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Abstract Efficient and accurate simulation of the deforma-
tions in anisotropic metallic sheets requires a constitutive
model and an accompanying algorithm at large strains which
take into account the anisotropy of both the elastic and plas-
tic material behaviors, as well as their evolution with plas-
tic strains. Recently we proposed such a constitutive model
based on continuum energy considerations, the Lee decom-
position and an anisotropic stored energy function of the log-
arithmic strains in which the rotation of the orthotropic axes is
also considered. We obtained a framework similar to the one
used in isotropic elasto-plasticity. In the present work we give
some physical insight into the parameters of the model and
their effects on the predictions, both in proportional and in
non-proportional loading problems. We also present a proce-
dure to obtain the spin parameter of the model from Lankford
R-values.

Keywords Plasticity - Anisotropic plasticity - Orthotropy -
Plastic spin - Large strain plasticity

1 Introduction

Accurate modeling of the elasto-plastic deformations of met-
als is very important not only for the simulation of the
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manufacturing process but also for the analysis of the final
components during their service, for example consider the
simulation of car crash or crush conditions. Many metallic
goods are made from cold-rolled sheets. Rolling, as well as
many other manufacturing procedures, induces anisotropy
in the metals. Anisotropy manifests itself in that the phys-
ical properties depend on the directions along which they
are measured. Hence the constants determining the elastic
and plastic properties, notably the Young’s moduli and yield
stresses become dependent on the direction of testing. An
accurate computational model must take into account the
directions of both the elastic and plastic properties, as well
as their evolution with plastic strains.

Most computational simulations are currently using
continuum models and finite element procedures, see for
example [1,2]. Since the 1990s simulations of isotropic elas-
to-plasticity at large strains have achieved reasonable accu-
racy and efficiency [3], using combined isotropic-kinematic
hardening [4] and consistently linearized implicit implemen-
tations [5,6]. The principal ingredients of the most successful
elasto-plastic implementations at large strains are the use of
the multiplicative or Lee decomposition [7], hyperelasticity
in terms of the logarithmic strains and the exponential func-
tion to integrate the plastic gradient [5,8]. The multiplicative
decomposition is based on micromechanical observations
and uses the existence of an intermediate, local, configu-
ration uniquely determined from the evolution of the local
plastic flow (both plastic strain and plastic rotation tensors)
[9]. An advantage of the use of the Lee decomposition is that,
since the elastic stretch tensor is explicitly obtained, the total
elastic strains may be directly computed from the deforma-
tion gradient. Then, the use of a stored energy function gives
stresses without resorting to ‘rate’ expressions [10-13], thus
avoiding any algorithmic objectivity issue and dissipation
during purely elastic strain paths [14,15].
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Fig. 1 The evolution of the principal orthotropic directions at different
spatial strains e, when uniaxial tensile loading is applied to a metal sheet
along the x-axis. 8 is the angle between the rolling direction and the
loading direction (x-axis). Three initial orientations (30°, 45° and 60°)

However, the Lee decomposition presents important
computational issues due to its multiplicative character,
inserting the Mandel stress tensor in the dissipation expres-
sion [6,9]. The resulting difficulties are bypassed in the case
of isotropic elasticity using logarithmic strains and the
exponential mapping. In isotropic elasticity the stress and
elastic strain tensors commute and the Mandel stress tensor
coincides with the rotated Kirchhoff stress tensor [1,5]. A
physically motivated hyperelastic function of the logarith-
mic strains [16,17] may be employed. Retaining the linear
term of the Taylor series of the exponential mapping for the
integration of the plastic flow, a very simple algorithm is
obtained [5], in which the large strains framework acts as
a simple pre- and post-processor of the usual small strains
algorithm, even for obtaining the algorithmic tangent [6]. It
should be noted that with these algorithms any anisotropic
yield function could be used and the plastic flow is computed
using the corresponding small strains algorithm.

However, for the case of anisotropic elasticity, stresses
and elastic strains do not commute in general and the dis-
sipation equation presents major mathematical difficulties.
Hence some researchers adopt formulations that rely on addi-
tive decompositions, see for example References [18,19],
elastic isotropy [20-22] or other complex frameworks more
difficult to implement in an implicit finite element code
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of orthotropic axis are considered. See [9,32] for the detailed descrip-
tion of the experiment and the analysis. The other material parameters
are listed in Table 1

[23-26]; see also some criticisms in [27]. In summary, those
algorithms do not retain the successful properties of the pre-
viously mentioned algorithms for isotropic elasticity.

The above-mentioned anisotropic elasto-plastic algo-
rithms as well as the vast majority of the computational algo-
rithms for anisotropic plasticity of continua do not take into
account the possible evolution of the material symmetries.
However, the evolution of the material symmetries with non-
proportional plastic strains is intuitive and has been observed
experimentally, see for example References [28-32]. This
evolution is closely related to the texture evolution of the
microstructure, also observed experimentally, see for exam-
ple References [33—43]. Texture evolution involves both
changes in the yield function and in the preferred directions.
In practice, as a first approximation, the yield function evo-
lution may be taken into account through isotropic and kine-
matic hardening of the original anisotropic yield function.
This approximation has given good results [21,22,28,32,44,
45], even if constant normalized parameters of the Hill yield
function are used for a wide range of plastic strains [9,32].

For an accurate simulation, the rotation of the preferred
directions must also be taken into account. In crystal plastic-
ity, the lattice rotation and the plastic spin are closely related
by the Schmidt law. In continuum plasticity, the physical
meaning of the plastic spin has been much discussed even
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Fig. 2 The effect of the elastic anisotropy. a The evolution of the
principal orthotropic directions, b Young’s modulus at different angles
with respect to the rolling direction (a-direction). £, = 204 GPa and
E, = 203 GPa are used for the solid lines while E, = 203 GPa and

for the case of isotropic elasticity, see for example [46-51].
The usual choice in isotropic elasticity is a vanishing plastic
spin. This is a natural choice for isotropic elasticity because
the plastic spin does not appear in the dissipation equation
and does not affect the stored or dissipated energies [9].
Indeed, since there is no preferred orientation, on average,
the microstructure should not show any rotation preference.
However, in the case of elastic anisotropy, the stress ten-
sor in the dissipation equation is the unsymmetric Mandel
stress tensor, which produces work on the plastic spin, and
hence needs to be accounted for in the energy balance equa-
tions. In addition, the evolution of the material symmetries
also produces a change in the stored energy in the case of
anisotropy. In [9], a framework for anisotropic elasto-plas-
ticity using logarithmic strains, the multiplicative decompo-
sition and the exponential mapping is presented. The model
takes into account the evolution of the orthotropic preferred

Ej, = 204 GPa are used for the dashed lines where a and b represent the
rolling direction and the transverse direction of a metal sheet, respec-
tively. See Table 1 for the other elastic constants which are the same for
both cases

directions and was shown to predict the experimental results
of Reference [32] for material symmetry evolution. These
simulations are also used in this paper to gain further insight
into the meaning of the material parameters. Central to the
model is the importance of the evolution of the preferred
directions and the effect on both the stored energy and the
dissipation terms. This is an important difference with other
works in which such evolution is also taken into account
but through ad-hoc constitutive equations for the plastic spin
[21,22,32,44,45].

In this paper, we present results of some studies on the
model of Reference [9] in order to obtain deeper insight into
the use of the parameters for the constitutive equations and
the effects that may be simulated, as for example the cross
effect during path changes on the plastic strains.

In the following, we first outline the main features of
the model of Reference [9], focusing on the rotation of the
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Fig. 3 The effect of the elastic anisotropy. a The evolution of the principal orthotropic directions, b Young’s modulus at different angles with

respect to the rolling direction (a-direction). E, = E; = 204 GPa

orthotropic directions. Next, we discuss the effect of the
parameters on the predictions with physical interpretations
and give some results comparing with physical test data. For
a constitutive model, a simple procedure to obtain the mate-
rial parameters is always desirable. We present a procedure
to obtain the spin parameters from Lankford R-values and the
predictions are compared to those of Reference [44]. There-
after, we give some results regarding the predictability of
the model in nonproportional loading conditions. Finally, in
the last section of the paper, we present our conclusions of
this work.

2 The Montans-Bathe model
In this section, we review the ingredients of the Montans-

Bathe model. A detailed description s givenin [9]. We follow
the notation of [1,3].

@ Springer

2.1 Kinematics

The model is based on the Lee decomposition which leads
to the following multiplicative decomposition for the defor-
mation gradient
0X = [X°(XP €))
where (X is the deformation gradient and ,X¢ and [ X rep-
resent its elastic and plastic part, respectively. The left super-
script denotes always the current configuration while the left

subscript represents the reference configuration. We will omit

these left indices when confusion is hardly possible.
The spatial velocity gradient is

t ty ty—1
1 =1k ix

= XX+ xe [ox7(pxn ] hxey ! @)
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Fig. 4 The effect of the elastic anisotropy. a The evolution of the principal orthotropic directions, b Young’s modulus at different angles with
respect to the rolling direction (a-direction). E, = 214 GPa and E;, = 212GPa

We use the modified plastic velocity gradient defined in the
intermediate stress-free configuration
‘LY = (X" (X" 3)
whose symmetric part is the modified plastic deformation
rate tensor ‘D? while its skew part is the modified plastic
spin tensor WP,

Equation (3) provides the differential equation for the evo-
lution of the plastic deformation gradient

EXP = 'LPLXP 4
whose backward-Euler exponential solution is given by
THALXP = exp(At "TAILPY XP 5)

For small steps (| Az "TA'LP|| « 1, a typical restriction
in plasticity formulations based on logarithmic strains), the
exponential function can be approximated by

exp(Ar TTALPY ~ exp(Ar "TAIDP) exp(At TTATWP)  (6)

Then we have the following update formulas
(Z‘F%pr)—l — (6xp)—1 eXp(—At I+Alwp)

x exp(—At TADP)
X¢ exp(—Ar "TATWP) exp(— At "TAIDP)

(N
®)

t+At ye
0 X
where X¢ = "T4'X 4X¢ is the trial elastic deformation gra-
dient.
Now we define the incremental plastic rotation as

Z+Athw — CXp(At I+Alwp)

&)

Using Egs. (8, 9) and the logarithm strains defined by 2E*
In C® where C° = X7 X¢ is the right Cauchy-Green defor-
mation tensor, we can derive the following update scheme
for the strains (see details in [6])

1+Atpe ~, e _ t+Atnyp
0E¢~ ES— AtTHED) (10)

We define (-) as the quantity (-) rotated to the configuration
<~
where the plastic rotations are frozen during the plastic flow
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Fig. 5 The effect of the elastic anisotropy. a The evolution of the principal orthotropic directions, b Young’s modulus at different angles with
respect to the rolling direction (a-direction). E, = 212GPa and E;, = 214GPa

such that

¢)
<«

At pwT A
— t+ thw (.)l+ ;tRw (11)
Note that E¢ is given by the trial elastic deformation gradi-
s,
ent, and H'A,t RY is not involved in Eq. (10) and only known
after integrations.

2.2 Dissipation inequality

The stored energy function is assumed to be of the type

W:%Ee:A:E‘) (12)
where A is an elastic anisotropy tensor. Note that in Eq. (12)
the strain tensor and the elastic anisotropy tensor are defined
in the unrotated configuration where the elastic rotation is
removed. During the plastic flow, this configuration and all
objects defined in it rotate in each step by the amount ' 4/ R
due to the plastic spin. However it has been observed that the
anisotropy axes do not necessarily rotate as given by’ +Atl RY.
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Therefore we introduce an additional rotation for the anisot-
ropy axes given by "T4/RA,

Then the rate of the stored energy function can be written
as (for details see [9])

\) — R WA T - e . wA
W—(Z(Q —I—({w.K—T.(QE—i-Tw.W (13)

where T = A : E° is a symmetric tensor defined as a gen-
eralized Kirchhoff stress tensor which is work conjugate to
the logarithmic strains, T,, = E°T — TE? is a skew tensor,
wA = R (R*)T is a spin tensor for the anisotropy axes, and
(é (+) is a Lie derivative with H'A,’ R"Y acting as a gradient.
Similarly we assume the following expression for the rate
of the hardening potential
H=Bs:E + Bu: W' +xi + w0k
=BS:<§E"+Bw:WH+K§+Kwé (14)

where Bj is the backstress tensor, E' are logarithmic strain-
like internal variables and B,, = E'B,— B,E!, the tensor W
is the spin for the hardening anisotropy axes, the scalars «
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Fig. 6 The effect of parameters on the evolution of the principal orthotropic directions. 6 is the initial orientation of the orthotropic axis

Table 1 The material parameters used in Sect. 3

Elastic constants Hill’s yield Hardening
function
parameters
E, = 204GPa
E, = 203GPa f=0.3613 M=10
E. =210GPa h = 0.4957 ko = 230.00 MPa
Vab = Vac = Vpe = 0.3 g = 0.3535 Koo = 276.00 MPa
Gap = 82GPa 1=1.0 8§ =30
Gac = Gpe = 80.77GPa h = 350MPa

and «, are the effective stress-like internal variables (current
yield stress and couple-stress, respectively) and the scalars
¢ and & (effective plastic strain and effective plastic rota-
tion) are the effective strain-like internal variables. For the
evolution of the yield stress and the backstress, we use

Prager’s hardening model with the SPM (Splitting of Plas-
tic Modulus) method, see [4], including the possibility of
anisotropic kinematic hardening given by

K = (1 — M)ko + M&

= (1—M)ko+M [koo— (Koo —Ko) exp(—6¢)+hC]  (15)
: 2 dic o op
Bo=50-M7 H:D (16)

where M is the mixed hardening parameter, H is an
anisotropy tensor for the kinematic hardening and koo, k¢, &
and h are material properties which govern the isotropic hard-
ening curve.

Then the dissipation inequality becomes

ﬁsz.'s:Dp+Ew:Wd—BS:£Ei—Bw:WH

— .l —kp€ 20 (17
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Fig. 7 Contour maps for ¢
with respect to p and 7.

am = 1,bm = 2. The dashed
lines represent where the change
of ® is minimum

where E ¢ and E, are the symmetric part and the skew part of
the Mandel stress tensor & = C°S (where S is the pull-back
of the Kirchhoff stress T to the stress-free configuration),
respectively and W¢ = WP — W4 is the dissipative spin
tensor. The symmetric part and the skew part of the Man-
del stress tensor can be related to the generalized Kirchhoff
stress tensor by

s=T:SM (18)
w =Ty = E°T — TE* (19)

I I

where S¥ is the fourth order mapping tensor which for small
elastic strains is close to the identity tensor.

We assume that, without loss of generality, the elastic
region is enclosed by two yield functions f;(Z, By, x) and

@ Springer

Jw(Ew, By, ky). Then the Lagrangian for the constrained
problemis L = DP —i f;—y f,, where f and y are the consis-
tency parameters. By claiming that the principle of maximum
dissipation holds (VL = 0), we have the associated flow and
hardening rules given by

oL oL
0D =i _]:S d — =0=>W =y Zw
0E = RIS =,
9L . . Ofs oL P fw
—0= LE =—i d = =0 wH=—_piw
B, & a8, " am, = Y 9B,
aL afs aL o
—=0=¢=—t d —=0=> -
ls ¢ oK an 0Ky § 0Ky
(20)
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Fig. 8 The evolution of the orthotropic axes and the flow stresses. Pairs of p and n on the dashed line in Fig. 7a are used with m = 1

2.3 Yield functions

We assume that the well-known Hill’s quadratic yield crite-
rion holds for the symmetric part of the Mandel stress tensor.
3 = P
fsz_z(-:s_Bs):As (Es—By)—1=0 (21
2k
where AY is the plastic anisotropy tensor assumed to have
the same anisotropy directions as the elastic anisotropy ten-
sor. Note that A} extracts the deviatoric stresses only and

therefore the mean stresses do not enter the yield condition
in Eq. (21). From Eq. (20), we have

. 3 ,
LE =DP = —K2A§’ ((Es—By)i
.2,

;:—[

K

(22)

(23)

where f; = 0 at yield is used in Eq. (23).
On the other hand, the von Mises type of yield function is
used for the skew part in this study

fuw = 1Ewll — V2 (24)

where k, is the allowed yield value which may be set to zero.
Then we have also from Eq. (20)

wi=y&,
£ =2y

A

where £, = E4,/1Ewll.

(25)
(26)

Note that Eq. (24) indicates that the plastic spin will take
place once || E || becomes larger than 2k regardless of
the symmetric part of the plastic flow. However, this is incon-
sistent with experimental observations where a progressive
rotation of the anisotropy axes is measured. Furthermore,
in crystal plasticity the Schmidt law shows a clear relation
between the plastic deformation rate tensor and the plastic
spin tensor. Hence we propose the following relationship con-
necting the skew part with the symmetric part.

m
= ()
n
where (-) is the Macauley bracket function and n and m are
material properties with n having the unit of stress. This
viscoplastic-like law relates the plastic spin to the magni-
tude of the skew part of the Mandel stress tensor, and there

is naturally no plastic spin when the skew part of the Mandel
stress is zero (as usually assumed in isotropic plasticity).

27)

3 Parametric study

We present in this section, some parametric studies to obtain
insight into the model. We discuss the physical meaning of
the results and the effects that the material parameters for the
skew part have on the predictions in some loading cases.
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Fig. 9 The evolution of shear stress in a reverse simple shear test (m = 1) a with pairs of p and 1 shown as the dashed line in Fig. 7a; b with the

fixed p = 0.204; ¢ with the fixed n = 40

3.1 Constitutive equation for spin tensors

We assume the following constitutive equations for the spin
tensors

Waxes — WP 4 WA = —pWw? (28)

where W is the total spin of the anisotropy axes with
respect to the unrotated configuration (where the elastic rota-
tion is removed).

Then, from W¢ = WP — W4, we have
1
S =W

wP (29)

1
wA -0 + p)w? (30)
Equation (28) implies that the spin of the anisotropy axes is
proportional to the dissipative spin. In general p may be bet-

ter modeled to be a function of the plastic deformation, but
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here we assume, as a first approximation, that p is constant.
Note that the definition of p is slightly modified from the
original definition proposed in [9].

We are able to establish a proper range of p based on
physical reasoning.

First we claim that the anisotropy axes rotate to a more
favorable orientation after plastic flow such that the stored
strain energy decreases. Therefore the second term in
Eq. (13), which corresponds to the change in internal energy
due to the anisotropy axes rotation, must be negative. This
leads to, using Eqs. (25) and (30),

1 -
Ty:Wh=—2(1+p)y 18ull <0 31)
Since y and || £, || are always positive, we have
p>—1 (32)
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g:rl;l:;; er];hjszaitﬁnsaéct 4 Material Elastic constants R-values Hardening Spin
DDQ-1 E, =212GPa Ry =2.722 M=08 o =0.40
E, = 208 GPa Rys = 1.474 ko = 152.00MPa n =60
E.=210GPa Rop = 2.169 Koo = 387.81 MPa m=1.0
Vab = Vae = Vpe = 0.3 §=923,h=0.0
Gup = 82GPa hE =nf =nt =10
Gue = Gpe = 80.77GPa hC =hS. =hS =16
DDQ-2 E, =208 GPa Ry = 2.137 M=038 0 =0.26
Ejp =212GPa R4s = 0.930 ko = 152.22MPa n =20
E. =210GPa Rop = 1.508 Koo = 372.23MPa m=1.0
Vab = Vae = Vpe = 0.3 §=1787,h=0.0
Gab = 82GPa hE =hE =nE =10
Gue = Gpe = 80.77GPa hS =hS =hg =50
DQ E, = 182GPa Ro = 1.600 M=0238 0 =048
Ej = 178 GPa R4s = 1.010 ko = 198.00MPa n =60
E. = 180GPa Rop = 1.460 Koo = 455.00 MPa m=1.0

Vap = Vac = Vpe = 0.3

Gap = 70GPa

Gye = Gpe = 69.23GPa

8§=9.957h=0.0
hE =hf =nf =10
hG =hG =hf =22

Then we assume that the plastic spin has the same direction
as the dissipative spin which physically means that the dissi-
pative spin drives the plastic spin and consequently the spin
of the unrotated configuration where the elastic rotation is
removed. Hence, from Eq. (29), we have

p <1 (33)

Equations (32, 33) imply that the total spin of the anisotropy
axes does not exceed the dissipative spin in magnitude, see
Eq. (28).
Finally from Egs. (25) and (28)

WS = —pp &, (34)
From this expression it is deduced that the anisotropy axes
rotate in the direction of £, if p < 0 while they rotate in
the opposite direction of Z, if p > 0. It is reasonable to
postulate that the anisotropy axes will rotate in the opposite
direction of £ w because =, measures how much the elastic
strain tensor and the stress tensor are not coaxial. This can
be also confirmed by numerical tests versus laboratory test
data. Consider the data in Fig. 1, which shows the prediction
for the evolution of the principal orthotropic directions and
the comparison with the experimental result when a uniax-
ial tensile force is applied on a metal sheet with three initial
orientations of orthotropic axes. We observe a rotation of the
orthotropic axes to a wrong orientation when we use p < 0.

Hence, together with Egs. (32) and (33), a reasonable
range of p is

0O<p<l1 (35)

3.2 The direction of axes rotation through elastic
anisotropy

Boehler and Koss [31] and Kim and Yin [32] performed sim-
ilar experiments to measure the evolution of orthotropic axes
of a metal sheet under uniaxial tension with initial off-axis
loading angles of 30°,45° and 60°. Their results are qual-
itatively the same except for the case in which the initial
off-axis loading angle is 45°. A counterclockwise rotation to
90° was observed by Kim and Yin while a clockwise rota-
tion to 0° was reported by Boehler and Koss. Within our
theory, these different observations can be explained by the
elastic anisotropy because we claim that the anisotropy axes
will rotate to more preferable directions such that the stored
strain energy decreases. As shown in Fig. 2a, our model can
predict both experimentally observed clockwise and coun-
terclockwise rotations by controlling the elastic anisotropy.
Hence we conclude that the difference between the two dif-
ferent experimental observations may be due to the uncon-
sidered or unknown elastic anisotropies. Here we changed
the Young’s moduli slightly to have a different landscape
of Young’s modulus in the plane and in consequence of the
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Fig. 10 The evolution of flow stresses and R45 for DDQ-1 in Table 2.
The experimental results are taken from [44]

stored strain energy. Note that the orthotropic axes rotate in
the direction of the downhill in Young’s modulus variation,
see Fig. 2b. If we select an elastic tensor such that the Young’s
modulus variation has a zero slope at 45°, no rotation takes
place for an initial orientation of 45° as shown in Fig. 3.
Moreover the model predicts that the orthotropic axes rotate
to 0° or 90° regardless of its initial orientation if the Young’s
modulus has a monotonic increasing or decreasing pattern,
see Figs. 4 and 5. Therefore the elastic anisotropy is very
important in our model and enriches the model’s predictabil-
ity. This is a key feature of the model which distinguishes it
from other phenomenological models that consider the plas-
tic spin.
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Fig. 11 The evolution of flow stresses and R45 for DDQ-2 in Table 2.
The experimental results are taken from [44]

3.3 Sensitivity of the spin parameters

From Egs. (23-29), the spin tensors can be rewritten as

WA

| Gl \" &
——q Ew 36
275 +p>(n) ¢ (36)

1 (fu)\"
P — (11— Mw/i
W 2ﬁ(1 p)( n )

Figure 6 shows the effect of the spin parameters, p, n and m,
on the evolution of the orthotropic axes in a uniaxial tension
test. For the other material constants, we use the same values
as in [9] and they are listed in Table 1.

>

wé (37)



Comput Mech (2009) 44:651-668 663
To be more quantitative in the analysis, we define the a0e ¥ " ! >
following root mean square errors for the orientation of the
orthotropic axes e ,—'l"'-.’-‘
1 L
o=z (Opymser + Opomtse + Oppger ) (38) = 400
where = ¥
0
1 - exp num\ 2 g 3001
Op, = o Z (8" — BM™) (39) b
i=1 g 250 ® Experiment (0°) }
exp . o = — Prediction (0°)
Here B;"" is the angle between the orthotropic axis (the roll- 200 ® Experiment (45°)
ing direction) and the loading direction obtained from exper- -~ Prediction (45°)
iments while ™™ is the predicted angle by the model, By 150 4 Experiment (90°%)
is the initial orientation of the orthotropic axis and n is the - == Prediction (90°)
number of experimental data points. Here the experimental 100 : : T -
data obtained by Kim and Yin [32] are used as a reference. ’ " " i 0'15 . 12 4
The dimension for the angle is degree. Equivalent plastic strain
Figure 7 shows the contour plot for ® with respect to p and 2
n when m = 1, 2. We can see that there is a region where the
change of ® is negligible, which means that there is a certain 18
relationship between p and n which gives a very similar pre- 16l A
diction for the anisotropic axes rotation. These relationships
14}

obtained from the simulations for each m are also shown in
Fig. 7 as dashed lines with their equations. The simulation
results with some pairs of p and n on the dashed line for
m = 1 are shown in Fig. 8. Note that almost the same predic-
tions are obtained not only for the evolution of the anisotropic
axes but also for the evolution of the flow stresses.

This can be explained by considering the total spin of the
anisotropic axes with respect to the unrotated configuration
in Eq. (28). From Egs. (28), (36) and (37), we have

1 P A -
axes _ _ _~ ([ I m s
weres = ﬁ(nm)uw) £, (40)
This indicates that the ratio of p to n™ may play a more
important role in the evolution of the anisotropic axes than
the specific values of p, n and m. If we set the ratio to be a
constant C, we have

p=Cn" (41)

Equation (41) provides a possible relationship between the
spin parameters. We see that the dashed lines in Fig. 7 cor-
respond to C = 0.0051 form = 1 and C = 1.1 x 107 for
m = 2, respectively.

However each value of parameters, not only the ratio of
them, may be important for certain problems. As an exam-
ple, we performed a simulation of a simple shear deforma-
tion with a load reversal and the result is shown in Fig. 9.
The same material properties are used as in the previous
uniaxial tensile test. Different responses are obtained even
when we use pairs of the spin parameters which satisfy the
relationship shown in Fig. 7a. Especially, there is a clear

0.4
0.2t B Experiment {
— Prediction
n A i ' .
0 0.05 0.1 0.15 0.2 0.25

Longitudinal strain

Fig. 12 The evolution of flow stresses and R4s for DQ in Table 2. The
experimental results are adapted from [44]

difference in the amount of the equivalent plastic strain where
the load reversal begins, see Fig. 9a. According to Fig. 9b,c,
the change is mainly attributed to the value of the parameter
p while 1 has a primary effect on the initial transient response
which depends on the rate of anisotropic axes rotation. Note
that, in principle, p determines the amount of the axes spin
from the given dissipative spin while 7 scales the skew part
of the Mandel stress tensor. Therefore each parameter has a
unique function and each value of parameters, not only their
ratio, may be important for a certain problem like in simple
shear where the principal strain direction changes continu-
ously during the plastic deformation and, in consequence,
the orthotropic axes and the intermediate configurations do
SO t00.
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Fig. 13 The multi-paths loading problems. a Initial configuration
where a and b represent the rolling direction and the transverse direction
of a metal sheet, respectively; b The case of monotonic simple shear;
¢ The case of reverse simple shear; d The case of tension-shear

4 Identification of spin parameters based
on R-values

In general, spin parameters have been chosen in order that
a model properly reproduces the evolution curve of aniso-
tropic axes measured from the evolution of anisotropies in
yield stress as in [32]. As an alternative, Choi et al. [44]
recently proposed a possible way of identifying spin param-
eters based on the evolution of the R-values, also known as
the Lankford coefficients. The motivation is based on the
observation that the R-value shows a non-negligible evolu-
tion when an orthotropic axis is initially oriented at 45° while
the R-values for the initial orientations of 0° and 90° can be

"2 ~4 (8 + f —E)
L (E 4 f —hE)
L (RE B +RE) L (hE 4 E )

=
I
o o o
o o o

This procedure seems experimentally more practical than
measuring the evolution of anisotropic axes directly because
only uniaxial tensile test data for three different orientations
of 0°, 45° and 90° are necessary. The experimental data for
0° and 90° are used to determine isotropic hardening param-
eters and then we use the evolution curves of the R-value
and the flow stress for 45° to calibrate parameters for kine-
matic hardening and plastic spin. The coefficients of Hill’s
quadratic yield function are calculated from the reference
R-values. Here we apply this procedure to our model and
compare our predictions with the experimental results avail-
able in [44].

First of all, we need to clarify the definition of the R-value
because it has been used in various forms in the literature.
We use the same definition of the R-value as in [44] given

Ew

o 42
P (42)

where g; is the longitudinal strain in the direction of uniax-
ial loading, &; is the through-the-thickness strain and &, is
the widthwise strain. Due to the difficulty in measuring &;
of sheet metals, &, = —(g; + &) is used by assuming small
elastic strains and incompressibility of the plastic strains.

It has been reported that the flow stress for initial orien-
tation of 45° will be under-predicted when only isotropic
hardening is used even if the axes rotation is considered.
We need to include kinematic hardening. Since it is not our
goal to discuss which hardening model is more adequate, we
simply use Prager’s mixed hardening rule as in Eqgs. (15, 16)
although Choi et al. [44] used a different hardening model. Of
course, any kind of kinematic hardening model can be used
with our model, simply by just replacing Eq. (16) with the
chosen model equations. We use the orthotropic hardening
tensor in Eq. (16), which in matrix form is

—3 (hE—nE+nE) 0 0 0
—L(=hE+nE+nE) o 0 0

ZhE 0 0 0 @)
0 200 0

0 0 2h8. 0

0 0 0 208 |

regarded as constant, as usual. Also, it has been shown that
the flow stress for the initial orientation of 45° will be over-
predicted if a conventional hardening model is used without
considering the axes rotation [44]. Therefore the rotation of
the orthotropic axes in addition to a conventional hardening
model needs to be included to predict the R-values and the
flow stresses with better accuracy.

@ Springer

where hf hf and hCE are normal stress hardening param-
eters in each orthotropic direction and hfb, hS. and hgc are
shear stress hardening parameters in each plane. In case there
is no preferred direction for kinematic hardening, this tensor
may be replaced by the deviatoric projection tensor or by
the identity tensor. Note that Eq. (43) guarantees the de-

viatoric feature of a backstress tensor. We assume that the
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Fig. 14 Multi-path loading response (without plastic spin); a isotropic
hardening model—neither ‘cross’ nor ‘Bauschinger’ effect, b mixed
hardening model—no ‘cross’ but ‘Bauschinger’ effect. (M = 0.9,
H = D where D is the fourth order deviatoric projection tensor)

orthotropic axes for hardening are aligned with those for the
elastic tensor and the yield surface.

The same material properties are used as in [44]. The
properties are those of two DDQ (deep drawing quality)
and one DQ (drawing quality) mild steels. We calibrate the
spin parameters and kinematic hardening parameters of our
model to fit the experimental results while we adopt the
values for isotropic hardening and initial R-values used in
[44]. Only small anisotropy is introduced in the elastic con-
stants. The material properties and parameters used in this
study are listed in Table 2. Figures 10, 11 and 12 show the
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Fig. 15 Multi-path loading response (with plastic spin); a isotropic
hardening model—*‘cross’ but no ‘Bauschinger’ effect, b mixed hard-
ening model—*‘cross’ and ‘Bauschinger’ effect. (M = 09, H = D
where D is the fourth order deviatoric projection tensor)

results obtained. The predictions show a good agreement with
experimental results both in the R-values and the flow stresses
for all three materials, which is also achieved by Choi et al.
Hence it may be concluded that this method can be an alter-
native way of identifying parameters for anisotropic axes
rotation.

However, much more comparison of computed responses
with experimental data on various materials is needed to val-
idate this identification procedure. It would be ideal if we
could compare the spin parameters, for the same material,
calibrated from the evolution of anisotropies in yield stress
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Table 3 The material parameters used in Sect. 5

Elastic constants R-values Hardening Spin

E, = 207GPa Ry =2.64 ko =152.00MPa p =0.40
E, =206GPa Ry5 = 1.57 koo =387.81MPa 1 = 80
E. = 206GPa Rop=2.17 §=923,1=00 m=10
Vab = Vge = Vpe = 0.3

Gap = 80GPa

Gye = Gpe =79.23GPa
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T T
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Fig. 16 The effect of the amount of prestraining on crossing. (Isotropic
hardening, M = 1.0)

as in [32] and from the evolution of the R-values and the flow
stresses as in [44].

5 Predictability of the model in multi-paths loading
problems

We consider in this section, the capability of our model to pre-
dict the behavior in problems where the loading path changes
during the plastic deformation. Two key features that we
want to capture in multi-paths loading problems are the well-
known ‘Bauschinger’ effect and the ‘cross’ effect, that is, the
effect of uniaxial prestraining on the shear response [45,52].
Three deformation patterns are simulated in order to identify
basic features of a multi-paths loading problem as in [45].
The first one is a monotonic simple shear. The second one is
a reverse simple shear, where the material is pushed back to
its initial shape after a forward shear. The third one is a ten-
sion-shear path, where uniaxial prestraining is applied prior
to the simple shear. The Bauschinger effect can be seen in
the reverse shear test and the cross effect may appear in cer-

@ Springer

tain tension-shear tests depending on the materials used. The
loading paths are illustrated in Fig. 13.

As reported in [45], the cross effect cannot be captured
by a conventional phenomenological model which considers
only isotropic and kinematic hardening while, of course, the
Bauschinger effect can be modeled with kinematic hardening
by the backstress evolution. If the rotation of anisotropic axes
is taken into account, the cross effect appears in the predicted
response. The calculated responses are shown in Figs. 14 and
15. The material parameters used are listed in Table 3. Note
that the amount of crossing depends on how much the mate-
rial is prestrained prior to the shear deformation. A larger
amount of prestraining leads to a greater crossing effect as
shown in Fig. 16. It is also interesting that the cross effect is
greatly influenced by the amount of kinematic hardening, see
Fig. 17. The cross effect becomes prominent as M approaches
1 (purely isotropic hardening). As the portion of kinematic
hardening increases (M approaches 0), the cross effect grad-
ually weakens and eventually no crossing takes place after a
certain amount of hardening. In that case, the shear stress of
a tension-shear test follows a monotonic simple shear curve
with an offset.

6 Concluding remarks

Despite the significant advances in the simulations of elasto-
plastic responses, the efficient and accurate analysis of large
strain deformations of anisotropic sheet metals remains elu-
sive. This is due to the difficulties imposed by the elastic and
plastic anisotropy and the evolution thereof.

In this paper, we performed some studies on a model suit-
able for the analysis of orthotropic elasto-plastic continua
considering both the elastic and plastic anisotropy and the
evolution of the material symmetries. Elastic anisotropy is
a crucial ingredient in the model to capture the rotation of
the anisotropy axes. These studies give some physical insight
into the model, notably regarding the understanding of the
material parameters that affect the evolution of the directions
of orthotropy, their effect on the predictions achieved with the
model, and hence the proper choice of these parameters. We
obtain the material parameters from measurements of elas-
tic and plastic anisotropies including from the evolution of
the Lankford coefficients, and find that modeling the elastic
anisotropy explains earlier published results.

An effective material model requires the use of a consis-
tent theory, as given in this paper, and a full validation of
the model. For our model, a full validation will require the
availability of more experimental data and comparisons with
simulations. However, the required experimental data is still
scarce, especially when including the measurement of elas-
tic anisotropy. It will be very valuable to continue with the
validation of the model as more experimental data becomes
available.
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