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Abstract

In many applications in engineering and science, it is important to know whether the response of a nonlinear system
is chaotic. This characterization is possible by the evaluation of the one-dimensional Lyapunov characteristic exponent
(LCE). In this paper, a numerical procedure to calculate the LCE of continuous systems discretized using finite element
methods is presented.
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1. Introduction

In the last few decades, the analyses of nonlinear con-
tinuous systems have increased due to the availability of
faster computers together with the need for more accurate
models in engineering and science. Chaotic behavior is
found in many nonlinear systems and the prediction and
quantification of it can be of major importance.

A chaotic behavior is characterized by an aperiodic
long-term response and sensitivity to initial conditions [1].
The system’s nearby trajectories in phase space diverge ex-
ponentially fast from each other, and as a consequence, the
response of a chaotic system is unpredictable. In engineer-
ing, a chaotic behavior is usually avoided, but the system
response can become regular (non-chaotic) by changing
system parameters or the external forcing. In either case, it
is necessary to know the nature of the response in order to
change it.

The Lyapunov characteristic exponent (LCE) is associ-
ated with the asymptotic dynamic stability of the system:
it is a measure of the exponential divergence of trajecto-
ries in phase space. The exponent provides a means of
ascertaining whether the behavior of a system is chaotic.

An approach for the numerical calculation of the LCE
of discrete dynamical systems and maps was given by
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Benettin et al. [2,3]. We used this approach as a basis for
the development of a numerical technique to calculate the
LCE of continuous media discretized using finite element
methods, as presented in this paper.

2. Lyapunov characteristic exponent

Consider the following system of nonlinear non-dimen-
sional equations

Px D f.x/ (1)

with initial conditions

x.t0/ D x0 (2)

We are interested in the behavior of small perturbations
to the reference trajectory xr .t/, which is the solution of
Eqs. (1) and (2). The equation describing the time evolution
of perturbations, y, is obtained by linearizing Eq. (1) about
xr .t/,

Py D @f
@x

þþþþ
xr .t/

y (3)

where @f=@x is the Jacobian matrix of the function f.x/,
which is assumed to be sufficiently smooth.

The LCE of a response is defined as

$ D lim
t!1

1

t
ln
ky.t/k
ky0k

(4)
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where y0 is an arbitrary initial perturbation, and $ is
positive when the behavior is chaotic. For all x0 lying in
the basin of attraction of an attractor (such as a fixed point,
limit cycle or chaotic attractor), the LCE does not depend
on the reference trajectory, xr , nor on the choice of the
initial perturbation, y0, see for example Benettin et al. [3].

The perturbation vector can be expressed by

y.t/ D �.t; t0/y0 (5)

where �.t; t0/ is a mapping matrix with the property that
for t2 > t1 > t0

y.t2/ D �.t2; t1/�.t1; t0/y0 (6)

Approximations to the matrices �.tn; tn�1/ can be for-
mally obtained by discretizing Eq. (3) in time and inverting
the obtained left-hand side coefficient matrix. Notice that in
a numerical calculation the perturbation vector, y.tn/, must
be normalized after a given number of time steps since
otherwise the norm of the vector might grow (exponentially
fast) and overflow might occur.

The following procedure can be followed to calculate
the LCE:
1. Start with an initial perturbation such that Qy0 D y0=ky0k
2. For each time step i calculate

yŁi D �.ti ; ti�1/Qyi�1

di D kyŁi k

Qyi D
yŁi
di

(7)

Note that ky.ti/k D di Ð di�1 Ð : : : Ð d1

3. Calculate successive approximations of the LCE as a
function of time

kn D 1

tn

nX
iD1

ln di (8)

where tn D t0 C n∆t , and ∆t is the time step employed,
and t0 is the initial time.
Note that, using the numerical procedure described

above,

$ D lim
∆t!0
n!1

kn (9)

3. Calculation of LCEs of discretized finite element
models

Let us now focus on the calculation of the LCE of a
continuous system discretized using finite element methods.

The linearized finite element discrete equations of a
nonlinear structure can be written as [4]

M RuC C PuCKu D R� OF (10)

where u is the vector of incremental nodal point displace-
ments (and can include other degrees of freedom such as

pressures or rotations depending on the finite element for-
mulation employed), M, C and K are the mass, dissipation
and stiffness matrices, respectively, R is the load vector and
OF contains known terms from the linearization process. The
corresponding equations for the evolution of perturbations
are

M RQuC C PQuCK Qu D 0 (11)

where Qu is the vector of perturbations. At each time step,
Eqs. (10) and (11) can be solved to obtain the reference
trajectory and the evolution of the perturbation.

Steps 1, 2 and 3 described in the last section could be
followed to calculate the successive values of kn. However,
since yT D

'
Qu PQu
(

, it is necessary to non-dimensionalize
the perturbed displacements and velocities to calculate the
norm of the perturbation vector y, that is

di D
vuut NX

jD1

Qu2
j

L2
C

NX
jD1

PQu2

j

!2 L2
(12)

where N is the total number of structural degrees of free-
dom, Qu j and PQu j are the components of Qu and PQu at time ti ,
respectively, and L and ! represent a characteristic length
and frequency of the problem. It is evident that the char-
acteristic length plays only the role of a scaling constant;
in contrast, the correct choice of the value of ! is essential
to the determination of the appropriate norm. Considering
a system that does not have a chaotic response (such as
a linear system), it is observed that when ! is chosen
so that ! < !max, with !max the maximum frequency of
the finite element model, the norm of the perturbation, di ,
usually grows over a long period of time leading to the
wrong conclusion that the system is chaotic. A detailed
analysis of this situation and the solution proposed will be
published in a future paper [5]. To avoid a spurious growth
of the perturbation vector norm, the velocity has to be
non-dimensionalized using a frequency that is greater than
or equal to the maximum frequency of the finite element
model, i.e. ! ½ !max in Eq. (12). However, !max can be
a very large number, in which case the contribution from
the perturbation velocity vector is negligible in Eq. (12),
leading to

di D
vuut NX

jD1

Qu2
j

L2
(13)

Comparisons of the results obtained with Eq. (13) and
Eq. (12) in the analysis of low order systems reveals that
using Eq. (13) the local maximum values of the calculated
kn values match the values obtained using Eq. (12). As a
consequence, if Eq. (13) is used, the LCE is calculated as

$ D lim sup
∆t!0
n!1

kn (14)

The ideas described above for structural problems dis-
cretized using finite element methods can be used in the



1642 S. Rugonyi, K.J. Bathe / First MIT Conference on Computational Fluid and Solid Mechanics

analysis of fluid–structure interaction systems in which
only the behavior of the solid part is of interest. In such
a case, all the equations (from the fluid and structure) are
considered in the calculation of the perturbation, but the
norm di is calculated using only the perturbed displace-
ments of the structure [6].

4. Numerical examples

4.1. Buckled beam

Fig. 1 shows the system analyzed, which consists of
a buckled beam with applied periodic forcing. It is well
known that for certain frequencies and amplitude of exci-
tation, the beam behavior becomes chaotic [7]. The beam

Fig. 1. Buckled beam problem considered.

Fig. 2. (a) Buckled beam dynamic response. (b) Calculated Lyapunov characteristic exponent.

was analyzed using an excitation frequency of 90 Hz and
amplitude of excitation of p D 45 Pa, and discretized using
80 ð 1 9-node plane stress elements. Experimental results
for the beam are presented in [8]. The chaotic response
together with the calculated values of the approximations
to the LCE, kn , are shown in Fig. 2.

4.2. Collapsible channel

The model of the channel with fluid flow analyzed is
presented in Fig. 3. A part of the upper channel wall was
replaced by a membrane that can displace in the horizontal
and vertical directions (the collapsible segment), followed
by another part that can only displace horizontally. Fig. 3
also shows the membrane behavior, which exhibits a limit
cycle response. The system LCE, which goes to zero since
the membrane behavior is not chaotic, is shown in Fig. 4.
This example serves as a test for the LCE calculation.

5. Conclusions

In the analysis of nonlinear dynamic systems, different
types of responses can occur. In particular, to ascertain
whether the response is chaotic, the LCE can be evaluated.
Since a chaotic behavior is sensitive to initial and model
conditions, different numerical discretizations may lead to
different response solutions, but the value of the LCE
indicates the chaotic nature of the behavior.

This paper presents a numerical procedure for the cal-
culation of the LCE of continuous systems discretized
using finite element methods. In the proposed algorithm,
all discretized degrees of freedom (and therefore all dis-
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Fig. 3. (a) Collapsible channel problem considered. Navier–
Stokes fluid with structure. (b) Obtained mid-point membrane
displacement.

crete modes) are perturbed, and the growth=decay of the
perturbation in time is calculated by means of linearized
evolution equations.

The computational cost of the algorithm is approx-
imately equivalent to an additional iteration step in a
Newton–Raphson iteration procedure, and therefore cal-
culating the LCE typically added about 25% of the total
computation time for the examples presented here.
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Fig. 4. Calculated Lyapunov characteristic exponent for the col-
lapsible channel problem. Since the system response is not
chaotic, the LCE converges to zero.
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