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We propose a completely meshfree procedure aimed at the time-harmonic analysis of electromagnetic
wave scattering from conducting targets. The problem is described by the vector wave equation with a
divergence-free constraint. We propose a mixed formulation whose unknowns are the electric field vec-
tor and a Lagrange multiplier. We investigate the well-posedness of the variational problem and con-
struct compatible meshfree function spaces able to describe solutions in any geometry, in two and
three dimensions. The method does not depend on any kind of parameter tuning. We illustrate its per-
formance in a number of solutions through experimentally derived convergence rates and comparisons
with other techniques.
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1. Introduction

Meshfree (or meshless) methods refer to a broad category of
numerical procedures applied to the solution of differential equa-
tions. In some cases, the methods can be interpreted as a general-
ization of finite element methods [1–5]. The applications in
research using meshfree methods are numerous, following the
publication of some papers introducing these methods in computa-
tional mechanics, like the Smooth Particle Hydrodynamics (SPH)
method [6], the Element Free Galerkin (EFG) method [7], the Local
Boundary Integral Equation (LBIE) method [8,9], the Finite Spheres
method [10,11], and the Meshless Local Petrov-Galerkin (MLPG)
method [12].

Specific meshfree methods can be quite different from others.
Features like the imposition of boundary conditions and the con-
struction of interpolation functions, for example, are dealt with
very differently depending on the method. However, there is one
characteristic that is common to all meshfree methods: They rely
on nodes scattered freely throughout the computational domain.
There is no mesh or grid connecting these nodes. Indeed, it is
one of the aims in the development of meshfree methods to cir-
cumvent the difficulties associated with the generation of a mesh,
particularly in three dimensions. In some cases the methods con-
struct independent basis functions defined on small regions
around the nodes, called subdomains, spheres, or patches. These
and generalizations thereof have recently been labeled ‘overlap-
ping finite elements’ because the overlapping is the main charac-
teristic distinguishing them from traditional finite elements [1,2].
The computational domain is covered by these overlapping ele-
ments. Comprehensive studies of meshfree methods in the solu-
tion of problems in mechanics led to the current research in
applications of ever-increasing levels of complexity [13–21].

In electromagnetics, the introduction of meshfree methods as
an alternative to the use of finite element methods came a few
years later [22–25]. Some research in this field is focused on collo-
cation procedures, i.e., methods which deal with the differential
equations in strong form. They usually use Radial Point Interpola-
tion (RPIM) basis functions, and can be seen as suitable alternatives
to finite difference methods [26–28]. While simpler to implement,
these methods suffer from instabilities or may not be fully mesh-
free [29].

Meshfree methods based on weak forms have also been consid-
ered. Some research has been focused on the EFG method [30–33],
but because the EFG method relies on background cells to perform
the numerical integrations, it is not considered a truly meshfree
method. On the other hand the MLPG method is a truly meshfree
procedure and has been used in electromagnetics, see for example
[34–36].
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Fig. 1. The geometry of the scattering problem, illustrating the nodal distribution
over the domain and along its boundary. (a) The computational domain X
comprises the region between the outer contour @P and the surface @R of the
PEC object, which is represented by the white region (hole). (b) The PML
corresponds to the layer adjacent to @P. (c) The square patches, or ‘overlapping
elements’ overlap each other (the collection of all overlapping elements associated
with the nodes in the figure is not shown). (d) The patches do not conform to the
geometry of the boundaries, as evidenced by the three patches at the PEC surface
@R. (e) For the nodes I and J, located on @R, frI

1;r
I
2g and frJ

1;r
J
2g are the normal and

tangential unit vectors at their locations, whereas for the interior node K , frK
1 ;r

K
2g

are the unit vectors bx1 and bx2 along the coordinate axes X1 and X2, respectively.
These ideas can naturally be extended to three-dimensional analysis.
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It is by now an established fact that meshfree methods based on
weak forms can be used in electrical engineering, see also [37–39].
However, all the solution examples in [30–39] deal with scalar field
problems. The extension of meshfree procedures based on varia-
tional forms to vector field problems in Rd (d ¼ 2 or 3) is a signifi-
cant step due to the difficulty in satisfying the divergence-free
condition, and only few research efforts have been published, see
for example [40]. Using finite element methods, vector field prob-
lems in electromagnetics are usually solved employing Nédélec
edge elements [41–44]. In this approach, degrees of freedom are
associated with each edge in the mesh (generally formed by, but
not restricted to, triangles in 2D and tetrahedra in 3D), and the
resulting basis functions are such that their divergence is zero
within each element (but not at the element boundaries) [43].

In a true meshfree setting, we do not have the support of a
mesh, which poses some difficulty in constructing appropriate vec-
tor basis functions. Some results using a meshfree procedure based
on weak forms in the solution of vector electromagnetic field prob-
lems are for example given in [40]. The strategy in that work is to
define vector basis functions on the patches. Despite the success,
there are at least three points that deserve attention. First, the
method has not been tested on curvilinear geometries. Second,
the imposition of essential boundary conditions is based on
Nitsche’s method [45], in which the formulation incorporates to
the weak forms extra regularization terms that depend on adjusta-
ble (tunable) stability parameters. Third, the vector basis functions
defined on the patches must be subjected to an orthogonalization
procedure in order to ensure that they are strongly linearly
independent.

It is our aim to conceive a method that simply uses nodes scat-
tered on the domain and scalar nodal basis functions. It does not
resort to vector basis functions. The divergence-free condition is
enforced weakly via a Lagrange multiplier that arises naturally
when the double-curl operator in the vector wave equation is
replaced by the vector Laplacian. We thus arrive at a system similar
to the steady-state incompressible Navier-Stokes equations of
hydrodynamics [46], for which there are reliable solution methods
based on nodal finite elements [47,48]. The Lagrange multiplier p
together with the scattered electric field Es constitute the
unknowns of the problem. However, in this mixed formulation
the electric field and the Lagrange multiplier must reside in differ-
ent function spaces. It is well-known that for a mixed formulation
these spaces must be compatible via the inf-sup condition [48,49]
(a fact used in the meshfree solution of a problem in mechanics
in [50]). Also, since the conducting objects that scatter the incident
wave can be of any shape, we show how to embed information
about the shape of the scatterer into the meshfree spaces.

Considering the imposition of the essential boundary condi-
tions, we impose these directly as in the standard finite element
method, because our nodal basis functions satisfy the Kronecker
delta property at the domain boundaries.

In the following sections we propose our method and then pro-
ceed to illustrate its application in several examples. Appendix A
gives some discussion of the inf-sup condition which must be sat-
isfied in order for the discretization to be reliable.

2. The differential equations of wave scattering

Let the conducting object be represented by a closed subset
R � Rd, as in Fig. 1. In this work, the canonical orthonormal basis
for Rd is represented as fbx1; . . . ; bxdg. The time-harmonic scattering
of an electromagnetic wave by a perfect electric conductor (PEC) in
free space is described in the differential formulation by the sys-
tem of equations [43]:
$� $� Es � k20E
s ¼ 0; in X; ð1aÞ

$ � Es ¼ 0; in X; ð1bÞ

bn � Es ¼ �bn � Einc:; on @X; ð1cÞ

lim
r!1

br � $� Es ¼ jk0E
s: ð1dÞ

The function Es : X ! Cd is a phasor; once it has been calculated,
the real scattered electric field is given by Es ¼ RefEsejxtg, where
x ¼ 2pf (f is the wave frequency), Re denotes the real part of a
complex number, j ¼

ffiffiffiffiffiffiffi
�1

p
, and t represents time. The scattering

problem is stated in the unbounded domain (see Fig. 1):

X ¼ Rd � R; ð1eÞ
with the boundary:

@X ¼ @R: ð1fÞ
In (1a) and (1d), k0 ¼ x ffiffiffiffiffiffiffiffiffiffil0e0

p
is the propagation constant in free

space; l0 and e0 are the free-space magnetic permeability and
electric permittivity, respectively. Since there are no losses, k0 is
a real number. On the surface of the PEC object, the boundary con-
ditions are given by bn � E ¼ 0, where bn is an outward-pointing
unit normal vector at the surface @X of the domain (and which
points towards the interior of R). The total electric field is

E ¼ Es þ Einc:, given by the sum of the scattered and incident fields,
where the incident field is prescribed [51]. The expression in (1d) is
the radiation boundary condition, where br is the unit vector in the
direction of the radius vector r (from the origin O to any point of
R3), and r is the Euclidean norm of r, i.e., r ¼ krkbr ¼ rbr . This con-
dition ensures that the scattered field Es propagates away from
the PEC object [43].

The electric field in (1a) is constrained by the condition (1b),
that is, Gauss’ law for the free-space with no sources. To develop
our formulation, we use the vector identity $� $� Es ¼ �$2Esþ
$ð$ � EsÞ, so that (1a) becomes:

$2Es þ k20E
s � $ð$ � EsÞ ¼ 0; in X: ð2Þ



38 W.L. Nicomedes et al. / Computers and Structures 184 (2017) 36–52
Since the field Es is described by d Cartesian components, the
system formed by (2) and (1b) represents dþ 1 scalar equations
in d unknowns. To introduce an additional unknown we let
p ¼ $ � Es, so that the system of equations becomes:

$2Es þ k20E
s � $p ¼ 0; in X: ð3aÞ

$ � Es ¼ 0; in X; ð3bÞ
together with the boundary conditions (1c) and (1d). These equa-
tions lead to a symmetric variational formulation and one that is
similar to the variational formulation used in the solution of fluid
flows [47,48]. In the solution of fluid mechanics problems, p is the
physical pressure whereas here it is simply a Lagrange multiplier.

The boundary condition (1d) assumes an unbounded domain, as
it takes into account distances r tending to infinity. However, since
it is unfeasible to discretize an unbounded domain, we define P to
be a bounded subset of Rd:

P ¼ ½A1;B1� � ½A2;B2�; d ¼ 2; ð4aÞ

P ¼ ½A1;B1� � ½A2;B2� � ½A3; B3�; d ¼ 3; ð4bÞ
with R � P, as in Fig. 1. Hence P is a parallelepiped with length
B1 � A1, width B2 � A2, and height B3 � A3 sufficiently large to con-
tain our metallic object R. In 2D, P reduces to a rectangular box
which contains the metallic scatterer. The scattering equations
must no longer be solved in (1e), but in the new domain:

X ¼ intðPÞ � R; ð5aÞ
where intðPÞ denotes the interior ofP. The boundary of the domain
in (5a) is:

@X ¼ @P [ @R; ð5bÞ
i.e., @X has two components: the surface @P of the parallelepipedP
(as in Fig. 1) and the surface @R of the PEC object (the unit vector
normal to @X points toward the interior of R). The distance between
the surfaces is given by:

dð@P; @RÞ ¼ inffkx� yk : x 2 @P; y 2 @Rg ð5cÞ
In practice, depending on the problem to be solved, dð@P; @RÞ

ranges from a fraction of k0 to a few multiples of k0, where
k0 ¼ 2p=k0 is the wavelength associated with a plane wave whose
propagation constant is given by k0.

Since the scattered waves need to be absorbed, we introduce a
perfectly matched layer (PML). The PML is a layer of fictitious mate-
rial placed adjacent to @P in order to absorb the waves scattered
by the PEC object, without reflecting them back [43]. To accommo-
date the PML, which has a width wPML and which does not touch
the PEC object, it is necessary that (see Fig. 1):

wPML < dð@P; @RÞ: ð6Þ

The PML properties are given by the second-order tensor K,
expressed in Cartesian coordinates as

K ¼ K1bx1bx1 þ � � � þKdbxdbxd ¼
Xd
i¼1

Kibxibxi: ð7Þ

The PML enters the problem through a modification of the wave Eq.
(3a), which is now expressed as:

$ � K � $Es þ k20E
s � $p ¼ 0; in X; ð8Þ

with

KiðxÞ ¼ biðxÞ þ jdiðxÞ; x 2 X; i ¼ 1; . . . ;d; ð9Þ
where the bi’s and the di’s are real-valued functions of the position
within the domain.
We use the PML for solutions of scalar wave problems, see for
example [52]. Given a point x ¼ ðx1; . . . ; xdÞ in the domain X, we
define a set of distances:

diðxÞ ¼ minfxi � Ai;Bi � xig; i ¼ 1; . . . ; d: ð10Þ
Using for each i ¼ 1; . . . ;d,

ci ¼
1� j 1

k0di
; di 6 wPML

1; di > wPML;

(
ð11Þ

the PML coefficients are calculated as:

Ki ¼ 1
c2i

; i ¼ 1; . . . ; d: ð12aÞ

From (11) and (12a), it can be seen that Ki ¼ 1 for di > wPML. On
the other hand, when di 6 wPML, we see that, for i ¼ 1; . . . ; d,

Ki ¼ ððk0diÞ2 � 1Þðk0diÞ2 þ j2ðk0diÞ3

ððk0diÞ2 � 1Þ2 þ 4ðk0diÞ2
: ð12bÞ

Examination of (12b) reveals that both the real and imaginary parts
of Ki remain bounded when 0 6 di 6 wPML. However, (12b) also
shows that bi (i.e., the real part of Ki) assumes negative values when
di < 1=k0. To overcome this issue, we propose a modification. Since
1=k0 is very small, particularly for high frequencies, the scattered
waves will have already been well attenuated close to the outer
boundary @P. Hence, instead of (11), we use, for each i ¼ 1; . . . ;d,

ci ¼
1� j 1

k0dth
; 0 6 di < dth

1� j 1
k0di

; dth 6 di < wPML

1; di P wPML;

8><>: ð13Þ

where dth ¼ 1:25ð1=k0Þ. Of course, the PML width must be chosen in
such a way that dth is significantly smaller than wPML.

We also assume that the tangential components of the scattered
field Es along @P are zero. The governing equations are now:

$ � K � $Es þ k20E
s � $p ¼ 0; in X: ð14aÞ

$ � Es ¼ 0; in X; ð14bÞ

bn � Es ¼ �bn � Einc:; on @R; ð14cÞ

bn � Es ¼ 0; on @P; ð14dÞ

with K defined as in (7), (12a), and (13). According to (14a)(14d),
the scattering problem is driven by the nonhomogeneous boundary
conditions along the surface @R of the PEC object.

3. The meshfree discretization

In this section we describe the meshfree discretization we are
using.

3.1. Definition of the overlapping elements

In the meshfree approach developed in this work, the shapes of
the actual scatterer R and of its computational representation coin-
cide, even if @R is curved. The process of the meshfree discretiza-
tion is given by these steps (see Figs. 1 and 2).

Step 1. Spread nodes throughout the interior of the domain X and
also along the boundaries @R and @P, as shown in Fig. 1. The nodes
are spread ‘‘freely” over X, forming a nodal cloud (the condition
that this cloud must satisfy is stated in Step 9 below). Usually,
the nodal distribution is made denser in specific regions of X or
close to sharp boundaries.



Fig. 2. The element/patch with volume xI associated with the interior node I. The
white region represents the conducting object, whose surface is @R. This region is
outside the computational domain X, a portion of which is represented here in grey,
together with some nodes. Considering the interior node I close to the boundary @R,
find its distance to @R from (17c). Multiply this distance by 0.99, in order to get the
value rI , as in (17f). In this way, the sphere/circle centered at the node I and whose
radius is given by rI does not touch the surface @R. The patch xI is defined as
the cube/square inscribed in this sphere/circle, here shown in light blue. The side of
the cube/square is lI .

W.L. Nicomedes et al. / Computers and Structures 184 (2017) 36–52 39
Step 2. The number of nodes is denoted by N.

Step 3. The nodes must be numbered. They are ordered according
to the natural numbers (node 1, node 2, . . ., node N). The natural
number associated with a given node is the index of the node.

Step 4. Each node is characterized by its Cartesian coordinates
and by its index. So the location of node I is described as
xI ¼ ðxI1; . . . ; xIdÞ.

Step 5. Calculate the discretization length h. First, for each node
I 2 f1; . . . ;Ng, calculate the distance to its closest neighbor:

DI ¼ minfkxI � xJk : 1 6 J 6 N and J – Ig: ð15Þ
Next define h as the largest DI:

h :¼ maxfDI : 1 6 I 6 Ng: ð16Þ
Step 6. Consider the nodes which lie in the interior of the domain
X, i.e., nodes whose indices are in the set:

IndX :¼ fI : xI 2 Xg: ð17aÞ
For each node I in IndX, we associate three distances. The first is the
distance from node I to the closest interior node. This distance is cal-
culated as

DI
1 ¼ minfkxI � xJk : J 2 IndX and J – Ig: ð17bÞ

The second is the distance between node I and the surface @R:

DI
2 ¼ dðxI; @RÞ ¼ inffkxI � yk : y 2 @Rg: ð17cÞ

The third is the distance between node I and the outer surface @P:

DI
3 ¼ dðxI; @PÞ ¼ inffkxI � yk : y 2 @Pg: ð17dÞ

Consider now

sI ¼ minfaDI
1;D

I
2;D

I
3g; ð17eÞ

where a > 1, and define

rI :¼ 0:99 sI: ð17fÞ
If one decides to employ spherical elements, then rI can be taken as
the radius of the sphere associated with node I. But since we are
employing cubes instead of spheres, we use the cube of region xI

inscribed in the sphere of radius rI:

xI ¼
Yd
i¼1

xIi �
lI
2
; xIi þ

lI
2

� �
; ð17gÞ

i.e., xI is the Cartesian product of open intervals centered at the
node’s location and whose length is lI. The larger the a in (17e),
the larger the elements will be. In this work, we choose a ¼

ffiffiffi
2

p
in

2D and a ¼
ffiffiffi
3

p
in 3D. The brick element defined in this way will

always have its edges parallel to the coordinate axes (in this work
we do not employ ‘rotated’ elements). Moreover, due to the fact that
rI is slightly less than sI , the element will not touch the boundaries @R
and @P as illustrated in Fig. 2.

Step 7. Consider the nodes which lie along the surface @R of the
metallic object, i.e., nodes whose indices are in the set:

Ind@R :¼ fI : xI 2 @Rg: ð18aÞ
For each node I in Ind@R, we associate a single distance: the distance
from node I to the closest node also on @R calculated as:

DI
1 ¼ minfkxI � xJk : J 2 Ind@R and J – Ig; ð18bÞ

and define rI ¼ 0:99DI
1. We use here the cube inscribed in the

sphere of radius rI occupying a region represented as in (17g). This
brick element I does not include any other node from @R.

Step 8. Consider the nodes which lie along the surface of the outer
boundary @P, i.e., nodes whose indices are in the set:

Ind@P :¼ fI : xI 2 @Pg: ð19Þ
For each node I in Ind@P, we proceed as in Step 7.

Step 9. The collection of all N brick elements of volumes xI ,
I ¼ 1; . . . ;N must form a covering of the computational domain
including the boundaries:

ðX [ @R [ @PÞ ¼ X �
[N
I¼1

xI: ð20Þ

Here the brick elements will overlap but there shall be no ‘holes’
which are uncovered. One of the ways to ensure that (20) is satisfied
is to spread the nodes in a reasonably balanced manner over X, i.e.,
to not allow wide portions of X depopulated of nodes. For example,
one could begin with a uniform distribution, and then add more
nodes on and close to the boundaries (thus making the nodal cloud
non-uniform in these regions).

3.2. The partition of unity

In reasonable nodal distributions, the discretization length h in
(16) is much smaller than the distance between the surfaces @R
and @P defined in (5c). Therefore, any element associated with a
node on the PEC surface @R does not intersect with any element
associated with a node on the outer boundary @P. This fact
together with the construction process given in Section 3.1 allows
us to conclude that for any node I on @R, the only patch to which it
belongs is xI . The same property holds for the nodes located along
the outer boundary @P.

The basis functions used in this work are based on the partition
of unity paradigm [10]. The construction of the partition of
unity function uI associated with the element I is achieved as
follows:

Step 1. For J 2 f1; . . . ;Ng and xJ with edge length lJ according to
(17g), define a set of d normalized distances:
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s1 ¼ jx1 � xJ1j
lJ=2

; . . . ; sd ¼
jxd � xJdj
lJ=2

; ð21aÞ

where x ¼ ðx1; . . . ; xdÞ is a generic point in X and xJ ¼ ðxJ1; . . . ; xJdÞ is
the location of node J.

Step 2. For each value of i ¼ 1; . . . ; d, evaluate the spline weight
functions [10,13]:

wi ¼ 1� 6s2i þ 8s3i � 3s4i ; 0 6 si < 1;
0; si P 1;

(
ð21bÞ

and define wJ at x as the tensor product of these wi, i.e.,

wJðxÞ :¼ w1 . . .wd: ð21cÞ

Step 3. For each x in X, define the sum:

WðxÞ :¼
XN
J¼1

wJðxÞ: ð21dÞ

Step 4. For each I 2 f1; . . . ;Ng and for x in X, define the partition of
unity function uI as:

uIðxÞ :¼ wIðxÞ
WðxÞ : ð22Þ

Consider a node I on the metallic surface @R. Its location xI is at
the center of the element with volume xI . Since the only patch to
which xI belongs is xI , it follows that wJðxIÞ ¼ 0, for any J – I. Con-
sequently, uJðxIÞ ¼ 0, for any J – I. Moreover, since wIðxIÞ ¼ 1 and

the function W in (21d) at xI is also equal to 1, it follows that
uIðxIÞ ¼ 1. The Kronecker delta property of the partition of unity
functions associated with nodes on @R thus emerges:

8I 2 Ind@R 8J 2 f1; . . . ;Ng uJðxIÞ ¼ dIJ: ð23Þ
The same conclusion holds for a node I located on the boundary @P.

3.3. The local spaces for each element

We associate with each element a set of M linearly independent
real-valued local functions defined on xI:

pI
m : xI ! R; m ¼ 1; . . . ;M: ð24Þ

The number M is the same for all patches. In this work, we shall
consider only two choices for the sets of local functions.

In the first choice wemakeM ¼ 1 and pI
1ðxÞ ¼ 1 in (24), so that a

generic scalar function is approximated as

vðxÞ ¼
XN
I¼1

XM
m¼1

uIðxÞpI
mðxÞ~v Im ¼

XN
I¼1

uIðxÞ~v Im; ð25Þ

where the coefficients ~v Im (which may be complex) are the degrees
of freedom associated with the expansion above.

In the second choice we make M ¼ dþ 1 and

pI
mðxÞ ¼ 1; m ¼ 1; ð26aÞ

pI
mðxÞ ¼

xm�1 � xIm�1

lI=2
; m ¼ 2; . . . ; dþ 1; ð26bÞ

where x ¼ ðx1; . . . ; xdÞ is the point withinxI at which the local func-
tions are calculated and xI ¼ ðxI1; . . . ; xIdÞ is the location of node I at
the center of the element. The linear terms in (26b) are zero when
evaluated at the location xI , i.e.,

pI
mðxIÞ ¼ 0; m ¼ 2; . . . ; dþ 1: ð26cÞ

The local terms in (26a) and (26b) will be used in the representation
of a generic vector function, as described in the next section.
3.4. Spaces for approximating vector functions

The boundary conditions to be satisfied by the scattered electric
field Es in (14c) and (14d) are difficult to incorporate, because they
prescribe values for the tangential components only, whereas the
normal components are left unspecified. If we simply declare that
each Cartesian component Es

1; . . . ; E
s
d should be discretized sepa-

rately, there may be difficulties when imposing the conditions
for the tangential component when the boundary is a curved sur-
face, because the normal and tangential unit vectors at the surface
do not always coincide with the canonical basis vectors bx1; . . . ; bxd.
In order to overcome these difficulties, we devised the approxima-
tion scheme below.

To each node I located at xI , in addition to the cubic patch xI

and the local terms from (26a) and (26b), we ascribe a set of d lin-
early independent unit vectors frI

1; . . . ;r
I
dg, which form a local

basis for Rd. These vectors are determined as follows.

Case 1. d ¼ 2. If I 2 IndX, i.e., if I is an interior node, then

rI
1 ¼ bx1; ð27aÞ

rI
2 ¼ bx2;

i.e., rI
1 and rI

2 are just the canonical unit vectors along the x1 and x2
axes, respectively. If I belongs to either Ind@R or Ind@P, i.e., if I is
located on the boundaries, then we use the outward-pointing unit
normal vector bn on the surfaces @R and @P, and so we employ

rI
1 ¼ bn: ð27bÞ

i.e., rI
1 is the normal vector bn calculated at the node location xI . The

second vector rI
2 is made equal to a tangent vector at xI . This tan-

gent vector can be taken as

rI
2 ¼ bx3 � rI

1; ð27cÞ
where bx3 ¼ ð0; 0;1Þ is the unit vector along axis x3 (perpendicular to
the plane in which a 2D problem is defined). Fig. 1 gives an illustra-
tion of nodes I, J, and K, and their associated basis vectors frI

1;r
I
2g,

frJ
1;r

J
2g, and frK

1 ;r
K
2g, respectively.

Case 2. d ¼ 3. If I 2 IndX, then

rI
1 ¼ bx1; ð27dÞ

rI
2 ¼ bx2;

rI
3 ¼ bx3:

If I belongs to either Ind@R or Ind@P, then

rI
1 ¼ bn: ð27eÞ

In order to determine the other two vectors, we proceed as follows.
Let b be any vector not parallel to bn, i.e., b� ðb � bnÞbn – 0. Then we
use w ¼ b� ðb � bnÞbn and

rI
2 ¼ w

kwk : ð27fÞ

Clearly, rI
2 is perpendicular to bn and therefore is tangential to the

surface in question. The other vector rI
3 is determined simply by

rI
3 ¼ rI

1 � rI
2: ð27gÞ

From the cross product above, it is clear that rI
3 is perpendicular to

the normal rI
1 ¼ bn, and thus it is also tangential to the surface in

question. It is also clear that rI
3 is perpendicular to rI

2. In this
way, rI

1 is a unit vector normal to the surface, whereas rI
2 and rI

3
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are both mutually perpendicular and tangential to the surface. The
set frI

1;r
I
2;r

I
3g thus forms a local basis for R3 at the point xI.

After the local basis vectors frI
1; . . . ;r

I
dg have been determined

for all nodes any generic vector field v is discretized as:

vðxÞ ¼
XN
I¼1

Xdþ1

m¼1

uIðxÞpI
mðxÞðrI

1~v
1
Im þ � � � þ rI

d
~vd
ImÞ ð28aÞ

The expansion (28a) is to be interpreted as follows: Inside
each element, there are d mutually orthogonal unit vectors
rI

1; . . . ;r
I
d, and the coefficients ~v1

Im (which may be complex)
govern the amplitude of v along rI

1, whereas the ~v2
Im govern the

amplitude of v along rI
2, and so on. In a more compact form,

(28a) becomes:

vðxÞ ¼
XN
I¼1

Xdþ1

m¼1

Xd
k¼1

hImðxÞrI
k
~vk
Im; ð28bÞ

where we write, as in [10],

hImðxÞ ¼ uIðxÞpI
mðxÞ; ð28cÞ
4. Meshfree discretization of the scattering system

We have the basic spaces L2ðX;KÞ and H1ðX;KÞ [53–55]:

u 2 L2ðX;KÞ () u : X ! K;R
X juj2dX < 1;

�
ð29aÞ

u 2 H1ðX;KÞ () u 2 L2ðX;KÞ;
@iu 2 L2ðX;KÞ; i ¼ 1; . . . ; d;

(
ð29bÞ

where () means ‘if and only if’, K ¼ R or K ¼ C, and u is a scalar
field. Consider the following spaces of complex-valued functions:

E ¼ v 2 H1ðX;CÞd : bn � v j@R ¼ �bn � Einc:;
n

bn � v j@P ¼ 0g;
ð29cÞ

V ¼ v 2 H1ðX;CÞd : n̂� v j@R ¼ 0;
n

n̂� v j@P ¼ 0g;
ð29dÞ

P ¼ L2ðX;CÞ: ð29eÞ

In (29a), L2ðX;KÞ is the linear space whose elements are real or
complex-valued functions which are square integrable (in the
sense of Lebesgue) on X. In (29b), where @ iu ¼ @u=@xi, H

1ðX;KÞ
denotes the linear space of real or complex-valued functions
whose weak first derivatives are square integrable on X [53–55].

In (29c) and (29d), H1ðX;CÞd is the Cartesian product of H1ðX;CÞ
with itself d times. The elements of the space E in (29c) will be
useful in representing weak solutions for the scattered electric
field Es, whereas the linear space V in (29d) will be employed
as a space of test functions. Finally, the elements of the space
P in (29e) will represent weak solutions for the Lagrange
multiplier p.

Because the local terms pI
m in (26a) and (26b) are (first degree)

polynomials, it follows from [10] that each term uIp
I
m in (28a)

belongs to H1ðX;RÞ, or according to (28c),

hIm 2 H1ðX;RÞ; I ¼ 1; . . . ;N; m ¼ 1; . . . ;dþ 1: ð30Þ
We thus define the discretized version of E in (29c) through the

rule:
vh 2 Eh ()

vh ¼
X
Imk

hImrI
k
~vk
Im;

~vk
Im 2 C;bn � vhj@R ¼ �bn � Einc:;bn � vhj@P ¼ 0;

8>>>>><>>>>>:
ð31aÞ

i.e., a vector vh belongs to Eh if and only if vh admits an expansion as
(28b) in which the degrees of freedom ~vk

Im are complex, and if vh

satisfies the boundary conditions (14c) and (14d) along @R and
@P, respectively. Using (30), we find that Eh � E.

The discretized version of V in (29d) is defined as:

vh 2 Vh ()

vh ¼
X
Imk

hImrI
k
~vk
Im;

~vk
Im 2 C;bn � vhj@R ¼ 0;bn � vhj@P ¼ 0:

8>>>>><>>>>>:
ð31bÞ

The spaces Eh and Vh differ only in the boundary conditions along
the metallic surface @R: they are nonhomogeneous in Eh and homo-
geneous in Vh. It can also be shown that Vh � V. Finally, the dis-
cretized version of P in (29e) is given by:

qh 2 Ph () qh ¼
XN
I¼1

uI~qI;

~qI 2 C;

8><>: ð31cÞ

i.e., qh 2 Ph if and only if qh admits an expansion as (25). Here only
the functions uI are used, the coefficients ~qI are complex, and there
are no boundary conditions to be satisfied by the elements of Ph.
We can show that Ph � P.

In order to transform the governing Eqs. (14a)–(14d) into the
weak form, we apply the weighted residual procedure. First, we
dot multiply (14a) by the complex conjugate of an arbitrary test
function v from the spaceV in (29d) and integrate over the domain
X. Second, we multiply (14b) by the complex conjugate of an arbi-
trary test function q from the space P in (29e) and integrate over X.
We obtain the following problem stated for the infinite-
dimensional spaces E, V, and P:

Find ðEs; pÞ 2 E� P such thatZ
X
ððK � $EsÞ : $v� � k20E

s � v�ÞdX�
Z
X
p$ � v�dX

�
I
@X
ððK � $EsÞ � bn � pbnÞ � v�dC ¼ 0; 8v 2 V: ð32aÞ

Z
X
q�$ � EsdX ¼ 0; 8q 2 P; ð32bÞ

where dX denotes a volume (area) element and dC a surface (line)
element in three (two) dimensions, respectively, and @X ¼ @R [ @P.

In the formulation the Lagrange multiplier p does not have a
physical meaning; it was included to couple Eqs. (2) and (1b),
and there are so far no boundary conditions to be satisfied
by p. Therefore we simply use that on @X, p is such that the
boundary integral in (32a) disappears. The problem assumes the
new form:

Find ðEs; pÞ 2 E� P such thatZ
X
ððK � $EsÞ : $v� � k20E

s � v�ÞdX�
Z
X
p$ � v�dX ¼ 0; 8v 2 V:

ð32cÞZ
X
q�$ � EsdX ¼ 0; 8q 2 P: ð32dÞ
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Because (14a) includes just the gradient of p, one could in prin-
ciple argue that, if ðEs; pÞ is a solution to (14a)–(14d), then
ðEs; pþ cÞ, where c is a nonzero constant, is also a solution, because
$c ¼ 0. This does not hold for the weak problem (32c) and (32d), as
the reasoning below shows.

Let ðEs; pÞ be a solution to (32c) and (32d).

Suppose that ðEs; pþ cÞ is also a solution to (32c) and (32d).

When we replace p by pþ c in (32c), we are left with the inte-
gral expression:Z
X
c$ � v�dX ¼ 0; 8v 2 V: ð32eÞ

Since c is a constant, (32e) is equal to:

c
Z
X
$ � v�dX ¼ c

I
@X
v� � bndC ¼ 0; 8v 2 V: ð32fÞ

Since the elements of the test space V in (29d) have zero tan-
gential components, but not zero normal components, the
boundary integral in (32f) is not always equal to zero. Conse-
quently (32f) holds for any v iff c ¼ 0. j

The Lagrange multiplier p is therefore uniquely determined.
This is in contrast to solving the Stokes and Navier-Stokes equa-
tions where the pressure must be specified at a point or by applied
tractions [48].

Because Vh � V and Ph � P, (32c) and (32d) still hold when the
test functions inV andP are replaced by those inVh andPh, respec-
tively. However, since our meshfree solutions will be approximated
by elements from the discretized spaces Eh and Ph, we obtain:

Find ðEs
h; phÞ 2 Eh � Ph such thatZ

X
ððK � $Es

hÞ : $v�
h � k20E

s
h � v�

hÞdX�
Z
X
ph$ � v�

hdX ¼ 0; 8vh 2 Vh:

ð33aÞZ
X
q�
h$ � Es

hdX ¼ 0; 8qh 2 Ph: ð33bÞ
5. The imposition of boundary conditions

By the construction of the discretization, the behavior of the dis-
cretized fields on the boundaries depends only on the element
unknownson theboundaries (i.e., coefficients associatedwithnodes
from the index sets Ind@R and Ind@P in (18a) and (19), respectively).

Consider the discretized electric field Es
h 2 Eh. According to

(31a), it can be expressed as:

Es
hðxÞ ¼

XN
I¼1

Xdþ1

m¼1

Xd
k¼1

hImðxÞrI
k
eEk
Im: ð34aÞ

We want to determine the coefficients eEk
Im for nodes on the bound-

aries. Let J be any node on the metallic surface @R, i.e., J 2 Ind@R.
From the boundary condition along @R in (31a), at the node location
xJ we have:XN
I¼1

Xdþ1

m¼1

Xd
k¼1

hImðxJÞðbn � rI
kÞeEk

Im ¼ �bn � Einc:ðxJÞ ð34bÞ

From (28c) and (23),Xdþ1

m¼1

Xd
k¼1

pJ
mðxJÞðbn � rJ

kÞeEk
Jm ¼ �bn � Einc:ðxJÞ: ð34cÞ
Properties (26c) and (26a) allow this to be simplified to:Xd
k¼1

ðbn � rJ
kÞeEk

J1 ¼ �bn � Einc:ðxJÞ: ð34dÞ

Both two and three dimensional situations will be investigated.

Case 1: d ¼ 2. Because bn ¼ rJ
1 from (27b), expression (34d)

becomes:

ðrJ
1 � rJ

2ÞeE2
J1 ¼ �rJ

1 � Einc:ðxJÞ: ð34eÞ
With the help of (27c) and the vector product identity
a � ðb� cÞ ¼ c � ða� bÞ, we obtain the coefficient:eE2
J1 ¼ �Einc:ðxJÞ � rJ

2: ð34fÞ

Case 2: d ¼ 3. We know that bn ¼ rJ
1 from (27e) and (34d)

becomes:

ðrJ
1 � rJ

2ÞeE2
J1 þ ðrJ

1 � rJ
3ÞeE3

J1 ¼ �rJ
1 � Einc:ðxJÞ: ð34gÞ

With the help of (27g), we obtain:

rJ
3
eE2
J1 � rJ

2
eE3
J1 ¼ �rJ

1 � Einc:ðxJÞ: ð34hÞ

Now we dot multiply (34h) by rJ
3 and apply the aforementioned

vector identity. We repeat the process for rJ
2, and arrive at the

values of the coefficients:eE2
J1 ¼ �Einc:ðxJÞ � rJ

2; ð34iÞ

eE3
J1 ¼ �Einc:ðxJÞ � rJ

3:

From (34f) and (34i), we see that for a node J on the boundary
@R, the unknowns relative to the tangential directions (rJ

2 in 2D;

rJ
2 and rJ

3 in 3D) and associated with the constant term (m ¼ 1)
in the local space have been determined. We set the linearly
varying terms to zero and thus have:

If I 2 Ind@R and k ¼ 2; . . . ;d : ð34jÞ

eEk
Im ¼�Einc:ðxIÞ �rI

k; m¼1;

eEk
Im ¼ 0; m ¼ 2; . . . ; dþ 1:

Likewise, considering the nodes on the outer surface @P, given
the boundary condition in (31a) we obtain:

If I 2 Ind@P and k ¼ 2; . . . ;d : ð34kÞ
eEk
Im ¼ 0; m ¼ 1; . . . ; dþ 1:

When we consider an arbitrary element vh from the discretized
test space Vh, all coefficients associated with tangential directions
in the nodes located on the boundaries @R and @P are zero,
because the boundary conditions in (31b) are homogeneous on
both surfaces @R and @P.

The scattering system (33a) and (33b) is not symmetric since
the solution is sought in Eh, whereas the test functions are in Vh.
Symmetry is reached as in the traditional finite element analysis
[41,48,56]. Namely, given any Es

h 2 Eh, we write:

Es
h ¼ uh þ e0h; ð35aÞ

where uh 2 Vh. The lifting function e0h 2 Eh satisfies the same bound-
ary conditions as Es

h. It is expanded as:

e0hðxÞ ¼
XN
I¼1

Xdþ1

m¼1

Xd
k¼1

hImðxÞrI
k~e

k
Im: ð35bÞ
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Using the known incident field Einc:, we can choose e0h so that all
coefficients ~ekIm are zero, except those associated with the tangential
directions in the boundary nodes, which are determined by the
rule (34j), (34k). Substituting (35a) into (33a) and (33b), uh becomes
the new unknown, and the problem assumes the symmetric
form:

Find ðuh; phÞ 2 Vh � Ph such thatZ
X
ððK �$uhÞ :$v�

h�k20uh �v�
hÞdX�

Z
X
ph$ �v�

hdX

¼�
Z
X
ððK �$e0hÞ :$v�

h�k20e
0
h �v�

hÞdX; 8vh 2Vh; ð36aÞ

�
Z
X
q�
h$ � uhdX ¼

Z
X
q�
h$ � e0hdX; 8qh 2 Ph: ð36bÞ

It should be noted that in practice we do not explicitly use a lift-
ing function but simply establish the governing equations with all
boundary conditions removed and then apply these boundary con-
ditions in the assemblage phase [48]. This is of course equivalent in
theory to the use of a lifting function.

We introduce the sesquilinear (or semilinear) forms
a : Vh �Vh ! C; and b : Vh � Ph ! C given by:

aðuh;vhÞ ¼
Z
X
ððK � $uhÞ : $v�

h � k20uh � v�
hÞdX; ð36cÞ

bðvh; qhÞ ¼ �
Z
X
q�
h$ � vhdX; ð36dÞ

where by sesquilinear we mean that

aða1u1 þ a2u2;vÞ ¼ a1aðu1;vÞ þ a2ðu2;vÞ; ð36eÞ

aðu;a1v1 þ a2v2Þ ¼ a�
1aðu;v1Þ þ a�

2ðu;v2Þ;
for any u1;u2;v 2 Vh and a1;a2 2 C. The form b in (36d) satisfies
these same properties. Introduce also the functionals F : Vh ! C

and G : Ph ! C given by:

FðvhÞ ¼ �
Z
X
ððK � $e0hÞ : $v�

h � k20e
0
h � v�

hÞdX; ð36fÞ

GðqhÞ ¼
Z
X
q�
h$ � e0hdX: ð36gÞ

The problem in (36a) and (36b) can therefore be written as:

Find ðuh; phÞ 2 Vh � Ph such that

aðuh;vhÞ þ bðvh;phÞ� ¼ FðvhÞ; 8vh 2 Vh; ð37Þ
bðuh; qhÞ ¼ GðqhÞ; 8qh 2 Ph:

The problem in (37) is readily seen to be cast in a mixed or
hybrid formulation, and constitutes a saddle-point problem. The form
(37) is a model for many problems in computational mechanics,
and both its theoretical and practical aspects have been amply dis-
cussed [48,49,57–59]. The well-posedness of the problem (37) spe-
cialized to the sesquilinear forms (36c) and (36d) is addressed in
Appendix A.

Using the discretized vector functions uh and vh as

uh ¼
XN
J¼1

Xdþ1

n¼1

Xd
l¼1

hJnr
J
l
~ul
Jn; vh ¼

XN
I¼1

Xdþ1

m¼1

Xd
k¼1

hImr
I
k
~vk
Im; ð38aÞ

the discretized scalar functions ph and qh as

ph ¼
XN
J¼1

uJ~pJ ; qh ¼
XN
I¼1

uI
~qI; ð38bÞ
and substituting into the system of Eqs. (36a), (36b), we obtain the
linear system

KU ¼ F: ð39Þ
Here K is the governing matrix of the discretized problem, U the
solution vector and F the forcing vector. The matrix K is sparse,
and its entries are evaluated numerically. For the numerical evalu-
ation we subdivide the edge of element I into nsub equal lengths, so
that each subdivision has a length given by Dl ¼ lI=nsub. Hence in 2D

analyses, the element volume is divided into ðnsubÞ2 equal little
squares, over which we integrate with the 1 or 2 point Gauss rules.
In 3D analyses we proceed in the same way.

In the assemblage of K and F we use the fact that the homoge-
neous boundary conditions are satisfied by uh 2 Vh and do not
assemble the rows and columns corresponding to the boundary
degrees of freedom [48]. Solving (39) gives the coefficients ~ul

Jn in

the expansion of uh, and the scattered field Es
h can be calculated

at any point in the domain X by adding uh and the lifting function
e0h, according to (35a).

6. Numerical solutions

In this section we present the solutions to various problems in
order to illustrate the capabilities of the presented solution
scheme.

6.1. A Maxwell eigenproblem

The formulation developed in the previous sections can be
easily adapted to treat the Maxwell eigenvalue problem. Suppose
X � Rd is a bounded domain, which represents the interior of a
hollow cavity bounded by a perfectly conducting surface @X. The
Maxwell eigenvalue problem is given by [51]:

$� $� E ¼ k20E; in X; ð40aÞ

$ � E ¼ 0; in X; ð40bÞ

bn � E ¼ 0; on @X: ð40cÞ
There are differences between the eigenvalue problem (40a)–

(40c) and the scattering problem (1a)–(1d). First, the unknown is
the total electric field E instead of the scattered field Es. Second,
there is no need to deal with the behavior of the field at very large
distances. Third, the wavenumber k0 is not known in advance;
rather, it is one of the unknowns of the problem. For hollow cavi-
ties, k0 is a positive real number. Fourth, the electric field E is a
real-valued quantity, and not a complex-valued quantity as Es.
Among the resemblances between the two problems, we point
out the fact that both are subjected to a divergence-free constraint,
and that the boundary conditions are prescribed for the tangential
components of the vector fields only.

In this work, we are not focusing on the eigenvalue problem,
but consider it as a test to provide some insight into the approx-
imability properties of our meshfree spaces.

Following the above derivation we arrive at the discretized
problem:

Find ðEh; ph; k0Þ 2 Vh � Ph � Rþ such thatZ
X
$Eh : $v�

hdX�
Z
X
ph$ � v�

hdX ¼ k20

Z
X
Eh � v�

hdX; 8vh 2 Vh

ð41aÞZ
X
q�
h$ � EhdX ¼ 0; 8qh 2 Ph: ð41bÞ



Fig. 4. The scattered electric field Es
h , in V/m, in the cylinder problem. The

coordinates x1 and x2 are measured in meters. (a) The real part of Es
h;1 (component

1). (b) Real part of Es
h;2 (component 2). (c) Relative error calculated according to (43).
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The spaces Vh and Ph are those of (31b) and (31c), respectively. The
only difference is that we can assume the eigenfunctions Eh to be
real-valued, so that the coefficients in the expansion of the solution
are real numbers.

The quantities Eh, vh, ph, and qh are given as in (38a) and (38b),
and after applying the boundary conditions we arrive at the gener-
alized eigenvalue problem

AU ¼ k20BU; ð41cÞ
where the matrices A and B represent the left-hand and right-hand
sides of the system (41a) and (41b), respectively, and U is a vector
collecting all unknown degrees of freedom.

As an example, we consider a problem seeking the TE modes
that can exist in a circular cavity (the cross-section of a circular
waveguide). In these modes (transverse electric, or TE), the electric
field vector is entirely contained in the cross-section [51,60], and
here we can compare the analytical and meshfree solutions in
order to study the convergence rate.

When integrating the weak forms, we employ the 2� 2 Gauss
integration rule with nsub ¼ 4 (a coarser scheme) and also with
nsub ¼ 6 (a finer scheme). We are interested in the TE01 mode,
and measure the relative error in the L2 norm given by:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
X
jEh � E01j2dX

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
X
jE01j2dX

s
; ð42Þ

which is a function of the discretization length h. Fig. 3 shows the

result, and that the convergence rates are �ðhÞ ¼ C1h
0:878 and

�ðhÞ ¼ C2h
0:886, for the nsub ¼ 4 and nsub ¼ 6 rules, respectively,

where C1 and C2 are positive constants.
We also solve (40a)–(40c) using standard Nédélec CT/LN (con

stant-tangential/linear-normal) vector basis elements (i.e., using
edge elements) [43]. The convergence rate for the error of these

solutions (Fig. 3) is given as �ðhÞ ¼ C3h
1:063. However, the finite ele-

ment solution based on the edge elements returns many eigen-
functions associated with the zero eigenvalue (the gradient
fields) [43,61], which represents a waste of computational power.
This effect is not seen in the meshfree formulation developed here
and in other finite element formulations, such as [46].

6.2. Scattering by a PEC circular cylinder

We consider next a plane wave Einc:ðxÞ ¼ Einc:ðx1; x2Þ ¼ e�jk0x1bx2,
in V/m, where k0 ¼ 24pm�1, propagating onto a cylinder (see
Fig. 4). We shall find the two components of the scattered field

Es
h ¼ ½Es

h;1; E
s
h;2�T in the x1x2 plane. Consider the closed square region

P ¼ ½�L; L� � ½�L; L� as in (4a), where L ¼ 6k0 (the wavelength k0 is
related to k0 by k0 ¼ 2p=k0). Consider also a circle R whose radius
Fig. 3. Relative error for the TE01 mode in the circular cavity problem, calculated
according to (42).
a ¼ 2k0, i.e., R ¼ fx 2 R2 : kxk2 6 a2g. For the width of the PML, we
use wPML ¼ k0, and when integrating the weak forms, we employ
the 2� 2 Gauss integration rule with each element subdivided
using nsub ¼ 6.

This problem admits an analytical solution Es
an in terms of a ser-

ies of Hankel functions [51,60], against which we can compare the
meshfree solutions calculating the relative error � in the L2 norm:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
X�XPML

jEs
h � Es

anj2dX
s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
X�XPML

jEs
anj2dX

s
; ð43Þ

where the region XPML occupied by the PML is excluded from the
calculations. The solutions in Fig. 4 have been obtained using
9,192 nodes with a total of 61,656 unknown coefficients. To obtain



Fig. 5. The strip problem. (a) The conducting strip extends to infinity along the x3
(or z) direction. In the x1x2 (or xy) plane, we can set up the standard polar system of
coordinates. In this way, the incidence angle ui is measured as in the figure. The
coordinates x1 and x2 are measured in meters. (b) The real part of Es

h;1 (component
1), in V/m. (c) Real part of Es

h;2 (component 2), in V/m. (d) Real part of Es
h;1 along the

path x1 ¼ 0:35, �0:3 6 x2 6 0:3, shown as a vertical white line in Fig. 5b. The
meshfree and MoM solutions are shown in the figure.

W.L. Nicomedes et al. / Computers and Structures 184 (2017) 36–52 45
the error as a function of h, we vary h and obtain Fig. 4c. A linear

regression reveals that �ðhÞ ¼ C1h
0:7641, where C1 is a positive

constant.

6.3. Scattering by a conducting strip

Here we consider the problem regarding the scattering of
a TEz plane wave (transverse electric to x3, or z) by a conducting
strip (see Fig. 5a). Assume that k0 ¼ 40pm�1, and let P ¼
½�7k0;13k0� � ½�10k0;10k0� be a square region. A zero-thickness
strip R of width b ¼ 6k0 is placed at the center of P, i.e.,
R ¼ fx 2 R2 : 0 6 x1 6 6k0; x2 ¼ 0g. The PML width is wPML ¼ 4k0.

The incident magnetic field is given by Hinc:ðxÞ ¼ H0e�jk0bk�xbx3,

where H0 ¼ 1 A=m. Moreover, bk ¼ ½k1; k2�T is the unit vector point-
ing in the direction of propagation of the incident plane wave,

where bk ¼ ½� cosui;� sinui�T and ui is the incidence angle (a polar
angle with respect to the origin of the coordinate system, as in
Fig. 5a). The incident electric field is recovered from Ampére’s

law in free space $�Hinc: ¼ jxe0Einc::

Einc:ðxÞ ¼ �g0H0ðk2bx1 � k1bx2Þe�jk0
bk�x; ð44Þ

where g0 ¼ 120p is the vacuum impedance (in ohms). The incidence
angle is chosen to be ui ¼ 2p=3. We use a regular nodal distribution
and nsub ¼ 6 with 2� 2 Gauss integration. Our discretization uses
10,201 nodes, with 68,917 unknown solution variables. The compo-

nents 1 and 2 of the predicted scattered electric field Es
h ¼ ½Es

h;1; E
s
h;2�T

are plotted in Fig. 5b and c, respectively.
Nothaving ananalytical solution,wevalidate the results using the

electric field integral equation with the method of moments (MoM)
[43]. The results are given in Fig. 5d, which shows a good correspon-
dence between the near-field solutions provided by both methods.

6.4. Modes of a spherical cavity

This problem is the three-dimensional counterpart of the prob-
lem in Section 6.1. We consider the domain X to be a unit sphere
representing a hollow spherical cavity bounded by conducting
walls (see Figs. 6–9). Our objective with this example solution is
to establish if the meshfree spaces are appropriate when used in
the solution of problems with three-dimensional curvilinear
geometries. Fig. 6 illustrates some nodes scattered on the spherical
surface @X. For each node I located on @X, the three unit basis vec-
tors frI

1;r
I
2;r

I
3g, also seen in Fig. 6, are determined as discussed

above.
The eigenfunctions of the spherical cavity have analytical

expressions [51,60]. In spherical coordinates ðr; h;uÞ, and for the
TMr (transverse magnetic to r) modes, the r component of the mag-
netic vector potential A is expressed as a product of three terms:

Ar ¼ aĴn
f0np
a

r

 !
Pm
n ðcos hÞ½C cosðmuÞ þ D sinðmuÞ�; ð45aÞ

where a is a (normalization) constant, Ĵn are the Schelkunoff-Bessel
functions of the first kind and order n, a is the radius of the sphere,
and the Pm

n are the associated Legendre polynomials of the first kind
[51]. Each eigenvalue is determined by two indices n and p, and f0np
is the p -th zero of the derivative of the Schelkunoff-Bessel function

Ĵn. Therefore each mode is characterized by n, p, andm, and displays
either even or odd symmetry with respect to the azimuthal angle u.

We limit our solution to just two modes. Their labeling indices
fn; p;m; symmetryg are f1;1;0; eveng and f2;1;1; oddg. Expression
(45a) allows us to find the spherical components Er , Eh, and Eu of
the electric field [51], from which we obtain the field in Cartesian
coordinates E1, E2, and E3. These form the analytical description of
the fields E110;even and E211;odd. The meshfree solutions are calcu-
lated from (41a)–(41c), where we employ 2� 2� 2 Gauss integra-



Fig. 7. Cartesian components of the eigenmode f1;1;0; eveng. (a) Component Eh;1.
(b) Component Eh;2. (c) Component Eh;3.

Fig. 6. Nodes distributed over the surface @X of the sphere. (a) Corresponding to
each node I on @X, there is a set of three mutually orthogonal unit vectors
frI

1;r
I
2;r

I
3g, determined as in Section 3.4. (b) A zoom is applied.
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tion for each element subdivided with nsub ¼ 6. The Cartesian com-
ponents Eh;i, i ¼ 1;2;3 are determined from the scalar product
between Eh (which admits an expansion as in (38a)) and the unit
vectors bxi, i.e., for any point x in X,

Eh;iðxÞ ¼ EhðxÞ � bxi ¼
XN
I¼1

Xdþ1

m¼1

Xd
k¼1

hImðxÞrI
k � bxi

eEk
Im: ð45bÞ

The results for the modes E110;even and E211;odd calculated at the
surface of the sphere are plotted in Figs. 7 and 8, respectively.
We also vary h and calculate the relative error in the L2 norm for
the mode f1;1;0; eveng. The result is shown in Fig. 9, which reveals

a convergence rate �ðhÞ ¼ C1h
1:138, where C1 is a positive constant.

6.5. Scattering by conducting plates

Consider now the three-dimensional scattering of plane waves
by rectangular PEC plates (see Figs. 10–12). Let k0 ¼ 18pm�1,
and let P be defined as:

P ¼ ½�4:5k0;4:5k0� � ½�4:5k0;4:5k0� � ½�1:5k0;1:5k0�: ð46aÞ
We assume a zero-thickness plate of width 6k0 placed symmetri-
cally at the center of P:

R ¼ fx 2 R3 : �3k0 6 x1 6 3k0; ð46bÞ
�3k0 6 x2 6 3k0; x3 ¼ 0g:

The PML width is chosen as wPML ¼ 0:75k0.
In the spherical coordinate system ðr; h;uÞ (as in Fig. 10a), given
the incidence angles hi and ui, the direction of propagation of the
incident plane wave is given by

bk ¼
k1

k2

k3

2664
3775 ¼

� sin hi cosui

� sin hi sinui

� cos hi

2664
3775: ð46cÞ



Fig. 8. Cartesian components of the eigenmode f2;1;1; oddg. (a) Component Eh;1.
(b) Component Eh;2. (c) Component Eh;3.

Fig. 9. Relative error for the eigenmode f1;1;0; eveng in the spherical cavity
problem.
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In this example, we consider two polarizations for the incident
plane wave. The first, called TMx (transverse magnetic to x1, or x), is
characterized by an incident electric field given by

Einc:ðxÞ ¼ E0e�jk0bk�xbx1; ð46dÞ
where E0 ¼ 1 V=m. The second, called TEx (transverse electric to x1,
or x), is characterized by an incident magnetic field given by

Hinc:ðxÞ ¼ H0e�jk0
bk�xbx1, where H0 ¼ 1 A=m. Application of Ampère’s

law shows that the associated incident electric field for this polar-
ization is

Einc:ðxÞ ¼ �g0H0ðk3bx2 � k2bx3Þe�jk0
bk �x: ð46eÞ

In the TMx problem, we choose ðhi;uiÞ ¼ ðp=4;3p=2Þ. A uniform
nodal cloud of 27,735 nodes is used, which originates 307,667
degrees of freedom. For the integration of the weak forms, we use
the 2� 2� 2 Gauss rule, with nsub ¼ 6 for each element. We con-
sider a box placed 0:375k0 away from the plate, i.e., the box B given
by:

B ¼ fx 2 R3 :� 3:375k0 6 x1 6 3:375k0; ð46fÞ
� 3:375k0 6 x2 6 3:375k0;
�0:375k0 6 x3 6 0:375k0g;

which completely encloses the plate. The three Cartesian compo-
nents Es

h;1, E
s
h;2, E

s
h;3 of the scattered field are calculated on the surface

@B of the box B in (46f) and displayed in Fig. 10. For the TEx problem,
we choose ðhi;uiÞ ¼ ðp=6;3p=2Þ, and the same nodal distribution
and integration rule as for the TMx problem are employed. The
Cartesian components of the scattered field are again calculated
on @B and displayed in Fig. 11.

These problems do not admit analytical solutions. To validate
the numerical solutions, we focus on the far-field pattern. At each
point of the surface @B, we can calculate the scattered electric field
Es
h, and also the scattered magnetic field, given by Faraday’s law

$� Es
h ¼ �jxl0H

s
h. Using the surface equivalence principle [51],

Es
h and Hs

h produce ‘equivalent’ surface current densities on @B
given by

Jeq ¼ bn � Hs
h; ð46gÞ

Meq ¼ �bn � Es
h;

where Jeq and Meq are the equivalent electric and magnetic surface

current densities, respectively, and bn is a unit vector normal to @B.
The field Es at a distance from the plate can be determined using
suitable radiation integrals [51]. These depend on Jeq and Meq, and
are evaluated over @B. The fields at infinity can be determined
through a far-field approximation and the radar cross-section (RCS)
can be calculated [43,51]:

r3Dðhs;usÞ ¼ lim
rs!1

4pr2s
jEsðrs; hs;usÞj2

jEincj2
; ð46hÞ

We consider a set of observation angles ðhs;usÞ and for each one of
these determine the normalized radar cross-section given by r3D=k

2
0,

i.e., r3D divided by the square of the wavelength k0 ¼ 2p=k0 [51,62].



Fig. 10. Scattering by plates. (a) Geometry of the scattering system. We can set up
the standard spherical coordinate system, so that any direction can be identified by
the pair of angles ðh;uÞ. The incident field Einc: has its direction determined by
ðhi;uiÞ. (b) TMx polarization, real part of E

s
h;1 over the surface of the box B in (46f), in

V/m. (c) Real part of Es
h;2. (d) Real part of E

s
h;3. Dimensions x1, x2, x3 in meters.

Fig. 11. The plate problem, TEx polarization. (a) Real part of E
s
h;1 over the surface of

the box B in (46f), in V/m. (b) Real part of component Es
h;2. (c) Real part of Es

h;3.
Dimensions x1, x2, x3 in meters.
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Having calculated the radar cross-section for a given set of
observation angles, we compare our results with the Physical
Optics closed form approximation [51,63,64]. The Physical Optics
approximation is most accurate when compared with the ‘full field
theory’ solution in the specular direction, i.e., the direction along
which the incident wave is reflected by the conducting surface,
in a ray tracing approach. The predictions of the Physical Optics
become less accurate away from the specular directions. One of
the reasons is that the Physical Optics approximation fails to take
edge diffractions into account [51].

The normalized RCS provided by our meshfree method and by
the Physical Optics approximation are plotted in Fig. 12, which
gives results in decibels, i.e., as 10log10ðr3D=k

2
0Þ. They are seen to

agree with each other in the vicinity of the specular directions.



Fig. 13. The real part of component 2 of the scattered electric field (in V/m) plotted
over the surface of the cubic box B ¼ ½�4k0;4k0�3. The plane x3 ¼ �0:4 touches the
south pole of the conducting sphere. (a) A relatively coarse meshfree solution. (b)
Analytical solution. Dimensions x1, x2, x3 in meters.

Fig. 12. Radar cross-sections. (a) Normalized radar cross-section (RCS) in decibels
for the 3D scattering of a TMx plane wave by a PEC plate. (b) Normalized RCS in
decibels for the scattering of a TEx plane wave by a PEC plate. In these figures, the
RCS is calculated for the observation angles us ¼ 90	 and 0 6 hs 6 90	 . The RCS
calculated from the meshfree solutions are compared with those predicted by the
Physical Optics. The Physical Optics is an approximation, whose predictions agree
with those of the ‘full’ field theory only in the vicinity of the specular directions,
given by 45	 in (a) and 30	 in (b).
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6.6. Scattering by a conducting sphere

The purpose of this section is to examine the number of
unknowns required when using the proposed solution scheme.
The analysis constitutes a preliminary consideration about the
ability of the method to be extended and applied to larger prob-
lems in engineering.

Consider k0 ¼ 20pm�1, and let P be a cubic box defined as

P ¼ ½�6k0;6k0�3. The set which represents the conducting sphere

is R ¼ fx 2 R3 : kxk2 6 a2g, where a ¼ 4k0. The incident electric

field is Einc:ðxÞ ¼ E0e�jk0bk�xbx1, where E0 ¼ 1 V=m and bk ¼ ½0;0;1�T ,
i.e., the plane wave propagates from south to north. The width of
the PML is wPML ¼ k0. As for the nodal cloud, we employ a regular
distribution in the central portion of the domain X, and a non-
regular distribution on and close to the spherical boundary @R.
When integrating the weak forms, we use a 1-point Gauss rule,
and subdivide the patches according to nsub ¼ 12 for the nodes in
the central portions and nsub ¼ 8 for the nodes on and close to @R.
The Cartesian component Es
h;2 of the scattered field is plotted on

the surface @B of the cubic box B ¼ ½�4k0;4k0�3 in Fig. 13a. The ana-
lytical solution [51,60] is plotted in Fig. 13b. There is a reasonable
agreement between the numerical and analytical solutions, and
the quality of the results can be improved by increasing the num-
ber of nodes.

In the solution of this problem, a relatively small number of
nodes has been used. Our cloud has 79,883 nodes, which produces
894,991 unknowns. The side of the box P is 12k0, so that its vol-
ume is 1;728 k30. The radius of the sphere is a ¼ 4k0, and its volume
is given by 4pa3=3, which amounts to approximately 268 k30.
Therefore, the volume of the computational domain X is
1;460 k30. We now define the density of unknowns Dunk as the num-
ber of unknowns Nunk divided by the volume of the computational
domain (in cubic wavelengths) and obtain:

Dunk :¼ Nunk

volðXÞ ¼
894;991
1;460k30

ffi 613
unknowns

k30
: ð47aÞ

This result tells that about 9 unknowns are needed per wavelength
(when assumed to propagate in each direction) to capture the wave,
which is quite reasonable.

From this preliminary analysis it can be seen that we can use
the proposed method to obtain reasonable results with a relatively
low number of unknowns. However, the total computational effort
is given by the numerical integrations and by the solution of the
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governing equations, and we have not focused as yet on these
aspects of the solution.

7. Concluding remarks

In this paper we presented a new scheme for the solution of
electromagnetic wave scattering problems from conducting tar-
gets. The scheme can be used when curved geometries are
considered.

Since the electric field associated with the scattered wave is a
vector quantity constrained by a divergence-free condition, we
introduced a Lagrange multiplier, arriving at a mixed formulation.
It follows that the discretization scheme must employ different
spaces for approximating the solution variables and an inf-sup
condition must be satisfied. The formulation resembles that used
to solve the Navier-Stokes fluid flows.

The results we obtained agree with analytical solutions and
with those provided by other techniques. Hence the method devel-
oped here is a promising scheme for the solution of electromag-
netic wave scattering problems in domains of complex geometry.

However, while we have presented the scheme and illustrative
solutions, we did not focus on the computational effort required in
the numerical integration (to establish the governing matrix and
vector) and in the solution of the governing equations. This compu-
tational effort should be assessed in detail in comparison to the use
of other schemes. To reduce the numerical integration effort, the
procedures proposed in [3] provide an effective avenue, and have
already shown a good promise in the solutions of some structural
analysis problems [3].

Future work might consider using the scheme, indeed an exten-
sion thereof, to solve electric field problems that include different
media and singularities, as widely encountered in electromagnet-
ics. Also, an extension of the technique to solve more complex
problems would be valuable, e.g., problems with dielectric (pene-
trable) objects, or with magnetic materials, such as ferrites, and
also fully coupled problems of multi-physics phenomena [46].
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Appendix A

The conditions for well-posedness of Eqs. (37) are a classical
result used in the study of mixed finite element formulations with
real-valued bilinear forms (see for example [48,49,55,57,65]).
While the formulation to solve scattering problems proposed in
this paper uses complex-valued forms, it can be shown using the
techniques from the aforementioned references and from [53,54]
that an inf-sup condition evaluated for spaces of real-valued func-
tions implies the surjectivity of the operator B associated with the
sesquilinear form b in (36d), as required by the theory (see for
example Section 2.1.1 in [49] and Section 6.12 in [54]).

In this appendix, we quote this inf-sup condition and only focus
on its verification for the proposed discretization scheme.

A.1. The discrete inf-sup condition

From (31b) and (31c), arbitrary elements from Vh and Ph admit
expansions in terms of real-valued meshfree basis functions and
complex coefficients. We introduce the spaces of real-valued
functions Vh½R� and Ph½R�:
vh 2 Vh½R� ()
vh ¼

X
Imk

hImrI
k
~vk
Im;

~vk
Im 2 R;bn � vhj@X ¼ 0;

8>>><>>>: ðA:1Þ

qh 2 Ph½R� () qh ¼
XN
I¼1

uI
~qI;

~qI 2 R;

8><>: ðA:2Þ

The inf-sup condition to be satisfied by the discrete meshfree spaces
is:

There exists a constant ch > 0 such that

inf
qh2P

sup
vh2V

R
X qh$ � vhdx

kqhkPh ½R�kvhkVh ½R�
P ch; ðA:3Þ

where V ¼ Vh½R� � f0g and P ¼ Ph½R� � f0g. This result is a conse-
quence of the Banach Closed Range and Open Mapping Theorems
(see, for example, [49,53,54]). It can be shown that (A.3), which
involves the real spaces Vh½R� and Ph½R�, is one of the conditions
assuring the well-posedness of the discrete problem (37), which
involves the complex spaces Vh and Ph. In (A.3), the norm k � kVh ½R�

is the (vector) H1 norm [54], and k � kPh ½R� is the (scalar) L2 norm

[54]. The reason is that Vh and Ph are subspaces of H1ðX;CÞd and
L2ðX;CÞ, respectively.

A.2. The inf-sup test

The goal of this section is to study the inf-sup condition (A.3). It
should be pointed out that in the context of mixed finite elements,
proving that a pair of discrete spaces satisfies an appropriate
inf-sup condition is a very difficult task. Some pairs that do satisfy
the condition are documented in the literature [48]. However, one
could in principle be interested in a new pair of discrete spaces
and not be able to find a formal proof that it satisfies the inf-sup
condition.

In order to overcome this difficulty, a numerical test has been
proposed for testing if a given pair of finite element spaces satisfies
an appropriate inf-sup condition [66–69]. In this way, the inf-sup
condition is not actually proved, but verified experimentally.

The test has found much success [48,70], and has also been used
in a two-dimensional meshfree solution in computational mechan-
ics [50]. We apply it here to the proposed solution scheme for elec-
tromagnetic wave scattering.

Consider a test domain X, which could be a square in 2D [50] or
a cube in 3D. Introduce the matrices B, SV, and SP, which are matrix
representations of the following operations:Z
X
qh$ � vhdX; ðA:4Þ

ðwh;vhÞVh ½R� ¼
Z
X
ðwh � vh þ $wh : $vhÞdX; ðA:5Þ

ðqh; thÞPh ½R� ¼
Z
X
qhthdX: ðA:6Þ

By ‘matrix representation’, we mean that expanding qh as in (A.2)
and vh as in (A.1), and collecting all degrees of freedom ~qI into a vec-

tor eQ whose size is dimPh½R� � 1, and all degrees of freedom ~vk
Im

into a vector eV whose size is dimVh½R� � 1, then (A.4) is expressed
as:Z
X
qh$ � vhdX ¼ eQ TBeV ; ðA:7Þ
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from which it is clear that the size of the matrix B is
dimPh½R� � dimVh½R�. Likewise, if wh is expanded as in (A.1), and
th is expanded as in (A.2), and if their degrees of freedom ewk

Im and
~tI are collected into vectors fW and eT , respectively, then (A.5) and
(A.6) can be expressed as:Z
X
ðwh � vh þ $wh : $vhÞdX ¼ fW TSV

eV ; ðA:8Þ

Z
X
qhthdX ¼ eQ TSP

eT ; ðA:9Þ

where the sizes of the matrices SV and SP are dimVh½R� � dimVh½R�
and dimPh½R� � dimPh½R�, respectively.

The elements from Vh½R� represent vectors that have zero tan-
gential components along @X, according to (A.1). Degrees of free-
dom of zero value have not been included in the assemblage
process in (A.4), (A.5), (A.7), and (A.8).

According to the inf-sup test [48,66,70], it can be proved that
the left-hand side of (A.3), the inf-sup value v inf�supðhÞ, is equal to
the square root of the smallest eigenvalue ki in the problem [48]:

BS�1
V BT eqi ¼ kiSPeqi; ðA:10Þ

i.e., v inf�supðhÞ ¼
ffiffiffiffiffiffiffiffiffi
kmin

p
. In this way, (A.3) becomes:

There exists a constant ch > 0 such thatffiffiffiffiffiffiffiffiffi
kmin

p
¼ v inf�supðhÞ P ch: ðA:11Þ

If the inf-sup value is larger than zero, then the pair of discrete
spaces Vh½R� and Ph½R� satisfies (A.3).

In order to check the inf-sup stability, the idea is to construct a
sequence n ¼ 1;2;3; . . . of discretizations, from less fine to more
fine. In this way, the number of nodes N is strictly increasing
(i.e., N1 < N2 < N3 < � � �), and the discretization length h is strictly
decreasing (i.e., h1 > h2 > h3 > � � �). For each discretization in the
sequence, the eigenproblem (A.11) must be solved. Then we obtain
Fig. 14. The inf-sup test. Successive inf-sup values v inf�sup plotted as a function of h.
(a) Results for the test in two dimensions, for which X ¼ ½0;1�2. (b) Results for the
test in three dimensions, for which X ¼ ½0;1�3.
a sequence of inf-sup values v inf�supðhnÞ and, for the test to be
passed, the values in this sequence should stabilize at a value c lar-
ger than zero, i.e.,

inffv inf�supðhnÞ : n 2 Ng ¼ c > 0: ðA:12Þ
The results of the inf-sup test are given in Fig. 14. A sequence of

nodal distributions of decreasing h is considered, in both two and
three dimensions. The same behavior can be observed: The inf-
sup values remain, for all practical purposes, essentially constant.
Indeed, they exhibit a very small increase when h decreases: a lin-
ear regression applied to the graphs in Fig. 14 reveals that the
dependence of v inf�sup on h assumes the approximate form

v inf�supðhÞ ¼ C1h
�0:0007 in the 2D case, and v inf�sup ¼ C2h

�0:0020 in
the 3D case, where C1 and C2 are positive constants.

Hence we conclude that as h decreases, the inf-sup values do
not approach zero, and (A.12) is satisfied. We say therefore that
the meshfree spaces Vh½R� and Ph½R� form a compatible pair,
which, using also other arguments, implies the stability of the
mixed formulation (37).
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