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ABSTRACT 
In this paper we briefly focus on the nonlinear analysis of solids and structures when these 
undergo large deformations, possibly over long time durations, and perhaps subjected to fluid-
structure interactions. The analysis should be conducted with finite element methods, 
including the time integration, that are reliable and effective. The requirement of reliability is 
particularly important in nonlinear finite element analysis because physical test data are 
frequently not available. 

1. INTRODUCTION 
Finite element methods are now widely used in engineering analysis and we can expect a 
continued growth in the use of these methods.  Finite element programs are extensively 
employed for linear and nonlinear analyses, and the simulations of highly nonlinear events are 
of much interest [1-3]. 

An important point is that for large civil and mechanical engineering structures like long-
span bridges, offshore platforms, storage tanks  and power plants, physical tests can only be 
performed to a limited extent. Parts of the structures can be tested but a complete actual 
structure can only be tested when entirely assembled in the field, and sometimes that is not 
possible either. Hence, the results of simulations of such structures cannot be compared with 
test data.  It is then very important to use reliable finite element methods in order to have the 
highest possible confidence in the computed results [3]. 

The objective in this paper is to survey some finite element techniques for nonlinear 
dynamic analysis with a particular focus on the reliability of the methods. Of course, any 
simulation starts with the selection of a mathematical model, and this model must be chosen 
judiciously. However, once an appropriate mathematical model has been selected, for the 
questions asked, the finite element solution of that model needs to be obtained reliably, 
effectively, and ideally to a controlled accuracy. 

In the following sections we briefly consider the solution of problems involving 2D and 
3D solids, plates and shells, including fluid-structure interactions, undergoing large dynamic 
deformations. First we discuss some appropriate techniques for solution and then we give 
some illustrative example solutions. This brief exposition is an update of Ref. [4], with some 
parts abridged and other parts expanded. 
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2. ON THE SELECTION OF THE MATHEMATICAL MODEL 
The first step of any analysis is the selection of an appropriate mathematical model [3]. This 
model needs to be chosen based on the analysis questions asked. Of course, the model is 
based on the selection of the geometry, material properties, the loading and boundary 
conditions, and any other specific assumptions made.  

The purpose of the analysis is to answer certain questions regarding the stiffness, stresses  
developed and strength of the structure. Hence, when studying the behavior of the structure, 
we would like to predict the future not only when the structure is operating in normal 
conditions, which mostly only requires a linear analysis, but also when the structure is 
subjected to severe loading conditions, which usually requires a highly nonlinear analysis. 

It is clear that the finite element solution of the mathematical model will contain all the 
assumptions of the mathematical model and hence cannot predict any response not contained 
in this model. Selecting the appropriate mathematical model is therefore a most important step 
of the analysis. A fundamental question is then always whether the mathematical model used 
is appropriate. This question can be addressed by the process of hierarchical modeling, which 
involves the solution of a number of hierarchically more encompassing mathematical models 
[3]. However, such solutions can result in high costs and are at present hardly performed in 
engineering practice. 

In the following we only consider deterministic analyses. But the considerations given here 
are all valid because the deterministic procedures are basic methods used in non-deterministic 
analyses as well [1]. 

3. THOUGHTS ON THE RELIABILITY OF FINITE ELEMENT METHODS 
With the mathematical model chosen, finite element procedures are used to solve the model. 
It is important that well-founded and reliable methods be used. By reliability of a finite 
element procedure we mean that in the solution of a well-posed mathematical model, the 
procedures always, for a reasonable finite element mesh, give a reasonable solution. And if 
the mesh is reasonably fine, an accurate solution of the chosen mathematical model is 
obtained [3]. 

It is sometimes argued that since the geometry, material properties, loadings are not known 
to great accuracy, there is no need to solve the mathematical model accurately. This is a 
reasonable argument provided the mathematical model is solved to ‘sufficient’ accuracy and a 
proper control on the level of accuracy is calculated. Such a control on the accuracy of the 
finite element solution of the mathematical model is difficult to achieve, in particular when 
the level of accuracy sought is low,  and reliable finite element procedures are best used. 

The reliability of  a finite element procedure means in particular that when some geometric 
or material properties are changed in the mathematical model, then for a given finite element 
mesh the accuracy of the finite element solution does not drastically decrease. Hence, pure 
displacement-based finite element methods are not reliable when considering almost 
incompressible materials (like a rubber material, or a steel in large strains). As is well known, 
these methods ‘lock’, and for such analyses, well-founded mixed methods are best used [3]. 

To exemplify what can go wrong in a finite element solution when unreliable finite 
element procedures are used, we refer to Ref. [3], page 474, where the computed frequencies 
of a cantilever bracket are given. With reduced integration phantom frequencies that are non-
physical are predicted. Such ghost frequencies may also be predicted when some hourglass 
control with reduced integration is employed. 

Similar situations arise in the analysis of plates and shells and in the analyses of fluids and 
fluid-structure interactions, but there are important additional considerations, as discussed 
briefly in the following sections. 

Considering transient analysis, in addition to the finite element formulations for the spatial 
discretizations, also the time integration scheme should be reliable and effective.   Here, we 
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describe an implicit method that is unconditionally stable (in the traditional sense), and even 
remains stable in long time duration large deformation response, and does so without 
adjustable parameters. 

4. THE ANALYSIS OF SOLIDS AND STRUCTURES 
The use of well-formulated mixed methods has greatly enhanced the reliable analysis of solids 
and structures [3]. 

Considering the analysis of solids, in large strains, the condition of an almost 
incompressible material response is frequently reached. This situation is encountered in 
simulations involving rubber-like materials  and  inelastic conditions, like elasto-plasticity and 
visco-plasticity. In these analyses, the displacement/pressure (u/p) finite elements are very 
effective. An optimal element uses for a given displacement interpolation the highest pressure 
interpolation that satisfies the inf-sup condition [3,5,6]   
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where Vh is the finite element displacement space, Qh is the finite element pressure space, and 
β is a constant independent of h (the element size). Reference [3] gives a table of u/p elements 
that satisfy the above inf-sup condition, see also Ref. [5]. For example, for  2D solutions the   
element based on 9 nodes for the displacement interpolations  and 3 internal degrees of 
freedom for the pressure interpolation  is  optimal. But, in practice, a 4-node element is 
desirable and frequently the 4/1 element (4 nodes for the displacement interpolations and a 
constant pressure) is used. While the 4/1 element does not satisfy the above inf-sup condition, 
it can be quite effective when used with care.  A 4-node element that does satisfy the inf-sup 
condition was presented by Pantuso and Bathe [7] but is much more expensive and does not 
perform sufficiently well in nonlinear large strain analysis. Equivalent elements exist for 3D 
solutions. 

In the analysis of plates and shells, the situation is much more complex Here, for a given 
mesh, an optimal element would give the same error irrespective of the thickness of the plate 
or shell, and that for any plate and shell geometry, boundary conditions and admissible 
loading used [3,8]. As is well known, the  displacement-based shell elements formulated 
using the Reissner-Mindlin kinematic assumption are not  effective  in the analysis of general 
shells, and for this reason research has focused on the development of mixed elements, based 
in essence on the general formulation: 

Find uh ∈ Vh and hξ ∈ Eh

 ( ) ( ) ( ), ,h h h h h h ha b f V+ = ∀u v ξ v v v ∈

( )

 (2) 

( )2 E, ,h h h h h hb t c− = ∀ ∈η u η ξ 0 η  (3)  

where a(⋅,⋅), b(⋅,⋅), and c(⋅,⋅), are bilinear forms, f(⋅) is a linear form, t is the thickness of the 
shell, and Vh , Eh are the finite element displacement and strain spaces. 

Mixed elements, however, then should satisfy the consistency condition, the ellipticity 
condition, and ideally the inf-sup condition [5,6,8]    
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where V is the complete (continuous) displacement space, and c is a constant, greater than 
zero,  independent of t and h. To show analytically that the inf-sup condition is satisfied for an 
element is very difficult because it involves the complete space V.  

If an element satisfies these conditions, the discretization is optimal in all shell analyses, 
that is, in the analyses of membrane-dominated shells, bending-dominated shells, and mixed- 
behavior shells. For the membrane-dominated case, the displacement-based shell elements 
perform satisfactorily but for the bending-dominated and mixed cases, the displacement-based 
elements ‘lock’ and a mixed formulation need be used — which satisfies the consistency, 
ellipticity, and ideally  the inf-sup condition. The inf-sup condition can actually be by-passed, 
but then nonphysical numerical factors enter the element formulation [8]. 

The first mixed shell elements, introduced some decades  ago, were not tested for these 
conditions, and only relatively lately a more rigorous testing has been proposed [8,9].  Here, 
instead of testing directly whether the expression (4) holds, suitable benchmark test problems 
are used to identify whether the inf-sup condition is satisfied. The mixed-interpolated-
tensorial-components (MITC) shell elements, see Refs. [3,8,10]  and the references therein, 
have performed quite well in these test cases. Indeed, the MITC4 shell element (the 4-node 
element [3]) has shown excellent convergence behavior and is used abundantly in a number of 
finite element codes. 

The MITC interpolations can of course also be employed in the formulation of 3D-shell 
elements [11]. Here the shell is described as a solid with stresses and strains measured 
through the shell thickness, and possibly higher assumptions for the in-plane components as 
well. Shear, membrane and pinching locking effects need then to be circumvented, and this 
can be achieved quite effectively using the MITC interpolations.  In addition, ill-conditioning 
must be prevented.  

5. THE ANALYSIS OF CONTACT CONDITIONS 
An analysis area in which, recently, still considerable advances have taken place, is the 
solution of contact problems, including frictional effects. The aim is to reach more accuracy, 
in particular when higher-order elements are used. The higher-order elements are typically 10-
node or 11-node 3D tetrahedral elements generated in free-form meshing. For such analyses, 
the consistent solution algorithm proposed in Ref. [12] is  valuable in that the patch test can 
be satisfied exactly. The algorithm is also used effectively in glueing together different 
meshes, in usual complex analyses and possibly multi-scale solutions. 

The basic approach is that along the contactor surface, the tractions are interpolated and the 
gap and slip between the contactor and target are evaluated from the nodal positions and 
displacements. Let λ(s) be the contact pressure and g(s) be the gap at the position s along the 
contact surface ΓC , then the normal contact conditions are  

 0, 0, 0λ λ≥ ≥ =g g  (5)  

where the last equation in (5) is the complementary condition. We use a constraint function 
( ),λnw g to turn the inequality constraints of contact into the equality constraint  

 ( ),λ 0=nw g  (6) 

which gives in variational form  

 ( ), dλ δλ
Γ

0Γ =∫
C

n Cw g   (7) 
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Whether the gap is open or closed on the surface is automatically contained in the formulation 
using the constraint function.  

The scheme published in Ref. [12] should be used with appropriate interpolations for the 
contact pressure — for given geometry and displacement interpolations — and appropriate 
numerical integration schemes  to evaluate the integrals enforcing the contact conditions. 

The inf-sup condition for the contact discretization is given by 
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where Mh is the space of contact tractions and β is a constant, greater than zero. This 
condition can be satisfied by appropriate choices of interpolations. 

Above, we considered the normal contact condition. For the tangential conditions we have 
the governing equations  
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where t is the tangential traction, u  is the tangential relative velocity and μ is the friction 
coefficient. These conditions are also imposed using a constraint function,  see Ref. [3]. 

&

6. THE ANALYSIS OF FLUID-STRUCTURE INTERACTIONS 
The analysis of fluid-structure interactions (FSI) has attracted, in recent years, much attention 
because the dynamic behavior of structures can be greatly affected by surrounding fluids.  If 
the fluid can be idealized as an acoustic fluid (inviscid, irrotational  and undergoing only 
small motions), the analysis is much simpler than when actual flow with Euler or Navier-
Stokes fluid assumptions are considered. 

Some finite element representations of an acoustic fluid are simple extensions of solid 
analysis discretizations, assuming a large bulk modulus and a very small shear modulus 
(corresponding to the fluid viscosity).  However, these fluid models are not effective because 
they can ‘lock’ and lead to the usual unreliability when ‘reduced’ integration is used  (see 
above), and have in 3D analysis three displacement degrees of freedom per node. Even when 
formulated in a mixed formulation, a difficulty is to prevent loss of mass. In addition, the 
formulations may then contain many zero energy modes, or modes of very small energy [13]. 

A clearly more effective approach is to use a potential formulation [3]. Such formulation 
extended also for actual flow has been used very successfully to solve large and complex 
fluid-structure interactions [14]. 

Considering Navier-Stokes fluids, the solution requires effective discretizations to model 
the fluid including high Péclet and Reynolds number conditions, effective finite element 
methods for the structure, and the proper coupling of the discretizations. 

We have concentrated our development efforts on establishing finite element discretization 
schemes for the fluid that are stable, even when coarse meshes are used for very high 
(element) Péclet and Reynolds numbers and show good accuracy [15,16].  The basic approach 
is to use the velocity-pressure interpolations to satisfy the incompressibility inf-sup condition, 
flow-condition-based interpolations (FCBI) in the convective terms of the fluid, and to use 
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element control volumes (like in the finite volume method) to assure local mass and 
momentum conservation. 

To briefly summarize the essence of the FCBI formulation, consider the solution of the 
following Navier-Stokes equations governing steady-state conditions: 

Find the velocity v(x) ∈ V  and the pressure p(x) ∈ P in the domain Ω such that 
 

 0,∇ ⋅ = ∈ Ωv x  (10)  

( ) ,ρ∇⋅ − = ∈Ωvv τ 0 x  (11)   

 ( ) ( ){ }T

h h

, p p μ= = − + ∇ + ∇τ τ v I v v  (12)  

where we assume that the problem is well-posed in the Hilbert spaces V and P,  τ  is the stress 
tensor, ρ is the density and μ is the viscosity. Equations (10) and (11) are subject to 
appropriate boundary conditions. 

In the FCBI approach, we use for the solution a Petrov-Galerkin variational formulation 
with subspaces Uh, Vh, and Wh of V, and Ph and Qh of P.  The formulation for the numerical 
solution is: 

Find , and h hU∈u h V∈v hp P∈ such that for all ∈ hw W and ∈ hq Q  

 ( )( ), dh h h hw pρ
Ω

∇⋅ − Ω =∫ u v τ u 0

0

 (13)  

 dhq
Ω

∇⋅ Ω =∫ u  (14)  

The trial functions in Uh and Ph are the usual functions of finite element interpolations for 
velocity and pressure, respectively.  But an important point is that the trial functions in Vh are 
different from the functions in Uh and are defined using the flow conditions in order to 
stabilize the convection term.  The functions in the spaces Wh and Qh are step functions and 
enforce the local conservation of momentum and mass, respectively. 

The resulting FCBI elements do not require a tuning of upwind parameters, satisfy the 
property of local and global mass and momentum conservation, pass the inf-sup test of 
incompressible analysis and appropriate patch tests on distorted meshes. Also, the 
interpolations can be used to establish   consistent Jacobian matrices for the iterations in the 
incremental step-by-step solutions.  We have developed these elements for incompressible, 
slightly compressible and low-speed compressible steady-state and transient flows.  Each of 
these flow categories are abundantly used in engineering practice with various turbulence 
models. Of course, we continue our research to improve the FCBI formulations [17].  
However, for high-speed compressible flows we employ the widely used Roe scheme. 

These fluid flow models can all be coupled in an arbitrary Lagrangian-Eulerian 
formulation with structural models, in large deformations, with contact conditions [18,19] 
and, if considered, piezo-electric, thermal and electro-magnetic effects.  

7. THE TIME INTEGRATION 
Consider that an appropriate finite element model and the governing algebraic equations have 
been established for a nonlinear dynamic analysis. The next step is to time-integrate the 
governing finite element equilibrium equations. 
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If the response is of short duration, the explicit central difference time integration scheme 
is used and is probably most effective. However, in central differencing the integration time 
step must usually be very small, for stability. For analyses involving longer time durations, 
implicit time integration can be much more effective. 
 Considering transient structural response, a widely used scheme of time integration is the 
Newmark method trapezoidal rule. However, if large deformations over long-time durations 
need be solved, this scheme can be unstable and  the  scheme given in Ref. [20] can be much 
more effective. Consider that the solution at time t has been established and that the solution 
at time t + Δ t  shall be obtained. The governing equations for a structural model to be solved 
are then 
 
  (15) t t t t t t t t+Δ +Δ +Δ +Δ+ = −M U C U R F&& &

 
where M is the mass matrix, C is the damping matrix, R is the vector of externally applied 
loads, F is the vector of nodal forces equivalent to the element stresses, and U denotes nodal 
displacements (including rotations). The superscript t + Δ t  denotes of course time and an 
overdot a time derivative. 

In the time integration scheme of Ref. [20] we consider each time step Δt to consist of two 
equal sub-steps, each solved implicitly. The first sub-step is solved using the trapezoidal rule 
with the usual assumptions 

 (/ 2 / 2

4
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and the second sub-step is solved using the three-point Euler backward method with the 
governing equations 

  (18) / 2
1 2 3

+Δ +Δ+Δ = + +& t t t t tt t c c cU U U

  (19) 1 2 3= + +c c cU U U

where  c1 = 1/Δt, c2 = -4/Δt, c3 = 3/Δt.  
Using the Newton-Raphson iteration, the full solution algorithm for a time step is therefore as 
follows.   

We solve  for i = 1, 2, 3,… 
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where  

 ( ) ( ) ( )1/ 2 / 2i it t t t −+Δ +Δ= + ΔU U iU  (21) 

Once convergence has been reached, we use the calculated displacements  with  Eqs. 
(16) and (17) to obtain the velocities (and accelerations) at time t + Δt/2.  

/ 2t t+Δ U

Then in the second sub-step, we solve   Eqs. (15) with the equations of the three-point Euler 
backward method  

 / 21 4 3t t t t t t t

t t t
+Δ +Δ +Δ= − +

Δ Δ Δ
U U U& U  (22) 

 / 2t t t t t t t

t t t
+Δ +Δ +Δ= − +

Δ Δ Δ
U U U&& & & &1 4 3 U  (23) 

Using these equations and the earlier solutions obtained for time t + Δt/2, the governing 
equations for the Newton-Raphson iteration to solve Eqs. (15)  are  for i=1, 2, 3, … 
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and  

 ( ) ( ) ( )1i it t t t −+Δ +Δ= + ΔU U iU  (25) 

We again iterate until convergence has been achieved. The tangent stiffness matrices  
and   used in Eqs. ( 20) and (24) with the iteration counter (i-1)   are of course the 
‘consistent’ tangent stiffness matrices. Here, large deformations and inelastic response can 
directly be included [3].  Also, contact conditions can directly be accounted for always 
considering only the conditions at the discrete times used above.  

/ 2t t+Δ K
t t+Δ K

This scheme is a fully implicit second-order accurate method and requires per step about 
twice the computational effort as the trapezoidal rule. However, the accuracy per time step is 
significantly increased, and in particular the method remains stable when the trapezoidal rule 
fails to give the solution. We use this scheme as an option in nonlinear dynamics of solids and 
structures, and also in fluid-structure interaction solutions. In this case the first-order fluid 
flow equations are integrated using equations (17) and (18), of course, for velocities. The 
Navier-Stokes and structural finite element equations are fully coupled in the solutions, and 
are either solved iteratively or directly using this time integration scheme [18,19]. 

Since the finite element discretizations are the same in explicit and implicit dynamic 
solutions, restarts from explicit to implicit solutions, and vice versa, are directly possible. This 
option can be of use when an initially fast transient response is followed by a slow transient, 
almost static response. For example, in the analysis of metal forming problems, the initial 
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response might be well calculated using the explicit solution scheme, and the spring-back 
might be best calculated using the implicit scheme. 

  

8. MEASURING THE SOLUTION ERROR 
Assuming that the finite element solution of a mathematical model has been obtained, ideally, 
we could assess the solution error. Much research has focused on the ‘a posteriori’ assessment 
of these errors  [21,22]. However, the problem is formidable since the error between the 
numerical solution and the unknown exact solution of the mathematical model shall be 
established.  

A review of techniques has been published in Ref. [22] where it was concluded that no 
technique is currently available that establishes, using a given finite element solution, lower 
and upper bounds proven to closely bracket the exact solution, when considering general 
analysis, in particular nonlinear transient analysis, and an acceptable computational effort. 
The simple recovery-based error ‘estimators’ are still, in many regards, most attractive. 
However, they only give an indication of the error and need to be used with care. 

Considering recovery-based estimators, in our experience, the stress bands proposed by 
Sussman and Bathe [23] (see also Ref. [3]) are quite effective to obtain error estimates in 
general analyses. But in practical engineering analysis, frequently very fine meshes are used, 
simply to ensure that an accurate solution is obtained. Then no error assessment is deemed 
necessary. 

The recovery-based error estimators can be used directly to estimate the error in different 
regions of the domain analyzed. However, it may be of interest to control the error in only a 
specific quantity, like the bending moment at a section of the structure.  In these cases, the 
concept of goal-oriented error estimation can be very effective and has considerable potential 
for further developments [21,24]. 

9. SOME ILLUSTRATIVE SOLUTIONS 
The objective in this section is to briefly give some example solutions that demonstrate some 
of the solution characteristics described above.  

9.1 Analyses of 360 degree rotation pendulum and rotating plate  
Here we consider two problems of large deformation long time duration response, namely  the 
the pendulum problem in Figure 1, and the rotating plate problem of Figure 2.  

The analytical rotational period of the pendulum is 2.4777 sec. The solution is to be 
obtained for many cycles of pendulum rotation. Figure 3 shows the calculated response with 
the scheme of  Ref. [20]. A very accurate solution has been calculated with a reasonable time 
step, and the solution is still acurate even after about 400 cycles.  Additional results are 
presented in Ref. [20] 

The solution of the rotating plate problem was already given in Ref. [25].  Figures 4 and 5 
show the calculated response.  We see that even  using a rather small time step, the 
trapezoidal rule becomes unstable. However, the scheme of Ref. [20] remains stable even 
when  a relatively large time step is used. 

9.2 Analysis of 3D compound pendulum 
The use of glueing of different meshes in nonlinear dynamic analyses is illustrated in Figures 
6 and 7 in the analysis of a compound pendulum. The structure is subjected to an impulse. 
The glueing of the meshes used is shown in Figure 6 and the calculated response is given in 
Figure 7. 

. 
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Figure 1.  Simple 360 degree rotation pendulum; boundary and initial conditions 
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Figure 2.  The rotating plate problem   
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The capability illustrated in Figure 6 is very important in practice because different meshes 
can be established for different components of a structure that are then glued together and 
solved for the linear or nonlinear response. The capability is also very useful in multi-scale 
solutions.  
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Figure 3.  360 degree rotation  pendulum in 400 cycles using the scheme 
of Ref. [20] with Δt = 0.01 
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Figure 4.  The rotating plate problem — results using the trapezoidal rule with Δt = 0.02 s 
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Figure 5. The rotating plate problem — results using the scheme of Ref. [20]  
with Δt = 0.4 s 
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Figure 6.  Glueing of meshes to model  a compound pendulum using ADINA 
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Figure 7. The calculated tip displacement of the compound pendulum 
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9.3 Analysis of shock absorber 
The analysis of shock absorbers involves fluid-structure interactions in which parts of the 
structure and the fluid undergo very large deformations. The fluid needs to be modeled as a 
Navier-Stokes fluid.  

Figures 8 to 10 show a shock absorber, the fluid mesh contained in the structure, and some 
calculated response. The fluid mesh has an initial length of about 3.2 inches and is 
compressed to about 0.7 inch. As the fluid  is being compressed by the structure (due to the 
applied shock in an experiment), it exits at the bottom through openings, in stages, which 
causes the wavy response of the total load carried.  

We see that even with the relatively coarse mesh used, the predicted load carried compares 
quite well with the experimental results. 

 

Figure 8.  Shock absorber — cutaway 
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Figure 9.  Fluid mesh in shock absorber   
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Figure 10.  Shock absorber — response 

9.4 Analysis of fuel pump 
Figure 11 shows the fuel pump analyzed. Due to the vertical cam motion the diaphragm is 
being pushed up and down, which causes fluid to be sucked in and pushed out through the 
valves. These therefore have to open and close. The diaphragm and the valves are of course 
modeled as elastic solid media. 

Figures 12 to 14 show some calculated response. In particular, Figure 14 shows that the 
calculated mass flow is quite close to the experimentally measured data.  

Inlet valve

Outlet valve

Flow inlet Flow outlet

Spring

Spring

Pump housing Diaphragm

Diaphragm moving due to cam motion

Valve seat

 
Figure 11.  Fuel pump — schematic 
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Figure 12.  Fuel pump — inlet valve is open; pressure and velocity vectors;  

fuel flows into the chamber 

 

 

 

 
Figure 13.  Fuel pump — outlet valve is open; pressure and velocity vectors;  

 fuel flows out of the chamber 
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Figure 14. Fuel pump — comparison of ADINA result with measurement 

 

 

10. CONCLUDING REMARKS  
The objective in this paper was to present some developments regarding the nonlinear 
dynamic analysis of structures. The focus in the paper is on the need to use reliable finite 
element methods for such simulations.  Test or field data are usually scarce, and the 
nonlinearity implies that measured data from even apparently similar laboratory or field test 
scenarios may not be of use for comparison. Hence, it is important to have as high a 
confidence as possible in the computed results. Such confidence, however, is only possible if 
reliable finite element methods are used.   

The complete analysis requires the choice of a mathematical model, the finite element 
discretization of the model, and the time integration solution. In each of the finite element 
solution steps, methods should be employed that do not use adjustable parameters, that are 
theoretically well-founded, and known to perform reliably and effectively. 

Some illustrative solutions have been presented in the paper, for additional solutions we refer 
to the references given, and also Refs. [26-28]. 
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