.  Hence, well-formulated 
linear static test problems need be selected from each of these categories, 
and also an appropriate norm need be used in the convergence calculations. 
Dynamic solutions are, of course, also of value but really only after the 
shell element has displayed excellent behavior in linear static solutions. 
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Figure 2. Clamped plate under uniform load: convergence curves using square of the s-
norm.

The objective in the evaluation of a shell element must then be to 
identify how well the element performs in the solutions of these static 
analysis test problems, as the shell thickness decreases. The meshing used 
need to also take into account boundary layers. Ideally, in each of the test 
problems, the convergence curves have the optimal slope and do not shift as 
the shell thickness decreases. 

While a number of different problems need to be solved for a full 
evaluation of an element, we demonstrate the task by considering the 
axisymmetric hyperboloid shell problem shown in Figure 312. If the shell is 
clamped at both ends, the problem is membrane-dominated, and if the shell 
is free at both ends, the problem is bending-dominated. These are difficult 
test problems to solve because the shell is doubly-curved. 

Figure 4 shows the convergence curves obtained when using the s-
norm20. We see that the MITC4 element performs very well, independent of 
the shell thickness, and does not lock.  
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θθ

Figure 3. The axisymmetric hyperboloid shell problem. The shell is subjected to the pressure 
p = p0 cos (2 ); for the model solved using symmetry conditions see ref. 12   
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Figure 4. The axisymmetric hyperboloid shell problem: convergence curves using MITC4 
element and s-norm12, 20  “a) Clamped ends, b) Free ends.

7.3. CRUSH ANALYSIS OF MOTOR CARS  

A difficult nonlinear problem involving shell analysis capabilities, multiple 
contact conditions, large deformations with elasto-plasticity and fracture, is 
the roof crush analysis of motor cars. ‘Crushing’ a motor car roof is a slow 
physical process taking seconds in contrast to ‘crashing’ a motor car against 
another object, which is an event of milliseconds. 

While explicit dynamic simulations are widely used to evaluate the 
crash behavior of motor cars, the crushing of an automobile roof is more 
appropriately – and more effectively – simulated using implicit dynamic, or 
static, solution techniques65.

Figure 5 shows a typical finite element model of a car, and Figure 6 
gives computed results for another car. The ADINA solution was obtained 
using an implicit dynamic (slow motion) analysis with the actual physical 
crushing speed of 0.022 mph. In the explicit solutions not using ADINA, 
quite different results were obtained for different crushing speeds, and it is 
seen that when the speed of crushing is close to the laboratory test speed, 
the explicit solution is unstable. In this explicit code, the elements used are 
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not stable in static analysis (they do not satisfy the conditions mentioned in 
Sections 3.2 and 7.2). 

ADINA
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7.4.  GLUING OF DISSIMILAR MESHES FOR MULTI-SCALE ANALYSIS

In a multi-scale analysis, it can be effective to create a fine mesh for a 
certain small region and then have successively coarser meshes away from 
that region.  Then it may also be effective to mesh some regions with free-
form tetrahedral elements while other regions are meshed with brick 
elements. It is often a challenge to connect these regions with dissimilar 
meshes together.

However, a powerful gluing feature makes it easy to connect regions 
with dissimilar meshes.  This feature is illustrated in the simple 2D and 3D 
examples shown in Figures 7 and 8.  The theory for this analysis feature is 
given in ref. 28.

Figure 5. Finite element model of a car. 

Figure 6. Results of a roof crush simulation for a car.  
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Figure 7. Gluing of dissimilar meshes, 2D.
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Figure 8. Gluing of dissimilar meshes, 3D.

7.5.   USING AN ERROR ESTIMATOR  

In this example, we demonstrate the use of the error estimation based on 
refs. 34, 35 and available in ADINA, see also ref. 31. Figures 9 and 10 
show results obtained in the study of a cantilever structure with the left end 
fixed, in linear, nonlinear and FSI solutions. Of particular interest is the 
stress solution around the elliptical hole in the middle of the cantilever. In 
the linear analysis, the structure is simply subjected to the uniform pressure 
p. In the nonlinear analysis, this pressure is increased to 6p and causes large 
deformations. Finally, in the fully coupled FSI solution, the steady-state 
force effects of a Navier-Stokes fluid flow around the structure (of 
magnitude about 2p) are considered in addition to the pressure of 6p.

In each case, a coarse mesh solution (for the mesh used see Figure 9), 
the error estimation for the longitudinal (bending) stress using the coarse 
mesh and the 'exact' error have been calculated. The exact errors have been 
obtained by comparing the coarse mesh solutions with very fine mesh 
solutions (that in practice would of course not be computed). The error 
estimation is seen in these cases to be conservative and not far from the 
exact error.  
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While this error estimation can be used for general stress and thermal 
analyses of solids and shells, including contact conditions and FSI, a word 
of caution is necessary: As with all existing practical error estimation 
techniques, there is no proof that the error estimate is always accurate and a 
conservative prediction. Hence the presently available error estimation 
procedures are primarily useful to estimate whether the mesh is fine 
enough, and if a refinement is necessary where such refinement should be 
concentrated.

Figure 9. Coarse mesh of cantilever, used in all solutions, with boundary conditions; 9-node 
elements. 

Figure 10. Results in analysis of cantilever structure: a) Linear analysis, estimated error in 
region of interest shown, b) Linear analysis, exact error in region of interest shown, c) 
Nonlinear analysis, estimated error in region of interest shown, d) Nonlinear analysis, exact 
error in region of interest shown, e) FSI analysis, estimated error in region of interest shown, 
f) FSI analysis, exact error in region of interest shown. 
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7.6.    FREQUENCY SOLUTION OF FLUID STRUCTURE SYSTEM  

In many dynamic analyses of fully coupled fluid structure systems, the fluid 
can be assumed to be an acoustic fluid. In such cases, it can be effective to 
perform a frequency solution and mode superposition analysis for the 
dynamic response.  

The major expense is then in solving for the frequencies and mode 
shapes, which requires the solution of the quadratic eigenvalue problem3   

2
K C M 0 (18)       

The Lanczos method can be used efficiently for the solution of this 
eigenvalue problem.  

Figures 11 and 12 show two vibration modes of a reactor vessel with 
piping analyzed using ADINA. The model has about 600,000 degrees of 
freedom and the 100 lowest frequencies and corresponding mode shapes of 
the quadratic eigenvalue problem were computed in about half an hour on 
an IBM Linux machine with four processors.  
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7.7   SOLUTION OF LARGE FINITE ELEMENT FLUID SYSTEMS

Today’s CFD and FSI solutions require generally the solution of large finite 
element systems that involve millions of degrees of freedom. 

Here we give two examples of solutions of large fluid flow models 
using an efficient algebraic multi-grid solver. Figure 13 shows the problems 
solved and Figure 14 gives the solution times (clock times) and memory 
used.  It is important to note that the solution times and the memory used 
increase approximately linearly with the number of degrees of freedom. 
Also, in both problem solutions, 8 million equations are solved in less than 
2 hours on the single processor PC. 

Figure 13. Models to demonstrate the solution of large finite element fluid systems: a) 

Manifold problem, b) Turnaround duct problem.
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Figure 14. Solution times (clock times) and memory usage for the manifold and turnaround 

duct problems; single processor PC used, 3.2 GHz. 
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There is much interest in simulating accurately the sloshing of fluids in 
large diameter tanks. The fluid need be modeled as a Navier-Stokes fluid 
and an Arbitrary-Lagrangian-Eulerian formulation is effectively used for 
the fully coupled FSI solution. 

Figure 15 shows a typical flexible tank filled with oil. A pontoon floats 
on the oil surface to prevent the oil from contacting the air. The tank is 
subjected to a horizontal ground motion of magnitude 1 meter and 
frequency 0.125 Hz. 

Figure 15 also gives the ADINA model used for the analysis; here the 
fluid mesh (8 – node FCBI elements) and the structural meshes of the tank 
and pontoon (MITC4 shell elements) are shown separately. 

Figure 16 shows some results of the analysis, namely snap-shots of the 
oil sloshing in the tank and stresses in the tank wall.  

7.8. ANALYSIS OF OIL TANK 
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The simulation of turbulent flow in exhaust manifolds is of much interest. 
Here we consider a Volvo Penta 6-cylinder diesel engine. ADINA was used 
with the shear stress transport (SST) turbulence model to solve for the 
turbulent flow in the manifold. 

Figure 17 shows the manifold considered and indicates the calculated 
fluid flow. Figure 18 gives a detail of the manifold with the calculated 
pressure contours. The Reynolds number at the inlets of the manifold is 
approximately 13,000, and the model was solved with about 3½ million 
unknowns.  With the fluid flow also a thermo-mechanical analysis of the 
structure is directly possible.  

7.9. ANALYSIS OF TURBULENT FLOW IN AN EXHAUST MANIFOLD  
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7.9.  CRASH ANALYSIS OF CYLINDERS  

For very fast transient analyses, the use of explicit time integration can be 
much more effective than using implicit time integration. Figures 19 and 20 
show the analysis of two cylinders in impact. The response has been 
calculated using the central difference method of explicit time integration 
with MITC4 shell elements used to model the cylinders. This type of 
analysis involving crash, contact, large deformations with fracture within 
milliseconds is clearly most effectively carried out using explicit time 
integration.

7.10. EXPLICIT AND IMPLICIT SOLUTIONS OF A METAL FORMING 
PROBLEM

The forming of the S-rail shown in Figure 21 is a widely-used verification 
problem of metal forming procedures. This problem can be solved using 
explicit or implicit time integration in a finite element program. 

Figure 19. Crash analysis of cylinders.  The top cylinder crashes onto the bottom cylinder. 

Figure 20. Response of cylinders at time =  0.040 s. 
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PROBLEM  

The forming of the S-rail shown in Figure 21 is a widely-used verification 
problem of metal forming procedures. This problem can be solved using 
explicit or implicit time integration in a finite element program. 

Figure 22 shows the results obtained using ADINA in implicit 
integration (the trapezoidal rule is used) and in explicit integration (the 
central difference method is used).  The same mesh of MITC4 shell 
elements was employed. As seen, the final deformations and stresses are 
very similar using the two analysis techniques.  Hence the only reason for 
using one or the other solution procedure in ADINA is that one technique 
may be computationally much more effective. In this case, the solution 
times are quite comparable and hence either the implicit or the explicit time 
integration might be used. 

In this analysis ADINA was used within the NX Nastran environment 
and the plots were obtained using the Femap program. 

Figure 21 Forming of an S-rail.

Figure 22.  Results obtained in forming of the S-rail: a) Results using implicit integration, b) 
Results using explicit integration. 

7.11. EXPLICIT AND IMPLICIT SOLUTIONS OF A METAL FORMING 
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7.12  THE NONLINEAR DYNAMIC LONG DURATION SOLUTION OF A 
ROTATING PLATE  

The Newmark method trapezoidal rule of time integration can become 
unstable in large deformation, long time duration analyses, and in such 
cases the time integration scheme given in equations (14) to (17) can be 
much more effective.  

Figure 23 shows a plate, free to rotate, which is subjected to a twisting 
moment. Once the moment is removed, the plate should continue to rotate 
at constant angular speed. 

Figure 24 gives the kinetic energy of the plate as a function of time. If 
the trapezoidal rule of time integration is used, the solution becomes 
unstable after a few rotations, although Newton-Raphson equilibrium 
iterations to a tight convergence tolerance are performed in each time step. 
On the other hand, the scheme of equations (14) to (17) with a much larger 
time step gives a stable and accurate solution. 

More experiences with this time integration scheme are given in ref. 66.  
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9 2
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2
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f(time)

1.0

y

z

A

Figure 23. Rotating plate problem 

8. Concluding Remarks  

The objective in this paper was to present some developments regarding the 
analysis of structures when subjected to severe loading conditions. The 
required simulations will frequently result in highly nonlinear analyses, 
involving multi-physics conditions with fluid-structure interactions and 
thermal effects. 

The focus in this paper was on the need to use reliable finite element 
methods for such simulations.  Since test data for the envisioned scenarios 
will be scarce, it is important to have as high a confidence as possible in the 
computed results without much experimental verification. Such confidence 
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is, however, only possible if reliable finite element methods are used.  
Furthermore, it can be effective to employ a single program system to perform 
the analyses, in hierarchical modeling involving linear to highly nonlinear 
solutions.

In this paper various solutions obtained with ADINA have been 
presented that show the applicability and versatility of the program in the 
study of linear and highly nonlinear problems, including multi-physics 
conditions. 

While many different and complex problems can at present be solved, 
there are still major challenges in developing more effective and more 
comprehensive analysis procedures. Eight key challenges have been 
summarized in ref. 1, see the Preface of the 2005 Volume. 

a) b)

c) d)

e) f)

Figure 24.  Results obtained in the analysis of the rotating plate problem: a) Velocity at 
point A using the trapezoidal rule; t = 0.02 s, b) Acceleration at point A using the 
trapezoidal rule; t = 0.02 s, c) Angular momentum using the trapezoidal rule; t = 0.02 s, 
d) Velocity at point A using the scheme of Equations (14) to (17); t = 0.4 s, e) Acceleration 
at point A using the scheme of Equations (14) to (17); t = 0.4 s, f) Angular momentum 
using the scheme of Equations (14) to (17); t = 0.4 s 
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