
1 INTRODUCTION 

Although the analysis of solids and structures has 
been much researched during the recent decades, 
and finite element methods are nowadays used 
abundantly, there are many analysis areas where 
further advances are still much needed. These areas 
primarily pertain to the solution of dynamic, 
nonlinear, and multiphysics problems. The objective 
in this paper is to briefly present some advances that 
we have recently accomplished. Due to space 
limitations, we mention only our books and papers, 
and refer the reader to the many references given 
therein. 

When considering research achievements in the 
field, it is important to realize the philosophy that a 
research group adheres to in its research on 
computational methods. Our philosophy – as 
pursued for about 40 years now – is to focus on the 
development of methods that are general, reliable 
and efficient, and advance the current state of the art 
as practiced in industry and the sciences (Bathe 
1996, Bathe 2009, Bathe 2012a). 

The ultimate test as to whether a computational 
scheme is of value is, indeed, whether the scheme, 
once published, is used widely in industry and 
scientific investigations. Since there is a keen 
interest in engineering and the sciences to solve ever 
more complex and difficult physical problems, 
significant new, reliable and effective analysis 
procedures are quickly adopted. 

Our research focus is on the conception of novel 
and general methods, their mathematical analyses 

and their testing to establish the generality, 
reliability and efficiency.  

A finite element method is general if it is 
applicable to many varied problems in a certain 
problem area; for example, a general shell element 
can be used for all shell problems described by a 
general mathematical model like the ‘basic shell 
model’ identified in references (Chapelle & Bathe 
2000, 2011). 

A finite element method is reliable and efficient if 
identified as such; for example, a finite element 
discretization is reliable and efficient if the 
ellipticity and inf-sup conditions are satisfied 
without the use of any artificial factors, and the 
scheme shows optimal convergence at a low 
computational cost (Bathe 1996, Chapelle & Bathe 
2011). 

In the next sections, we present our recent 
developments, according to the above research aims, 
regarding the analysis of wave propagations, large 
strains in shells, prediction of more accurate 
solutions when using low-order elements, and the 
simulation of fluid-structure interactions including 
electro-magnetic effects. These schemes are widely 
applicable in traditional areas of analysis and also in 
novel areas, like the analysis of proteins and DNA 
structures. 

2 INSIGHTS AND ADVANCES 

We briefly focus in the following sections on some 
of the research we have pursued. 
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ABSTRACT: The objective in this presentation is to survey our recent research accomplishments to advance 
the state of computational simulations in engineering and the sciences. We present our novel insights and 
recent advances in the analysis of transient and wave propagation problems, the simulation of large strain 
conditions of shells, the prediction of more accurate solutions using low-order elements, and the coupling of 
structures to general fluid flows and electromagnetic effects. At the conference, applications are given in the 
analysis of traditional structures and in the modeling of nano-structures, specifically, proteins and DNA 
assemblies. Also, major challenges are outlined for further advances in the field. 
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2.1 Wave propagation problems 

The accurate analysis of transient wave propagations 
and the accurate solution of time harmonic problems 
at high frequencies have remained a significant 
challenge. The essential difficulties are that the 
waves need to be captured accurately by the mesh 
and the time integration scheme used. If high 
frequency waves are to be simulated, very fine 
meshes of conventional finite elements may be 
needed.  However, even with such very fine meshes, 
to calculate a transient response accurately, the 
numerical dispersion and dissipation of waves due to 
the spatial and temporal discretizations must be 
small. To address these solution difficulties, spectral 
methods, spectral element methods, and spectral 
finite element methods have been proposed, for the 
solution of specific problems. 

We have developed a finite element method 
‘enriched for wave propagation problems’ (Ham & 
Bathe 2012). In this method the standard low-order 
Lagrangian finite element interpolations are simply 
enriched with harmonic functions, governed, as 
usual, by nodal degrees of freedom. An important 
point is that the usual fundamental theory of finite 
element methods is applicable. 

For two-dimensional solutions, the basic 
displacement interpolations for a typical solution 
variable u(r,s) are 
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where the  , ,x yk k
U


 with superscripts are the nodal 

degrees of freedom,   is the local element node, 
with h  the conventional finite element interpolation 
function, and the S, C, and + and – are used in the 
superscripts to correspond to the harmonic 
expressions. The interpolations for one- and three-
dimensional analyses directly follow from the above 
equation. Here, the two fundamental wavelengths 

x  and y , typically equal to twice the element 
lengths, and the wave cut-off numbers n  and m  
with 1 xk n  , 1 yk m  , typically , 3,n m   need 
to be chosen by the analyst. 

These functions can directly be used to solve time 
harmonic and transient problems. Figure 1 shows the 
finite element solution of the Helmholtz equation 
corresponding to a 2D planar pressure wave  

 
 
 
 
                                                          
 
 
 
  

Here good accuracy is seen, although a very coarse 
mesh is used (Ham & Bathe 2012). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Solution of Helmholtz problem; 9-node elements and 
n=m=2; fS  = surface of the cylinder; point A is the pole 

 
   For transient analysis also an effective time 
integration scheme needs to be employed. 
Considering implicit schemes, we use the Bathe 
method (available in ADINA) which shows good 
cut-off characteristics of waves that can spatially not 
be resolved (Bathe 2007, Bathe & Noh 2012, Noh, 
Ham & Bathe, In Press). 

Figure 2 gives the relative wave speed errors 
when traditional 2-node elements are used to solve a 
1D wave propagation problem, here the CFL 
number is defined as CFL = 0c xt  . The key point 
to note is that for CFL=1.0, the wave speed error is 
very small for reasonable spatial discretizations   
hence the dispersion error is small for those waves 
that can be represented spatially and waves of 
lengths less than 3 elements are ‘cut-out’ of the 
response. 
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Figure 2. Relative wave speed errors of the Bathe method for 
various CFL numbers; results for discarded wave modes are 
given by dotted lines 



The corresponding behavior of the widely-used 
trapezoidal rule of the Newmark method is given in 
Figure 3, here the property of cutting out the high- 
frequency modes is not present. 
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Figure 3. Relative wave speed errors of the trapezoidal rule for 
various CFL numbers 

 
Figure 4 describes an illustrative 1D problem 

solved using standard 2-node elements. The 
response is given in Figure 5 using the Bathe 
method with CFL=1.0 and the trapezoidal rule with 
CFL=0.65, these being the optimal numbers to use. 
Less oscillations are seen when using the Bathe 
method. This better response prediction is due to 
cutting out those waves that cannot be accurately 
captured. 
 

 
Figure 4. 1D bar impact problem, initial velocity = 0   

 
 
 

 
 
 
 
 

 
 
 
 

    
 
 
 

 
 
 
 
 
     
 
Figure 5. 1D bar impact problem, 200 2-node elements 

For further solutions, see Ham & Bathe 2012, Bathe 
& Noh 2012, Noh, Ham & Bathe, In Press, and 
Kazancı & Bathe 2012. Also, using the Bathe 
method, an added benefit is that the load at the half-
step can be selected for optimal accuracy, like for 
rapidly varying loads, the mean value of the loads at 
times t and t t   is best used. An explicit time 
integration scheme with the property of ‘cutting out’ 
undesirable frequencies, as in the Bathe method, is 
given in Noh & Bathe 201x. 

2.2 3D-shell elements for large strain analysis   

Significant research efforts over many decades 
have focused on the analysis of shells, but there are 
still many outstanding challenges in the field 
(Chapelle & Bathe 2011); one such is the analysis of 
large strain behaviors. The 3- and 4-node MITC 3D-
shell elements build upon the classical MITC shell 
elements but include important three-dimensional 
effects (Kim & Bathe 2008, Sussman & Bathe, In 
Press). The elements (available in ADINA) can be 
used to model very large deformations with large 
elastic or plastic strains. They are employed like the 
conventional MITC shell elements with 5 or 6 
degrees of freedom at each midsurface node and 
additional nodal degrees of freedom to represent 
through-the-thickness straining and warping of the 
transverse fibers. In the formulations, MITC 
interpolations are used on the transverse fiber 
motions to preserve the volume and prevent shear 
locking, and in incompressible analysis the u/p 
formulation is employed (Chapelle & Bathe 2011, 
Sussman & Bathe, In Press). 

Figure 6 shows schematically a 4-node element. 
The important point is that at each node two control 
vectors are used to describe the deformations.  To 
eliminate shear locking, the motions of the 
transverse fibers are described by a tying rule that 
represents an extension of the rule used for the 
classical MITC shell elements (Chapelle & Bathe 
2011), namely we employ 
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where , 1, 2,3t
ix i   are the components of t x , 

t
ir x  are the covariant base vectors, t

r ijC  are the  
components of the Cauchy-Green deformation 
tensor referred to the isoparametric description, 



det t DI
r X is the determinant of the deformation  

gradient directly calculated, the superscript t denotes 
at time t, and the superscript AS  denotes “assumed”. 
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Figure 6. Nodes and control vectors of the 4-node 3D-shell 
element 
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(b) Response of cantilever  
 

 
 

(c) Configuration after 720 degree rotation 
 
Figure 7. Large strain analysis of thick plane strain cantilever 

 
Figure 7 shows a large strain solution obtained 

with the MITC4 3D-shell element.  Here the large 
strains in the structure result into a significant 

downward shifting of the midsurface nodes during 
the response. 

Figure 8 shows some analysis results obtained in 
a slow crush analysis of a square tube using the 
MITC4 3D-shell element and the Bathe time 
integration scheme; for details and also crash 
solution results see Kazancı & Bathe 2012. 
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Figure 8. Quasi-static crushing of a square-section tube, length 
of tube is 310 mm; (a) experimental and computed results in 
final configuration; (b) force - displacement curves; (c) mean 
crushing force - displacement curves 

2.3 Procedures for solution improvements 

As well known, the 3-node triangular and 4-node 
quadrilateral elements in 2D solutions and 4-node 
tetrahedral and 8-node brick elements in 3D 
solutions lead to well-conditioned small bandwidth 
assembled matrices, they are robust but are not 
effective in predicting stresses accurately. Very fine 



meshes are needed in practice. Hence, it is of much 
interest to increase the order of stress convergence 
of these elements. 

We have developed schemes to improve the 
predictions of stresses (Payen & Bathe 2012) and, 
both, displacements and stresses (Kim & Bathe 
2013).  To establish more accurate stresses from 
calculated displacements, we use two projection 
equations over the patch of elements that contains 
the element, for which improved stresses are sought, 
and those surrounding it (Payen & Bathe 2012) 
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where kP  denotes the kth order polynomial,  m  
represents the enhanced stresses to be calculated in 

2P ,  m
h  are the directly-calculated stresses,  m  is 

an element in ν , the subspace of 2P  in which all 
stress functions satisfy the equilibrium equations 

   0mdiv  , and PN  is the number of finite 
elements in the patch considered. 

The scheme is effective, needs to only be applied 
in certain critical stress areas, and can be used in 
linear and nonlinear, static and dynamic analyses.  

Figure 9 shows an actuator analyzed and the 
results obtained. It is seen that with the scheme used 
the stresses converge with almost second order, i.e. 
with the same order as the displacements.  

This scheme only improves the stresses. We have 
also researched another approach in order to 
improve all solution variables when using 3-node 
2D triangular and 4-node 3D tetrahedral elements 
through ‘enriching the finite element method by 
interpolation covers’ (Kim & Bathe 2013). These 
covers are also applied only in those regions where 
higher accuracy is sought in the solution. 
 

2

3 17 3 4 3

2.5

2.5

4

2 2

x

p = -60sin(2πx /5) Flexible armature 

4

Forward leg 

 
(a) Actuator modeled in 2D 
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(b) Stress convergence curves for the actuator problem. Left: 
using 3-node element; right: 4-node element 

 
Figure 9. Analysis of actuator subjected to Lorentz force 
 

Considering a patch of 2D 3-node elements, the 
essence of the enrichment scheme is to interpolate 
the solution variable using 
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where iu  is the usual nodal degree of freedom and 
ia  lists additional degrees of freedom with 

      
2 2 p
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Here, the ( ),i ix y  are coordinates measured from the 
node i, and p is the cover order used. Important 
considerations pertain to choosing computationally 
effective covers and having a well-conditioned 
coefficient matrix (Kim & Bathe 2013). 

2.4 Coupling of structures to fluid flows and 
electromagnetic effects 

Separate solutions of solids, structures, fluid flows, 
and electromagnetics have been obtained for 
decades. However, the solution of multiphysics 
problems involving fully coupled fluid-structure 
interactions with temperature and electromagnetic 
effects has hardly been tackled and presents special 
difficulties.  Such fully coupled problems need to be 
solved, for example, in biomedical engineering, 
metal processing, and plasma physics. 

We have developed a novel finite element 
scheme for the solution of the general Maxwell’s 
equations to simulate fluid flows, solids, and 
structures coupled with electromagnetic effects 
(Bathe 2012a, Bathe, Zhang & Yan 201x). The finite 
elements used are similar to those we proposed for 



the solution of the Navier-Stokes equations (Bathe 
& Zhang 2009). 

The basic equations we solve are, considering 
Faraday’s law and Ampere’s law with the Maxwell 
term, in the E-H form 

  *
0 / ep in       I E I K 0  

and 

  mq in     I H I J 0  

where e  and m  denote the domains of electric 
and magnetic fields, resp., K and J  are source 
terms for the electric and magnetic field intensities, 

0r  is the charge density, *e  is the effective 
permittivity (for static and harmonic solutions), I  is 
the identity tensor, and we introduced 

*
0 /p

q

   
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E

H




 

Of course, these equations specialize to specific 
cases by omitting certain terms, and the equations 
must be used with appropriate boundary and 
interface conditions. 

However, for certain problems, a potential 
formulation can be more effective, in which the 
electric and magnetic potentials,   and A , are used  

;
t

 
    


A

E B A  

with Ag A   and Ag  a gauge condition. 
Solutions using these formulations in ADINA are 
shown at www.adina.com. 

3  CONCLUDING REMARKS 

In this paper we briefly summarized some of the 
research we have pursued during the recent years, 
with our research philosophy adhered to in these 
developments.  

Significant advances in many areas are still to be 
accomplished – in particular when the actual 
practice of simulations in engineering and the 
sciences is focused upon. Here the reliability and 
efficiency of procedures is very important. Major 
challenges exist in solving multiphysics problems, at 
small and large scales, and in multiscale conditions.  
     In all applications, the endeavor is, in essence, to 
‘understand nature and try to predict the future 
through analysis’. This endeavor will be of 
increasing interest and value throughout the sciences 
and engineering, and the hierarchical process of 
analysis will be of particular value, see references 
(Bathe 1996, Bucalem & Bathe 2011).  However, 
while novel areas of simulations will attract exciting 
attention, it is also important to continuously 
increase the efficiency of methods in traditional 

areas of analysis, like for the analysis of shells and 
for the solution of large finite element systems 
(Chapelle & Bathe 2011, Bathe 2012b). 
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